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Summary 

The interrelated programs essential for cellular fitness in the face of stress are critical to 

understanding tumorigenesis, neurodegeneration, and aging. However, modelling the 

combinatorial landscape of stresses experienced by diseased cells is challenging, leaving 

functional relationships within the global stress response network incompletely 

understood. Here, we leverage genome-scale fitness screening data from 625 cancer cell 

lines, each representing a unique biological context, to build a network of "coessential" 

gene relationships centered around master regulators of the response to proteotoxic, 

oxidative, hypoxic, and genotoxic stress. This approach organizes the stress response 

into functional modules, identifies genes connecting distinct modules, and reveals 

mechanisms underlying cellular dependence on individual modules. As an example of the 

power of this approach, we discover that the previously unannotated HAPSTR (C16orf72) 

promotes resilience to diverse stressors as a stress-inducible regulator of the E3 ligase 

HUWE1. Altogether, we present a broadly applicable framework and interactive tool 

(http://fireworks.mendillolab.org/) to interrogate biological networks using unbiased 

genetic screens. 
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INTRODUCTION 

All living organisms retain an evolutionarily conserved capacity to adapt to 

physiological stress. Highly relevant to human disease, cellular stress response pathways 

empower aging neurons to clear protein aggregates, sun-exposed melanocytes to repair 

damaged DNA, and large tumors to proliferate despite having outgrown their blood 

supply. Certain types of stress, such as thermal stress, are easily studied. Others, 

however, such as the landscape of misfolded proteins in tumors, are more difficult to 

model experimentally. Moreover, diseased cells rarely face one stress in isolation. Do 

cells grown in a hypoxic incubator in pH-buffered, nutrient-rich media adequately model 

the stresses faced by an ischemic cardiomyocyte after vessel occlusion? Isolated stress 

perturbations are invaluable to provide mechanistic insight into individual stress response 

programs, but they fail to capture the complexity that may be found in disease states 

where these pathways function in a global, integrated network. Unfortunately, it is 

intractable to comprehensively study all possible combinations of different stresses and 

stress doses. Alternative strategies are needed to probe stress response pathways in 

disease-relevant contexts and to identify the mechanisms by which these pathways are 

integrated. 

 One approach to investigate context-specific biological relationships is to leverage 

the heterogeneity of cancer cell lines, each representing a unique genomic and 

epigenomic landscape obtained through rapid evolution from diverse cells of origin. In 

studying stress biology, cancer cells may be a particularly suitable model of 

physiologically relevant states, as tumors routinely co-opt stress response systems to 
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withstand the physiologic challenges imposed by carcinogenesis (Luo et al., 2009). For 

example, individual tumors may suppress the Hippel-Lindau tumor suppressor (VHL) to 

induce constitutive hypoxia signaling (Maxwell et al., 1999). Other tumors may 

alternatively splice pyruvate kinase to promote a metabolic shift toward aerobic glycolysis 

(Christofk et al., 2008).  Still others may activate Heat Shock Factor 1 (HSF1) to 

coordinate protein homeostasis (proteostasis) during anabolic proliferation (Santagata et 

al., 2013). Thus, the contextual breadth of cancer cells and the multitude of mechanisms 

by which they activate stress response pathways may provide unique insights into the 

regulation and integration of these pathways in diseased cells. 

 Large-scale fitness screening efforts have now quantified the essentiality of most 

protein-coding genes across hundreds of different cancer cell lines (Hart et al., 2015; 

Meyers et al., 2017; Tsherniak et al., 2017). These studies reveal that, even in cancer 

cells, most critical regulators of the stress response are not universally essential for cell 

viability. But are all cancer cell lines similarly affected by the loss of individual stress 

response factors? If not, what mechanisms underlie the requirement for these factors in 

some cell lines but not others, and which other genes share this context-specific 

phenotype? Regarding the latter question, recent work has demonstrated that correlated 

patterns of gene essentiality ("coessentiality") across many cancer cell lines can indeed 

identify functional relationships between genes (Boyle et al., 2018; Kim et al., 2019; Pan 

et al., 2018; Wang et al., 2017). These studies utilize a top-down approach, organizing 

the genome into coessential clusters which have already proven to yield valuable insights. 

However, due to technical limitations, such as spurious correlations between genes within 

genomic regions subject to copy number variation and the relatively modest signal for 
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genes which function outside of obligate protein complexes, much of the genome is left 

incompletely explored by these methods. Overcoming these technical limitations may 

thus expand the reach of this approach to biological systems of greater regulatory 

complexity, such as the cellular stress response network. 

In this article, we develop a framework to use genome-scale, CRISPR-Cas9 fitness 

screening data from 625 cancer cell lines to build a bottom-up network of coessential 

relationships centered around critical regulators and effectors of the stress response. Our 

approach organizes functional modules within the stress response, corresponding to both 

canonical and novel functions of these factors, and identifies genes which represent 

points of crosstalk between distinct modules. We demonstrate that context, in tumor 

subtype and cell lineage, is associated with dynamic changes in the organization and 

utilization of stress response modules in a manner reflecting therapeutically-targetable 

biology. Finally, we identify novel genes in a global stress network, validating that the 

previously unannotated HAPSTR (C16orf72) promotes cellular adaptation to diverse 

stressors as a stress-inducible regulator of HUWE1, an E3 ligase which modulates 

genotoxic, proteotoxic, and hypoxic stress responses (Kao et al., 2018). More broadly, 

we demonstrate the power of our approach using the global stress response network as 

proof of principle and provide an interactive web-based tool 

(http://fireworks.mendillolab.org/) to facilitate studies of other biological networks.  
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RESULTS 

 

Assembling a coessentiality network around the master regulator of cytosolic 

proteostasis  

 Previous reports have demonstrated that genes with shared functions, particularly 

those which encode components of obligate protein complexes, have convergent effects 

on fitness when deleted in cancer cell lines (Kim et al., 2019; Pan et al., 2018). Consistent 

with prior analyses performed in few cell lines, network analysis of the strongest 

coessential relationships in the genome (r>0.6; 1532 pairings) successfully identifies 

modules of biological relevance with highly correlated fitness profiles (Figure S1B). 

However, these clusters are dominated by few pathways, many of which center on major 

protein complexes – primarily, the ribosome, oxidative phosphorylation, and spliceosome 

machinery. Indeed, the gene pairs with the most correlated (coessential) knockout fitness 

effects overwhelmingly represent protein complex members (86% of top gene pairs; 23% 

expected by chance; Figure S1C). For example, the tuberous sclerosis complex proteins 

TSC1 and TSC2 represent the strongest coessential relationship in the genome (r=0.92, 

p=1e-269). Indeed, despite remaining highly statistically significant, the average 

magnitude of the top-ranked correlation for genes encoding transcription factors is 

substantially less than that for genes in the CORUM human protein complex database 

(Figure S1D). Moreover, in this network, non-informative clusters emerge which 

correspond to genes in the same chromosomal region, likely reflecting the confounding 

fitness effect of double-stranded breaks in regions with copy number alteration (CNA) 

(Aguirre et al., 2016) (Figure S1B). CNA-based corrections, now standard in defining 
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gene essentiality from CRISPR-Cas9 screens (Meyers et al., 2017), address the 

magnitude of signal attributable to a gene at an amplified locus. However, this uniform 

correction does not address the shared patterns of relative essentiality between genes at 

that locus, fundamentally biasing correlation-based analyses. Thus, in a genome-scale, 

top-down coessentiality analysis, true biological signal is lost for genes encoding proteins 

which function independently from large molecular assemblies and/or have variable copy 

number across tumors – such as master regulator transcription factors of the cellular 

stress response (Figure S1E). 

To address the limitations of existing coessentiality approaches, we developed a 

bottom-up approach to generate a locus-adjusted, rank-based network from central 

source node(s) of interest (Figure 1A). We first investigated HSF1, a transcription factor 

considered the master regulator of cytosolic proteostasis. Across cancer cell lines of 

diverse cell lineage and tumoral subtype, HSF1 loss negatively impacts cellular fitness, 

with a spectrum of relative essentiality within each lineage (Figure 1B). Notably, HSF1 is 

located on chromosome 8q, a region commonly amplified in cancer. In contrast to HSF1 

transcript levels (Figure 1C), HSF1 essentiality was not correlated with copy number 

(Figure 1D). This reflects the copy number adjustment performed to obtain the CERES 

score, a continuous measure of the fitness effect of individual gene loss (Meyers et al., 

2017). However, the genes most coessential with HSF1 still showed substantial 

enrichment for genes in the same chromosomal neighborhood (p = 7e-5; Figure 1E). We 

found that correcting for the median fitness effect of neighbor genes prior to performing 

genome-wide correlations eliminated this locus bias (Figure 1E).  
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We next profiled the top ranked HSF1-coessential genes using our locus-adjusted 

method. Remarkably, despite lower magnitudes of correlation as compared with protein 

complexes, the genes with fitness profiles most similar to HSF1 included genes having 

known functional relationships with HSF1, such as Heat Shock Factor 2 (HSF2), HSP70 

and HSP110 family members (HSPA4, HSPA14), and HSP90 ligands (ANKRD49, 

FKBPL). Gene set enrichment analysis (GSEA) of top HSF1-coessential genes confirmed 

enrichment for canonical HSF1-related processes (i.e. chaperone-mediated protein 

folding; Figure 1F). GSEA also corroborated pathways with emerging relationships to 

HSF1, such as ribosome biogenesis and RNA processing, where HSF1 senses ribosome 

activity during translation (Santagata et al., 2013), and mitochondrial protein import, 

where HSF1 drives the multifaceted response to cytosolic accumulation of non-imported 

mitoproteins (Boos et al., 2019).  

To better understand functional modules within the HSF1 coessential gene set, we 

generated an HSF1 coessentiality network containing the top 100 HSF1-coessential 

genes and up to 5 secondary connections per gene (Figure 1G). Like GSEA, the network 

approach reveals functional modules connecting to HSF1, with the additional advantage 

of illuminating the interplay within and between modules. For example, enzymes critical 

to protein glycosylation or UFMylation connect only to HSF1 and other genes in the same 

functional module. On the other hand, nucleolin (NCL) – a heat-shock responsive 

nucleolar protein which functions in the first step of rRNA processing (Daniely et al., 2002; 

Ginisty et al., 1998) – is central to a subnetwork which bridges the heat shock and RNA 

processing moedules.  
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We next investigated whether the HSF1 coessentiality network would vary by 

cancer subtypes, indicating lineage-specific biological relationships which did not emerge 

in pan-cancer analyses. As expected, the correlation of HSF1 with heat shock module 

genes was the most consistent correlation lineages, indicating that this canonical role of 

HSF1 is highly conserved across tissue types and genetic backgrounds (Figure 1H). 

Gene sets corresponding to other biological processes which have been previously linked 

to HSF1, such as glycolysis (Dai et al., 2007; Santagata et al., 2013; Zhao et al., 2009), 

had similar knockout phenotypes to HSF1 only in some cancer subsets, suggesting that 

context may drive these relationships (Figure 1H).  

A notable exception to the otherwise subtype-conserved correlation between 

HSF1 and heat shock genes was found in acute myeloid leukemia (AML), where no 

relationship was observed between HSF1 and the heat shock module (Figure 1H). 

Rather, the most correlated module comprised genes involved in ribosome biogenesis. 

To better understand the contexts driving HSF1 essentiality in AML, we compared the 

transcriptome, metabolome, and proteome for the cell lines most dependent on HSF1 

with the cell lines least dependent on HSF1. Strikingly, nearly every gene overexpressed 

in the HSF1-dependent AML lines encoded a protein involved in translation (enrichment 

p = 6e-25). Fittingly, protein levels of eukaryotic elongation factor 2 (EEF2) and p70s6k 

were elevated in these cell lines (Figure 1I), together indicating a high-translation 

phenotype which does not correspond to any known subtype of AML. Remarkably, a 

previous report described that inhibiting translation initiation with rocaglates potently 

inactivates HSF1, suppressing the high-translation malignant state in a manner which 

most potently impacted AML cells (Santagata et al., 2013). Notably, HSF1 dependence 
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does not strongly correlate with this RNA signature of translation in other cancer subtypes 

(Figure 1J). Moreover, the observation that this phenotype exists in a spectrum within 

AML garners further consideration, given the ongoing exploration of 

rocaglates/translation initation inhibitors for cancer care (Cunningham et al., 2018). Gene 

expression data from AML patient tumors reveals that the protein synthesis genes 

identified in our cell line analysis above stratify patients into distinct prognostic 

populations (Figure 1K), suggesting that translation initiation inhibitors may be most 

efficacious in this patient subset. Moreover, these data suggest the existence of a low-

translation, poorer prognosis group which may require alternative therapeutic 

approaches. Altogether, these data identify canonical and context-specific functions for 

HSF1, integrate genetic fitness data in a manner relevant to targeted cancer therapeutics, 

and serve as proof of principle for bottom-up, locus-adjusted coessentiality network 

analysis. 

 

A chaperone coessentiality network resolves functionally and spatially 

differentiated proteotoxic stress responses 

 While HSF1 is a critical upstream regulator of the proteotoxic stress response, the 

cellular proteostasis network also includes hundreds of effector chaperones and co-

chaperones, many with distinct clients, patterns of activation, and subcellular localization. 

Reflecting the functional nature of chaperones to physically interact with client proteins, 

our understanding of chaperone biology is highly influenced by physical interaction 

studies, which are often constrained by the overexpression of tagged proteins, limited 

numbers of cell lines, and chemical inhibitors which fail to distinguish highly similar family 
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members. Our genetic approach is not subject to these limitations and can identify 

functional relationships which do not require physical interaction. Thus, we expanded our 

network from HSF1 to the major chaperone families to provide functional insights into the 

broader cellular protein homeostasis network.  

 We first investigated the essentiality of the HSP40/J-domain protein (JDP), HSP70, 

HSP90, HSP110, HSP60/10, and small HSP chaperone family members (Figure 2A). 

Even within these families comprising highly related members, we observe great 

variability in the essentiality of individual chaperones. For example, within the HSP70 

family, HSPA9 (Mortalin) and HSPA5 (BiP/Grp78) are broadly required for cellular 

proliferation (mean essentiality, 1.53 and 1.32; essentiality rank, 203 and 436 of 18333), 

whereas targeting either HSPA12A or HSPA12B has no deleterious effect on cellular 

fitness whatsoever (mean essentiality rank, 16738 and 13407). While most HSP70 family 

members are cytosolic, the two highly essential HSP70s represent the primary HSP70 in 

the mitochondria (HSPA9) and endoplasmic reticulum (HSPA5). Likewise, the ER-

localized HSP90B1 (Grp94) is more essential than the cytosolic HSP90AA1 and 

HSP90AB1, suggesting that the specialization of these factors limits the capacity of the 

cell to buffer their loss via the expression of more closely related paralogs.  Supporting 

this model, we observe that dependence on individual cytosolic HSP90 isoforms is 

predicted by relative expression of that isoform (Figure S2A,B). For example, leukemias 

preferentially express and depend on HSP90AB1, whereas cervical cancers preferentially 

express and depend on HSP90AA1 (Figure S2C). Because therapeutic modulation of 

chaperones remains a goal in many areas of patient care, these data argue for the 
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consideration of paralog redundancy/buffering for any therapy targeted to a particular 

chaperone. 

 Next, to investigate interplay between chaperone genes, we constructed a 

coessentiality network using these chaperone family members as source nodes (Figure 

2B). Topologically, the chaperone network is more interconnected than would be 

expected by chance (p<0.001 vs. randomly permuted network), with several canonical 

relationships recapitulated. These included strong reciprocal connections between 

specific HSP70s and the JDP cochaperones with which they function, such as HSPA14 

and DNAJC2. To further analyze the network, we performed Markov clustering, which 

revealed several distinct modules containing clear biological connections (Figure 2C). 

Cluster 1 contains the chaperones most correlated with core cellular fitness processes, 

such as DNA replication (PCNA), translation (RPL11, RPL37, RPS13), and transcription 

(POLR2J). Cluster 5 contained five member genes, four of which have known functions 

at the inner mitochondrial membrane, strongly suggesting that the outlier node 

(DNAJC24) also plays a role in mitochondrial protein maintenance. Remarkably, the 11 

genes in Cluster 2 all localize to the ER lumen and have known functional connections to 

the ER stress response. On the other hand, multiple clusters emerged containing 

primarily to cytosolic proteins. To support the biological segregation of these cytosolic and 

ER lumen gene sets beyond localization, we investigated the transcriptional response of 

MDA-MB-231 cells to either 2-deoxyglucose (2DG; an inducer of protein misfolding in the 

ER lumen) or heat shock (HS; an inducer of protein misfolding in the cytosol). We found 

striking induction of ER cluster genes by 2DG, but not HS, and induction of cytosolic 

cluster genes by HS but not 2DG (Figure 2C, rightmost panels), indicating a functional 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/847996doi: bioRxiv preprint 

https://doi.org/10.1101/847996
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

differentiation of these modules in the response to distinct proteotoxic stressors. More 

broadly, these data demonstrate that bottom-up coessentiality network approach 

identifies functional modules, points of functional redundancy, and putative novel 

interactions within a highly interconnected and compartmentalized proteostasis network. 

 

Identifying topology and crosstalk between functional modules in a global stress 

response network  

As disease states often impose multiple simultaneous stressors, we next sought 

to expand beyond proteostasis to investigate the crosstalk between diverse stress 

response programs. Thus, we used the approach outlined above to generate a global 

stress response coessentiality network centered around master regulators of the 

response to genotoxic, proteotoxic, hypoxic, nutrient, and oxidative stresses (Figure 3A). 

For this network, we also included highly-ranked negative correlations to capture 

antagonistic relationships (Figure 3B).  

The stress network (Figure 3B), comprising proteins with diverse molecular 

activities (Figure 3C), has far greater connectivity than would be expected by chance 

alone. Moreover, this network is replete with examples of canonical signaling 

relationships. For example, within the genotoxicity cluster, TP53 and ATM share 

connections with many genes critical to the response to double-stranded DNA breaks 

(e.g. CHEK2, CDKN1A/p21, TP53BP1). NFE2L2/NRF2 was highly anticorrelated with its 

canonical negative regulator, KEAP1, sharing multiple divergent nodes – i.e. nodes 

correlated to one source node and anticorrelated with the other. These divergent nodes 

included PDCD10/CCM3, which phosphorylates the Ezrin/Radixin/Moesin family proteins 
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to promote fitness under oxidative stress (Fidalgo et al., 2012). The HIF family of 

transcription factors were also tightly connected, with the exception of the atypical HIF3A. 

Furthermore, VHL anticorrelated with both HIF1A and EPAS1 (HIF2A), but not ARNT 

(HIF1B), consistent with the known function of VHL to stimulate degradation of HIFα but 

not HIFβ proteins. The heat shock factor paralogs HSF1 and HSF2 were strongly 

connected, both displaying connections to the genotoxic stress cluster via genes such as 

NCL, which is known to mobilize from the nucleolus to nucleoplasm after heat shock or 

DNA damage in a p53-dependent process (Daniely et al., 2002). 

Other clear modules in the stress network included a large cluster corresponding 

to ERN1 and XBP1. In response to proteotoxic stress in the ER lumen, ERN1 cleaves 

XBP1 to initiate one of the three branches of the unfolded protein response (UPR). 

Indeed, we find that ERN1 and XBP1 share a dense cluster of coessential genes enriched 

for UPR/ER stress signaling (e.g. HERPUD1, DNAJC3; enrichment p = 1e-9). 

Interestingly, EIF2AK3 and ATF6 – the sensors for the other two branches of the UPR – 

did not share many coessential genes with ERN1 and XBP1, consistent with recent data 

suggesting that specific contexts confer differential dependence on different branches of 

the UPR (Adamson et al., 2016). An exception to the lack of connectivity between UPR 

branches is MANF, which correlates with XBP1, but anticorrelates with EIF2AK3/PERK. 

Consistent with our network, MANF has conserved, divergent genetic interactions with 

XBP1 and EIF2AK3, but not ATF6  (Lindstrom et al., 2016). Moreover, MANF was recently 

identified to stabilize a subset of HSPA5-client complexes in the ER lumen (Yan et al., 

2019). Indeed, HSPA5 is highly coessential with MANF in addition to correlating with 
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XBP1 and anticorrelating with EIF2AK3, supporting a model in which MANF is a point of 

regulation between the functionally differentiated branches of the UPR. 

Another highly interconnected cluster comprised genes involved in nutrient 

stress/autophagy, including the source nodes EIF2AK4 (GCN2) and GCN1 (nutrient 

sensors), ATG5 and ATG7 (critical genes for autophagosome formation), TSC1 and 

TSC2 (negative regulators of mTORC1), and ATF4. ATF4 is perhaps best known for its 

role downstream of EIF2AK3/PERK in the UPR, and does indeed connect to EIF2AK3 in 

the network via Thrombospondin 1 (THBS1), an ER-localized protein which promotes a 

protective ER stress response (Lynch et al., 2012). However, ATF4 clusters much more 

closely with the nutrient stress/autophagy genes, consistent with a more recently 

described role for ATF4 in mTORC1 signaling (Ben-Sahra et al., 2016). More globally, 

the autophagy cluster connected strongly with the oxidative stress module, featuring 

crosstalk genes such as TXNDC17 (TRP14), a disulfide reductase which has both 

peroxidase (Jeong et al., 2004) and autophagy-inducing (Tan et al., 2019; Zhang et al., 

2015) activities.  

 While the stress network readily identifies canonical stress response signaling 

relationships, not all of the genes in the stress network have established connections to 

stress response biology. This may be because many of these genes have not been 

studied directly (Figure 3E). To test whether the genes in our network are regulated by 

stress, we treated MDA-MB-231 cells with five different perturbations which capture the 

breadth of the stress network (CoCl2: hypoxia mimetic, Cyclophosphamide/CPA: DNA 

damaging agent (CoCl2: hypoxia mimetic, Cyclophosphamide/CPA: DNA damaging 

agent, 2DG: ER stress inducer and metabolic stress, serum starvation (SS): nutrient 
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stress, and HS: cytosolic proteotoxic stress). We observed that many genes in our stress 

network are stress-responsive at the transcript level, including three genes induced by 

multiple stressors which have not been studied directly (CCDC113, C16orf72, UBALD1; 

Figure 3F). While most genes were regulated by multiple stressors, certain genes 

corresponding precisely to one module were primarily induced by the stressor most 

associated with that module, such as TSC2 in serum/amino acid starvation, EGLN1 in 

CoCl2/pseudohypoxia, and the previously discussed MANF in 2DG/ER stress (Figure 

3F). Altogether, the stress network recapitulates positive and negative regulatory 

interactions between distinct stress response modules, identifies genes which represent 

points of crosstalk between modules, and identifies a set of minimally-studied genes as 

putative members of an integrated stress response.  

 

Cancer cell dependence on dynamic stress modules reflects targetable 

vulnerabilities 

While pan-cancer coessentiality analysis allows for the greatest sampling of 

distinct cell states, there are likely lineage-specific relationships within the stress network 

which might be obscured at the pan-cancer level. To identify such relationships, we 

constructed a stress response network using cancer cell lines from each lineage 

containing at least 10 cell lines and systematically assessed connectivity between source 

nodes (Figure 4A).  

Across lineages, the most highly connected stress response subnetwork 

corresponded to the TP53-ATM genotoxicity cluster, which had members in nearly every 

lineage, but was most predominant in skin cancers (18 members in skin; mean members 
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in other lineages, 5.4) (Figure 4B). This is perhaps unsurprising, as melanoma classically 

contains the largest mutational burden of major cancers (Zhang et al., 2018). In contrast 

to the relatively conserved genotoxicity subnetwork, we identified an ATF3-EIF2AK3 

network highly specific to neuroblastoma (17 members; one total member in other 

lineages). This network was comprised entirely of divergently correlated nodes – i.e. 

correlated with ATF3 and anticorrelated with EIF2AK3/PERK, or vice versa (Figure 4C). 

Notably, in neuroblastoma, ATF3 and EIF2AK3 are each the most anticorrelated gene for 

the other (r= -0.87, p=6e-6) while they are unrelated in the pan-cancer analysis (r=-0.04, 

p=0.3). ATF3 functions as a transcriptional repressor, and is induced by EIF2AK3 

downstream of the ER stress response (Jiang et al., 2004). Querying ENCODE ChIP-seq 

data, we find that ATF3 can bind an EIF2AK3 enhancer (Figure S4). Taken together, 

these data suggest that ATF3 and EIF2AK3 operate in a negative feedback loop 

particularly relevant to neuroblastoma.  

Another subnetwork with lineage-enriched membership was the ERN1-XBP1 UPR 

subnetwork, which had 15 members in the hematopoietic lineage network (mean 

membership in other lineages, 0.75) (Figure 4D). Interestingly, unlike the skin network 

(Figure 4B), which featured crosstalk between all three branches of the UPR, the 

hematopoietic lineage network was enriched only for the ERN1-XBP1 branch. We find 

that that this ERN1-XBP1 relationship in hematopoietic cells is primarily driven by multiple 

myeloma (Figure 4E), a malignancy characterized by constitutive UPR signaling due to 

high protein secretion load (Obeng et al., 2006). (Figure 4E). Strikingly, the XBP1-ERN1 

network in myeloma was enriched for both network connectivity (highly correlated within 

the lineage) and network essentiality (selective essentiality within the lineage) (Figure 
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4F). Thus, the ERN1-XBP1 UPR branch is an exquisite vulnerability specific to a subset 

of multiple myeloma which could, in principle, be exploited by targeting any individual 

member of the network. 

To further investigate this ERN1-XBP1-dependence in multiple myeloma, we 

compared available transcriptome, metabolomic, and drug sensitivity data for the 

myeloma lines most dependent on this network with those least dependent on the 

network. We found that this high-dependency subset of myeloma was characterized by a 

transcription and metabolic signature suggesting diminished oxidative metabolism 

(Figure 4G). Interestingly, these cell lines were more sensitive to Bortezomib (Figure 4I), 

a proteasome inhibitor used clinically in multiple myeloma which induces pro-apoptotic 

UPR signaling (Obeng et al., 2006). In contrast, the low-UPR-dependent, relatively 

proteasome inhibitor-resistant subset of myeloma was particularly sensitive to 

Elesclomol, an inhibitor of oxidative metabolism recently identified as a selective 

vulnerability in proteasome inhibitor-resistant myeloma (Tsvetkov et al., 2019). To 

investigate the relevance of these data to clinical care, we queried tumor microarray data 

from a clinical trial of Bortezomib, finding that the patients whose tumors shared this low-

OXPHOS signature (>1 standard deviation from mean; n=29) were more likely to respond 

to Bortezomib therapy as compared with the other enrolled patients (n=159; Figure 4J). 

Altogether, these data demonstrate the utility of intra-lineage coessentiality network 

analysis to identify regulatory relationships and therapeutic vulnerabilities particularly 

relevant to cells of a specific lineage.   
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C16orf72 is a stress-inducible modulator of the cellular adaptation to diverse 

stressors 

To demonstrate the power of our approach to identify a novel gene critically 

relevant to the stress response, we chose to study C16orf72, a previously 

uncharacterized gene in our stress network which was also induced by multiple stressors 

(Figure 3C,E-F). Mining publicly available datasets, we found that C16orf72 is indeed 

expressed across cancer cell lines, normal tissue, and tumors (Figure S7), with its 

expression in tumors being prognostic in many cancers (Figure 5A). C16orf72 loss is 

broadly deleterious to the fitness of cancer cell lines particularly those derived from kidney 

tumors (Figure 5B). Evolutionarily, C16orf72 is highly conserved through C. elegans 

(Figure 5C), with CRISPR-Cas9 fitness screening data in Drosophila cells (Viswanatha 

et al., 2018) indicating that its importance for cellular viability is also conserved (Figure 

5D). 

To validate the essentiality data for C16orf72 using an orthogonal approach, we 

tested the effect of C16orf72 depletion with siRNA on the short-term proliferation of three 

breast cancer cell lines with varying dependence on C16orf72: SK-BR-3 (C16orf72 

essentiality score, 1.65; cell line rank, 1/625), ZR-75-1 (essentiality score, 1.09; cell line 

rank, 38/625), and MDA-MB-231 (essentiality score, 0.05; cell line rank 581/625). As 

expected, proliferation of SK-BR-3 cells was most impacted by C16orf72 depletion, 

followed by ZR-75-1, with no fitness effect at 72 hours in MDA-MB-231 cells (Figure 5E). 

Interestingly, C16orf72 depletion produced a similar overall transcriptional effect in each 

of these three cell lines (Figure 5F), consistently inducing genes related to DNA damage 
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(e.g. CDKN1A/p21) and suppressing genes related to inflammatory, hypoxic, and other 

stress response programs. 

C16orf72 emerged in our stress network, is induced by multiple stressors, and 

alters the transcription of stress response genes. Moreover, the C16orf72-coessentiality 

network contained clear modules related to genotoxic, hypoxic, proteotoxic, and nutrient 

stress (Figure 5G). To test the hypothesis that C16orf72 plays a broad role in the cellular 

response to stress, we designed a targeted screen to test the effects of C16orf72 

depletion on cancer cells subjected to perturbagens which induce these diverse stress 

response pathways. We found that C16orf72-silenced cells were strikingly less tolerant 

to these stressors, except for the proteasome inhibitor MG132 (Figure 5H). Of note, MDA-

MB-231 cells – which did not exhibit a proliferation defect upon C16orf72 depletion in the 

non-stressed, baseline condition – had a marked fitness defect when C16orf72 depletion 

was combined with stressors.  

Because C16orf72 depletion most sensitized MDA-MB-231 cells to CoCl2 

(hypoxia mimetic), serum starvation (nutrient stress), and CPA (DNA-damaging agent), 

we chose to further investigate the interplay between C16orf72 and these three stressors. 

Corroborating the ATP-based viability assay (Figure 5H), live cell imaging revealed 

reduced proliferation of C16orf72-depleted MDA-MB-231 cells in these conditions as 

compared with controls (Figure 5I-K). Moreover, knockdown of C16orf72, which was 

induced from baseline levels by each of the three stressors in the siNT control group, 

dramatically altered the transcriptional response to these stressors (Figure 5I-K). For 

example, 1367 genes were differentially expressed in serum starved cells without 

C16orf72 as compared to serum starved cells with C16orf72 (Figure 5I-K). Across all 
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three stress conditions, knockdown of C16orf72 suppressed expression of genes 

corresponding to stress and inflammatory response pathways. Additionally, context-

specific patterns of regulation emerged, whereby C16orf72 knockdown resulted in 

misregulation of amino acid metabolism genes under amino acid starvation, replication 

stress genes under interstrand crosslinking conditions, and oxygen response genes 

under hyperactive oxidative radical production. Altogether, our data identify C16orf72 as 

a conserved, stress-inducible gene which promotes cellular fitness in the face of diverse 

stressors.  

 

C16orf72/HAPSTR modulates the stress response by interacting with the stress-

responsive E3 ligase HUWE1 

 To investigate the mechanism by which C16orf72 enables this striking resilience 

to stress, we first expressed a 3xFLAG-tagged C16orf72 construct in HEK293T cells. 

C16orf72 predominantly localized to the nucleus (Figure 6A), driven by a conserved 

nuclear localization signal at the protein's N-terminus (Figure 5C, S6). Next, we performed 

affinity purification coupled with mass spectrometry to identify proteins which interact with 

C16orf72. The most prominent hit was the Hect ubiquitin E3 ligase HUWE1 (Figure 6B), 

which has known functional roles in the response to diverse stress conditions, such as 

genotoxicity, proteotoxicity, and hypoxia (Choe et al., 2016; Kao et al., 2018; Maghames 

et al., 2018). Confirming a physical interaction, we co-immunoprecipitated endogenous 

HUWE1 with C16orf72 using antibodies targeting both HUWE1 and FLAG in 293T cells 

(Figure 6C,D).  
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Interestingly, HUWE1 is also C16orf72's most coessential gene (r=0.49; Figure 

6E). Several other proteins with which C16orf72 physically interacts also shared 

correlated fitness profiles with C16orf72 (Figure 6F). In contrast with the anticorrelated 

fitness profiles often observed between E3s and the targets they mark for degradation 

(e.g. MDM2 and TP53, r = -0.704), the highly convergent fitness profiles of C16orf72 and 

the E3 ligase HUWE1 suggest a cooperative function for these interacting proteins. 

Supporting the hypothesis that C16orf72 is not simply a HUWE1 substrate, we observe 

no significant change in C16orf72-FLAG expression or ubiquitination in response to 

HUWE1 knockdown (Figure 6G). Moreover, treatment of MDA-MB-231 cells with siRNAs 

targeting C16orf72, HUWE1, or both genes resulted in strikingly similar transcriptional 

profiles (Figure 6H). Of note, HUWE1 had a more substantial ma Taken together, these 

data strongly suggest a direct, cooperative physical interaction between C16orf72 and 

HUWE1.  

To next address whether this putative cooperative function of C16orf72 may be 

related to the E3 ligase activity of HUWE1, we stably expressed FLAG-tagged ubiquitin 

under a doxycycline-inducible promoter in 293T cells and used FLAG affinity purification-

mass spectrometry to identify changes in the ubiquitinated proteome after knockdown of 

either HUWE1 or C16orf72. Across three separate experiments, including baseline 

conditions (48h and 72h of knockdown) and 24h of serum starvation (72h of knockdown), 

C16orf72 and HUWE1 had nearly identical effects on the ubiquitinated proteome (Figure 

6I). Specifically, C16orf72 and HUWE1 depletion independently resulted in under-

ubiquitination of many proteins (Figure 6J). These included known HUWE1 substrates, 

such as TP53 (notably, C16orf72's second-ranked fitness anticorrelation; r = -0.32, p = 
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6e-17), as well as putative HUWE1 substrates suggested from prior high throughput 

studies, such as GNL3/nucleostemin, a protein which promotes genome integrity during 

DNA replication (Tsai, 2014). Remarkably, of the 20 proteins which had highly significant 

changes in ubiquitination after C16orf72 and HUWE1 depletion, only UBE2L3 had 

increased ubiquitination.  UBE2L3 is an E2 ligase which functions to transfer ubiquitin 

directly to the active-site residue of HUWE1 (a unique feature of Hect E3s). Together, 

increased ubiquitination of HUWE1's E2 ligase and decreased ubiquitination of its 

substrates demonstrate that C16orf72 depletion is sufficient to markedly suppress 

HUWE1 ubiquitin ligase activity in a manner independent of a change in HUWE1 

expression (Figure 6J,K). Moreover, C16orf72 depletion recapitulates the effect of 

HUWE1 loss on protein levels of established HUWE1 substrates (Mcl1, DDIT4, p53) as 

well as the putative substrate GNL3/nucleostemin (Figure 6K). Altogether, these data 

demonstrate a critical role for C16orf72 as a a stress-responsive cofactor for HUWE1, a 

fitness-essential gene known to modulate the stress response (Kao et al., 2018). 

Considering these data, we propose that this Huwe1-associated modulator of proliferation 

and the stress response be named HAPSTR. More broadly, the framework we use to 

identify HAPSTR provides a paradigm for the identification of other uncharacterized 

genes. 

 

DISCUSSION 

Most genes in the human genome are not essential for cellular proliferation in 

standard culture conditions (Hart et al., 2015; Meyers et al., 2017; Tsherniak et al., 2017). 

Yet, many of these "nonessential" genes are critical to cell fitness in the context of 
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physiological stress. Foundational work has demonstrated that, in yeast, only ~17% of 

the genome is essential for growth in rich media (Winzeler et al., 1999), but nearly every 

gene (~97%) becomes required for optimal growth in at least one chemical or 

environmental stress condition (Hillenmeyer et al., 2008). Here, we use the extraordinary 

heterogeneity of hundreds of cancer cell lines as a model for diverse cellular stress 

contexts, demonstrating that the contexts in which stress response genes become 

essential reflects the underlying biology of those factors. We exploit these context-specific 

essentiality patterns of known stress response genes to build a network of genes having 

similar context-specific fitness effects, effectively recapitulating canonical regulatory 

relationships, detailing treatment-relevant tumor dependencies, and identifying novel 

genes relevant to a global stress response network. Because an imbalance between 

stressors and the cellular capacity to adapt to those stressors underlies a broad spectrum 

of human disease, the data uncovered using this approach has broad therapeutic and 

prognostic implications.  

The principle that convergent or epistatic knockout phenotypes may identify 

functional relationships between genes is not new (Dobzhansky, 1946). Great insights 

have been gained from pairwise genetic screens in model organisms, most prominently 

budding yeast (Costanzo et al., 2016), but the larger human genome has proved 

challenging for genome-wide combinatorial study of genetic perturbations. With the 

advent of high quality CRISPR-Cas9 screening libraries in recent years, the coessentiality 

approach has emerged as an alternative to pairwise genetic perturbations for the 

discovery of novel genes and genetic interactions (Boyle et al., 2018; Kim et al., 2019; 

Pan et al., 2018). These first coessentiality studies detail a top-down approach which 
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effectively resolves major protein complexes and identifies functional clusters in the 

genome. Our locus-adjusted, rank-based approach addresses certain limitations of these 

studies, which include bias from copy number variable regions, overrepresentation of 

obligate protein complexes, and limited capacity to resolve genes which have dynamic 

functions across many cellular states – such as the transcription factors and chaperones 

of the cellular stress response. For example, HSF1 drives distinct transcriptional 

programs depending on cellular context (Filone et al., 2014; Mendillo et al., 2012; Scherz-

Shouval et al., 2014), and both the chaperone (Joshi et al., 2018; Rizzolo et al., 2017; 

Rodina et al., 2016) and DNA damage response networks (Bandyopadhyay et al., 2010) 

are known to rewire under stress conditions. 

In each of the networks elucidated in this study, canonical signaling relationships 

were recapitulated and modules of functionally related genes emerged. For example, 

within the chaperone network, we observe clusters distinguished both by subcellular 

localization and by patterns of induction in response to mechanistically distinct proteotoxic 

stresses. Of note, many chaperone and co-chaperone genes still have unresolved 

functional partners and localization, particularly within the HSP40/JDP family (Kampinga 

et al., 2019). Our network corroborates recent reports revealing the localization of 

individual JDPs, such as DNAJB11 in the ER lumen (Chen et al., 2017) and DNAJC11 at 

the inner mitochondrial membrane (Ioakeimidis et al., 2014). Thus, the novel relationships 

observed in our network, such as DNAJC24 at the inner mitochondrial membrane, are 

valuable targets for future study. Beyond chaperones, in the global stress network, we 

identify not only genes corresponding to individual stress pathways but also the genes 

which connect distinct stress programs. These genes, such as C16orf72/HAPSTR and 
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NCL (bridging cytosolic proteostasis and DNA damage) and TSC1/2 and TXNDC17 

(bridging oxidative stress and nutrient stress) represent points of crosstalk which likely 

play critical roles in diseased cells facing combinatorial stresses. 

An overarching theme in these data is that cancer cells represent a breadth of 

disease-relevant cellular states which may offer functional insight not obtained from 

studies using limited numbers of cell lines or stress perturbations without a direct 

physiological correlate. For example, we identify a small subset (~1%) of cancer cell lines 

particularly sensitive to the loss of genes involved in the ERN1-XBP1 branch of the UPR. 

Remarkably, these cell lines comprise multiple myeloma, a malignancy derived from 

plasma cells, which are characterized by a dramatically expanded ER network to 

accommodate the secretion of thousands of immunoglobulin molecules each second 

(Calame et al., 2003). Myeloma cells are burdened by a specific stress encountered in 

many disorders of secretory cells (e.g. pancreatic β cells in hereditary diabetes mellitus), 

and may thus serve as a more disease-relevant ER stress model than tool compounds 

such as thapsigargin (which induces ER stress by depleting ER calcium stores). Indeed, 

while all three branches of the UPR critically modulate the response to thapsigargin 

(Adamson et al., 2016), the ERN1-XBP1 branch is selectively required in these 

hypersecretory cells. In the clinical care of multiple myeloma patients, proteasome 

inhibitors are already employed to exploit the ER stress phenotype of malignant plasma 

cells. However, as the proteasome is a core essential component of all cells, our data 

suggest direct targeting of ERN1-XBP1 – for example, with available ERN1 inhibitors – 

may retain therapeutic efficacy while minimally affecting non-tumor cells.  
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Importantly, our data also indicate that there exists a spectrum of individual stress 

subnetwork utilization, even within a given lineage. Returning to the example of ERN1-

XBP1, while this subnetwork was generally more essential in multiple myeloma, not all 

myeloma lines were equally impacted by ERN1-XBP1 loss. Thus, while targeting ERN1-

XBP1 may have utility in the treatment of multiple myeloma, our data indicate that some 

tumors will be more susceptible than others to this modulation. Moreover, we find that the 

myeloma subset less likely to respond UPR modulation has a multiomic phenotype of 

increased oxidative metabolism and is, in turn, more susceptible to Elesclomol. Similarly, 

in AML, we observe variable dependence on the translation-HSF1 link, identify a 

transcriptional signature reflective of this phenotype, and demonstrate that this signature 

stratifies AML patients in a m(Choe et al., 2016)eaningful fashion. It is worth noting that 

this approach to identify multiomic signatures of subnetwork dependency is unlikely to 

provide meaningful insight in pan-cancer analyses due to the powerful confounding 

effects of cell lineage. Thus, these data suggest a paradigm by which intra-lineage 

dependence on individual genes or gene networks can be translated into potentially 

actionable insight about an individual patient's tumor. 

Finally, we demonstrate the potential of our approach to identify novel genes 

relevant to a complicated biological network, such as C16orf72/HAPSTR. HAPSTR's 

coessentiality network successfully predicted its cooperative relationship with HUWE1, 

as well as its role in the response to genotoxic, nutrient, proteotoxic, and oxidative stress. 

Corroborating our data, HAPSTR was also one of 117 genes identified to protect cells 

from inhibition of ATR, the primary sensor for single stranded DNA breaks, in a recently 

published screen (Hustedt et al., 2019). As HUWE1 is known to alleviate replication stress 
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through an interaction with PCNA (Choe et al., 2016), our data reveal the likely 

mechanism of this observed chemical genetic interaction between HAPSTR and ATR 

inhibitors. Beyond genotoxicity, the interplay between HAPSTR, HUWE1, and proteins 

critical to diverse stress response programs sets the stage for many future studies. More 

broadly, because HAPSTR impacts the response to diverse stress states, is essential to 

some but not all cancer cells, and is prognostic of patient outcomes in diverse cancer 

diagnoses, HAPSTR may be a promising therapeutic target in cancer. It is also worth 

noting that HAPSTR is highly expressed in the developing brain (Figure S7B) and 

genomic alterations in both HAPSTR and its cooperative partner HUWE1 have been 

associated with neurodevelopmental disorders, such as autism (Bosshard et al., 2017; 

Levinson et al., 2011; Sanders et al., 2011) . Thus, it is likely that misregulation of the 

evolutionally conserved, multi-stress-responsive protein HAPSTR plays a role in human 

pathology beyond neoplasia. 

Far beyond HAPSTR and the response to stress, we emphasize that the approach 

detailed here is easily adapted to facilitate targeted study of other genes and pathways. 

To support such efforts, we make available an interactive web application 

(http://fireworks.mendillolab.org/) where individuals may input gene(s) of interest and 

quickly visualize a locus-adjusted coessentiality network. Moreover, this tool facilitates 

the integration of multiomic data to define the mechanisms underlying context-specific 

relationships. It is our hope that this resource will broadly augment efforts to identify 

functional interactions within biological networks.  

 

METHODS 
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Curation of gene essentiality data in cancer cell lines 

 Data from CRISPR-Cas9 genome scale loss of function screening of 625 cancer 

cell lines was obtained from DepMap (https://depmap.org/portal/download/). CERES 

scores were used to quantify the fitness effect of individual gene loss, with "essentiality" 

in this paper represented as the inverse CERES score (i.e. more positive scores for genes 

which cause greater dropout of cells with guides targeting that gene. The screen 

performed in Drosophila melanogaster was identified through a search of BioORCs for 

any screens performed in Drosophila or C. elegans which targeted that species' C16orf72 

homolog. 

 

Integration and analysis of Cancer Cell Line Encyclopedia Multiomic Data 

 Processed RNA-seq, reverse phase protein array, copy number, and metabolomic 

data were obtained from the DepMap data portal (https://depmap.org/portal/download/). 

These data are described in detail in (Ghandi et al., 2019). For descriptive comparisons 

of different cell lines stratified by dependency signatures, the cell lines with 75th percentile 

or higher dependency on that signature were compared with cell lines having 25th 

percentile of lower dependency. 

 

Determination of coessential genes  

 To determine a locus-corrected coessentiality value for each gene pair, gene 

essentiality scores for each gene were subtracted from the median essentiality score for 

that gene's nearest 10 neighbor genes (5 downstream, 5 upstream) on the same 
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chromosome. Strength of coessential relationships are represented as Pearson r, with 

coessentiality rank used for all network analyses to mitigate bias from p-value inflation or 

differing numbers of cell lines in cancer cell line subsets.  

 

Coessentiality network visualization and clustering 

 Rank-based networks were constructed from a single or set of input genes, using 

a soft rank threshold for each analysis – i.e. correlations below the specific rank were not 

included. Edges are not weighted by correlation strength or rank. To remove potentially 

spurious correlations from genes only expressed in certain lineages, networks excluded 

transcripts where the median expression across cell lines was equal to 0. All networks 

were visualized in Cytoscape v3.7.2 (https://cytoscape.org/). Unless otherwise specified, 

networks used a force-directed layout with modest adjustments made by hand to improve 

legibility. The circular layout for the stress network was manually arranged following the 

groupings obtained by hierarchical clustering of source nodes. Statistical evaluation of 

network connectivity relative to randomly-permuted networks followed the method 

described in (Pan et al., 2018).  

 

Data analysis and visualization 

 Unless otherwise specified, data were analyzed with Python (version 3.6.4, 

Anaconda Inc.) using the modules Pandas (v0.23.4) and Numpy (v1.14.2) and 

visualization used the modules Matplotlib (v2.2.2) and Seaborn (v0.9.0). For heatmaps 

visualizing gene essentiality patterns across cell lines and cancer subsets, essentiality 

scores for a given gene are standard scaled to the minimum and maximum essentiality 
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of that gene across all cancer cells. P-values were considered significant at an alpha of 

0.05 or lower, as specified for each analysis. Benjamini-Hochberg false discovery rate 

correction was performed where indicated to adjust for multiple comparisons (Benjamini 

and Hochberg, 1995).   

 

Gene Set Enrichment Analysis 

 GSEA was performed using the Molecular Signature DataBase as accessible at 

http://software.broadinstitute.org/gsea/msigdb/annotate.jsp (Liberzon et al., 2015; 

Subramanian et al., 2005). The gene sets queried were as follows: hallmark (H), 

positional (C1), KEGG pathways (C2), REACTOME (C2), GO Biological Process (C5), 

and GO Molecular Function (C5).  

 

Protein conservation analysis 

 C16orf72 protein sequences for multiple species were obtained from ENSEMBL 

(http://useast.ensembl.org/index.html). Multi-sequence alignment was performed using 

Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), with visualization of the 

alignment in Jalview v2.11 (https://www.jalview.org/).  

 

Analysis of Patient Survival and Drug Response 

 For gene expression-stratified survival analysis, hazard ratios and log-rank test p-

values were obtained through KM-plotter (https://kmplot.com/analysis/), using standard 

settings and the pan-cancer TCGA RNA-seq transcription dataset (Nagy et al., 2018). For 

AML analyses, we employed BloodSpot (http://servers.binf.ku.dk/bloodspot/) (Bagger et 
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al., 2019). Bortezomib (Velcade) drug response likelihood was assessed using pre-

treatment microarray data of multiple myeloma patients (GEO: GSE9782) (Mulligan et al., 

2007). 

 

Functional classification and annotation of proteins 

 Grouping of proteins into functional classes was performed using PANTHER 

(pantherdb.org) to analyze a list of all genes targeted in the AVANA sgRNA library (Mi et 

al., 2019). NCBI Gene References Into Function (GeneRIFs; data downloaded from 

ftp://ftp.ncbi.nih.gov/gene/GeneRIF/), manually annotated blurbs summarizing findings in 

individual papers, were queried to bin the stress network genes by degree of prior existing 

knowledge.  

 

 

Experimental model and subject details 

 HEK293T and HeLa cells were grown in DMEM media supplemented with 10% 

FBS and 1% pen/strep. MDA-MB-231, ZR-75, and SK-BR3 cells were grown in RPMI 

media supplemented with 10% FBS and 1% pen/strep. Doxycycline inducible FLAG-Ub 

expressing HEK-293T cells were generated by transducing lentivirus containing 

pCW57.1-FLAG-Ub and selected in 2 µg/ml puromycin.    All cells were passaged with 

Accumax unless otherwise specified.  

 

Plasmids, Lentivirus Generation and Infection 
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 FLAG tagged ubiquitin was cloned in pCW57.1 vector (Addgene # 41393) between 

BsrG1 sites and verified through sequencing. PLenti6 vectors containing DNA constructs 

of interest were co-transfected with pMD2.G and psPAX2 into 293T cells using 

Lipofectamine 3000. After 48 hours, media was removed, filtered with an 0.45 µm filter, 

and centrifuged at 21000xg for 10 min to yield packaged lentivirus in the supernatant. 

Lentivirus was then added directly to cells for transduction. The C16orf72-FLAG 

overexpression vector contained a blasticidin resistance cassette, and stable 

overexpressing cell lines were selected for in blasticidin at 10 ug/mL (293T) or 20 ug/mL 

(MFC7, MDA-MB-231) for 5 days. 

 

Gene silencing and co-transfections 

 Smart-pool siRNAs were obtained for each target gene of interest, as well as a 

non-targeting sequences, and transfected using RNAimax (Thermo Fisher) using a 

standard protocol. Unless otherwise specified, cells were harvested 72h after siRNA 

transfection. Knockdown was confirmed for each siRNA experiment by qPCR or 

immunoblot. 

 

Drug and environmental perturbagen sensitivity in C16orf72-knockdown cells 

 MDA-MB-231, SKBR3, and ZR75 cells were reverse transfected with C16orf72 or 

non-targeting siRNA at 1000 cells/per well in a 384-well plate. After 1 day, RPMI media 

was replaced and drugs were arrayed at half-log intervals into wells using a Tecan D300E 

drug printer. RPMI media contained 10% FBS and 1% Pen/Strep, except for the serum 

starvation condition, which contained 0% FBS and 1% Pen/Strep. Drugs were selected 
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based on pathways identified in the C16orf72 coessentiality network, as discussed. Drug 

concentrations, selected based on a pilot experiment to avoid complete cytotoxicity in the 

wild-type cell background, were as follows (µM) : CoCl2 (25, 79, 250), Actinomycin D 

(ActD; 0.001, 0.0032, 0.01), Tunicamycin (0.05, 0.158, 0.5), echinomycin (0.01, 0.03, 

0.1), Thapsigargin (0.05, 0.158, 0.5), Ganetespib (0.001, 0.0031, 0.01, 0.03, 0.1), MG132 

(0.5, 0.158, 0.05), Topotecan (0.05, 0.158, 0.5), Doxorubicin (1e-6, 3.2e-6, 1e-5), 

Cyclophosphamide (0.05, 0.158, 0.5), Bleomycin (0.05, 0.158, 0.5), Paraquat (0.01, 

0.032, 0.1). 

 

Proliferation and viability assays 

 Proliferation was assessed using live-cell images obtained via Incucyte. Cells were 

grown in 384-well plates, in triplicate for each condition, with whole-well images being 

taken every 2 hours. Area under the proliferation curve represented endpoint confluency 

subtracted from initial confluency for each well. Viability was assessed using an adapted 

CellTiterGlo (Promega) protocol; briefly, 384-well plates were brought to room 

temperature for 15 min, 12 uL of CellTiterGlo reagent mix was added to each well 

containing 50 uL of media, and the plate was agitated for 2 min. Luminescence was read 

out on a Tecan infinite M1000 pro platereader.  

 

Immunoblot 

 Protein samples were lysed in RIPA buffer or ubiquitin lysis buffer (as specified 

below) containing 1mM PMSF and a Roche Protease Inhibitor Cocktail tablet and passed 

through a 21 gauge syringe 15 times per sample. Protein concentration was assessed by 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/847996doi: bioRxiv preprint 

https://doi.org/10.1101/847996
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

standard BCA assay (Pierce, #23255), denatured in 4X Laemmli sample buffer containing 

beta-mercaptoethanol, and heated at 95C for 10 min. Electrophoresis was performed 

using 4-20% Bis-Tris gradient gels unless otherwise specified, with transfer to PVDF 

membranes using a 7-minute protocol on an iBlot machine. Membranes were blocked for 

1 hour at room temperature in 5% fat-free milk. Primary and secondary antibodies were 

diluted in 5% fat free milk and exposed to membranes overnight at 4C and for 1 hour at 

room temperature, respectively. Imaging was performed with the BioRad ChemiDoc 

Touch Imaging System (732BR0783) after incubation for 2 min in HRP substrate 

(Immobilon, Millipore). Blots were analyzed using ImageLab v6.0.1 (BioRad).  

 

Immunofluorescence 

 Cells were grown on poly-D-lysine treated sterile coverslips in a 24 well-plate. 

Steps were performed at room temperature unless otherwise specified. Cells were 

washed three times with cold PBS, fixed with 4% paraformaldehyde for 10 min, and 

permeabilized with 0.2% Triton X100 for 5 min. Blocking encompassed incubation in 2% 

FBS for 30 min. Primary antibodies were diluted at 1:500 and secondary antibodies were 

diluted at 1:1000 in 2% FBS and exposed to cells for 1 hour each, with 3 PBST washes 

between. Coverslips were mounted to a slide using a DAPI/mounting mixture and allowed 

to dry overnight before imaging.  

 

Microscopy and Image Analysis 

 Images were acquired at 63x magnification using a Zeiss LSM800 confocal 

microscope. A z-stack slicing distance of 0.7uM was used, with final images visualized as 
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an orthogonal projection of the maximal value per pixel across stacks. No non-linear 

adjustments were performed. ImageJ/Fiji (https://imagej.net/Fiji#Downloads) was used 

for all microscopy analyses. 

 

Immunoprecipitation 

 Cells were rinsed twice with cold PBS, removed from plates by scraping, and 

centrifuged for 4 min at 1000g and 4o C before pellet resuspension in cold lysis buffer. 

For immunoprecipitations of ubiquitin or of targets for downstream ubiquitination analysis, 

cells were vortexed and passed through a syringe in ubiquitin lysis buffer (2% SDS, 

150mM NaCl, 10 mM Tris HCl pH 8, 1 Roche protease inhibitor tablet, 5mM N-

ethylmaleide, and 1mM PMSF) and heated at 95o C for 10 min before dilution in ubiquitin 

lysis buffer with 1% triton and no SDS, resulting in a final SDS concentration of 0.2%. For 

all other immunoprecipitations, the lysis buffer was 1% NP40, 100 mM NaCl, 50 mM Tris 

pH 7.5, 0.2 mM EDTA, 5% glycerol, and 1mM PSMF and lysis was achieved by sonication 

in a 4C water bath (10 cycles of 30 sec on, 1 min off). After lysis, cells were spun at 

21000xg and 4C for 10 minutes and the supernatant kept for input and 

immunoprecipitation. FLAG-immunoprecipitations were performed using M2 affinity 

agarose (Thermo Fisher).  

 

Mass Spectrometry 

A protein gel band was submitted to the Northwestern University Proteomics Core 

Facility for an in-gel digestion. Peptides were analyzed by LC-MS/MS using a Dionex 

UltiMate 3000 Rapid Separation nanoLC coupled to a Orbitrap Elite Mass Spectrometer 
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(Thermo Fisher Scientific Inc, San Jose, CA). Samples were loaded onto the trap column, 

which was 150 μm x 3 cm in-house packed with 3 um ReproSil-Pur® beads. The 

analytical column was a 75 um x 10.5 cm PicoChip column packed with 3 um ReproSil-

Pur® beads (New Objective, Inc. Woburn, MA). The flow rate was kept at 300nL/min. 

Solvent A was 0.1% FA in water and Solvent B was 0.1% FA in ACN. The peptide was 

separated on a 120-min analytical gradient from 5% ACN/0.1% FA to 40% ACN/0.1% FA. 

MS1 scans were acquired from 400-2000m/z at 60,000 resolving power and automatic 

gain control (AGC) set to 1x106.  The 15 most abundant precursor ions in each MS1 scan 

were selected for fragmentation by collision-induced dissociation (CID) at 35% 

normalized collision energy in the ion trap. Previously selected ions were dynamically 

excluded from re-selection for 60 seconds.  

Proteins were identified from the MS raw files using Mascot search engine (Matrix 

Science, London, UK; version 2.5.1). MS/MS spectra were searched against the UniProt 

Human database (SwissProt 2019, 20303 entries). All searches included 

carbamidomethyl cysteine as a fixed modification and oxidized Met, deamidated Asn and 

Gln, acetylated N-term as variable modifications. Three missed tryptic cleavages were 

allowed. The MS1 precursor mass tolerance was set to 10 ppm and the MS2 tolerance 

was set to 0.6 Da. The search result was visualized by Scaffold (version 4.9.0. Proteome 

Software, INC., Portland, OR). Peptide identifications were accepted if they could be 

established at greater than 90.0% probability by the Peptide Prophet algorithm (Keller et 

al., 2002) with Scaffold delta-mass correction. Protein identifications were accepted if they 

could be established at greater than 99.0% probability and contained at least 1 identified 

peptide.  Protein probabilities were assigned by the Protein Prophet algorithm 
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(Nesvizhskii et al., 2003). Proteins that contained similar peptides and could not be 

differentiated based on MS/MS analysis alone were grouped to satisfy the principles of 

parsimony.  

 

RNA-sequencing 

 RNA was extracted using a Qiagen RNeasy kit; briefly, cells were lysed in buffer 

RLT, nucleic acids were precipitated with ethanol and applied to columns, columns were 

treated with DNase, and RNA was eluted after washing/cleaning. Libraries were prepped 

using a QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen) using 100ng 

of input RNA in an automated protocol adapted for the SciClone. Libraries were then 

analyzed for quality using the Agilent High Sensitivity DNA kit and for quantity using Qubit 

dsDNA HS assay, in 384-well format, using 20µL reactions in triplicate (19µL working 

reagent + 1µL sample or standard). For the Qubit assay, 11 standards were prepared 

from either 0-3ng/µL or 0-10ng/µL depending on BioAnalyzer concentrations. On plate 

reader, shake for 5 seconds, then read fluorescence: excitation: 480nm, emission: 

530nm. Excitation/emission bandwidth: 5nm, settle time: 100ms. Sample concentrations 

were determined using the standard curve. Libraries were then pooled and sequenced 

using a NovaSeq 6000 SP Reagent Kit (100 cycles). Libraries were pooled at 25nM each, 

denatured with 1M NaOH added to a 0.2M final concentration (5 min at room 

temperature), and quenched with 200mM Tris HCl (pH 7). 1% PhyX spike-in (Illumina) 

was included. Pooled, denatured libraries were run on an Illumina NovaSeq using 51bp 

reads, 6bp index reads, and paired-end single read parameters. 
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Data and Code availability 

 All code and data for these analyses will be deposited in public repositories. Our 

approach is implemented in in an interactive web application 

(http://fireworks.mendillolab.org/). 
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FIGURE LEGENDS 

 

Figure 1: Developing a coessentiality network for the master regulator of cytosolic 

proteostasis. A. Schematic of overall approach. B. HSF1 loss is deleterious to cell fitness 

across lineages and has an essentiality spectrum within lineages. Essentiality is defined 

as the inverse of the CERES score, which quantitates the fitness cost associated with 

sgRNAs targeting a given gene in a given cell line; one is typical for a core fitness-

essential gene and zero represents no fitness effect. C. HSF1 copy number is associated 

with HSF1 transcript level.  D. The magnitude of HSF1 essentiality is not predicted by 

HSF1 copy number. E. The genes with the most similar fitness profile to HSF1 are highly 

enriched for genes in the same locus (chr8q). This bias is corrected by subtracting the 

median essentiality of 10 neighbor genes (5 upstream, 5 downstream) prior to performing 

genome-scale Pearson correlations. A sliding window of 10 genes most specifically 

reduced this locus bias. F. Visualization of the top 200 HSF1-coessential genes, where 

columns are cell lines, rows are genes, and hue corresponds to row-normalized gene 

essentiality. Also shown are gene sets for which the HSF1-coessential genes are 

enriched (FDR < 0.0001). G. Network visualization of the top 100 HSF1-correlated genes 

(primary nodes) plus the top 5 coessential genes for each primary node (secondary 

edges/nodes). Nodes are visualized if they have more than one connection in the 

network. H. Cancer subtype-specific coessentiality patterns for modules enriched in the 

pan-cancer HSF1 network, including a conserved heat shock correlation in all subtypes 

but acute myeloid leukemia (AML). I. Multiomic data integration to characterize the high-

HSF1-dependence state in AML lines. J. HSF1 essentiality is highly correlated with the 
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transcriptional signature of translation/protein synthesis genes in AML but not most other 

cancers. K. The translation-dominant RNA signature associated with HSF1-dependence 

in AML stratifies AML patient prognosis, as depicted by the top statistically-associated 

gene, EIF3L. P value from log-rank test.  

 

Figure 2: A chaperone coessentiality analysis reveals functionally and spatially 

differentiated networks. A. Essentiality scores and transcript expression of heat shock 

factors (HSFs) and major chaperone family members across 625 cancer cell lines. B. 

Rank 15 positive correlation coessentiality network of the genes in (A). Nodes are 

visualized if they have connections to more than one gene in the network. C. Selected 

Markov clusters from the network which represent biological functional groups 

corresponding to gene essentiality, localization, and/or divergent proteotoxic stress 

responses. RNAseq datasets derive from MDA-MB-231 cells treated with either 2-

deoxyglusose (2DG) to induce ER stress or heat shock (HS; 42C x 1hr) to induce cytosolic 

proteotoxicity. Enrichment **p < 0.005, ***p<0.0005, Kolmogorov–Smirnov test. 

 

Figure 3: A global stress response coessentiality network. A. Essentiality scores and 

transcript expression of master regulators of diverse stress response programs across 

625 cancer cell lines. B. Visualization of coessential gene relationships within stress 

response modules and between stress response modules at rank 30 for both positive and 

negative correlations. Stress networks thresholded at other ranks (10, 50, 100) are 

detailed in Figure S5. C. The stress network has greater connectivity (edge density ratio) 

than expected from 10,000 random network permutations using the same parameters. D. 
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PANTHER functional classes of the 125 stress network genes pulled in as a function of 

coessentiality with source nodes; * indicates P<0.005, Fisher's exact test. E. 

Representation of the degree to which stress network genes have been previously 

studied, using NCBI Gene References Into Function (GeneRIFs) as a surrogate for 

existing knowledge on a given gene. F. Transcriptome profiling by RNAseq of the stress 

network genes in MDA-MB-231 cells after treatment with Cyclophosphamide (CPA; 

genotoxic stressor), CoCl2 (hypoxia mimetic and oxidative stressor), 2-deoxyglucose 

(2DG; ER and nutrient stressor), heat shock (HS; 42C x 1hr; cytosolic proteotoxic 

stressor), or serum/amino acid starvation (SS; nutrient stressor). Selected genes 

elaborated in the text are labeled. *indicates gene with 0 GeneRIFs as indicated in (E) 

 

Figure 4: Systematic profiling of lineage-specific coessentiality patterns in the 

stress response. A. Lineage-specific subnetworks were created and profiled for relative 

enrichment of each possible source node pair subnetwork, with enrichment defined as 

membership relative to subnetwork membership across all other lineages and visualized 

as shares of a pie chart. B. The skin coessentiality network features the largest TP53-

ATM genotoxicity network across cancer subsets, as well as crosstalk between all three 

branches of the UPR. C. The autonomic (neuroblastoma) network contains a highly 

anticorrelated network between ATF3 and EIF2AK3 which was not present in other 

lineages. D. The hematopoietic lineage features a striking ERN1-XBP1 subnetwork, but 

no relationships between other branches of the UPR (ATF6, EIF2AK3/PERK). E. Multiple 

myeloma drives the correlation of ERN1 and XBP1 in hematopoietic tumors, and there is 

a subset of myeloma particularly sensitive to the loss of ERN1 and XBP1. F. The tightly 
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correlated ERN1-XBP1 network in multiple myeloma also represents a selective 

vulnerability. Other networks more moderately enriched for both essentiality and 

correlation included ARNT-EPAS1 (hypoxia) in kidney cancers. G. The myeloma lines 

most dependent on XBP1 and ERN1 have a low OXPHOS multiomic signature. I. The 

high-ERN1-XBP1-dependent myeloma lines are more susceptible to the proteasome 

inhibitor Bortezomib and substantially less sensitive to Elesclomol, which targets 

mitochondrial metabolism in myeloma lines resistant to proteasome inhibition (Tsvetkov 

et al., 2019). J. Patients enrolled in a clinical trial of Bortezomib (Mulligan et al., 2007) 

were more likely to respond if their tumors had >1 SD underexpression of the OXPHOS 

transcriptomic signature from (G). P values determined by Mann-Whitney U test. 

Figure 5: C16orf72 is a conserved and stress-induced modulator of diverse stress 

responses. A. C16orf72 expression is prognostic in many tumors. Subtypes shown had 

log-rank P value less than 0.05. B. C16orf72 loss is deleterious to the fitness of cancer 

cell lines across diverse backgrounds, particularly kidney cancer lines. C. C16orf72 is a 

275aa protein conserved through C. elegans. Region shown represents a portion of a 

conserved nuclear localization signal as elaborated in Figure S6. D. A CRISPR screen in 

Drosophila cells (Viswanatha et al., 2018) indicates conservation of C16orf72's 

importance to cellular proliferation. E. Validation of the Project Achilles fitness screen data 

suggesting that SKBR3 cell proliferation is highly dependent on C16orf72, ZR-75-1 cells 

are moderately dependent on C16orf72, and MDA-MB-231 cells are minimally affected 

by C16orf72 loss. F. Transcriptomic profiling of C16orf72 knockdown in these three cell 

lines identifies conserved regulation of pathways including multiple stress response 

networks. G. The C16orf72 coessentiality network demonstrates enrichment for 
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ubiquitination pathways and multiple stress response networks. H. C16orf72 knockdown 

greatly hampers the ability of SKBR3, ZR75, and MDA-MB-231 cells to adapt to diverse 

stressors. I, J, K: Live cell imaging and RNA-seq of the three conditions with had the 

greatest combined effect on fitness in the background of C16orf72 depletion in MDA-MB-

231 cells. 

Figure 6: C16orf72 functions as a cooperative binding partner with the E3 ligase 

HUWE1. A. Expression of C16orf72-FLAG in HEK293T cells revealed a predominantly 

nuclear localization. B. C16orf72-FLAG affinity purification coupled with tandem mass 

spectrometry analysis identifies many binding partners for C16orf72, most prominently, 

the Hect E3 ligase HUWE1. Spectral counts were first normalized to the sum of spectral 

counts for the sample, then protein length, and finally compared vs. the maximum value 

for that protein from three separate control (GFP) IP-MS experiments. C. Immunoblot 

validation of HUWE1 IP using C16orf72-FLAG as bait. D. Co-IP of endogenous HUWE1 

(bait) identifies C16orf72-FLAG. E. HUWE1 is the top-ranked gene in the C16orf72 

coessentiality network. F. Many other proteins which interacted with C16orf72 were also 

coessential with C16orf72. G. C16orf72-FLAG protein levels and relative ubiquitination 

levels do not change with HUWE1 depletion, indicating that C16orf72 is not a 

ubiquitination substrate of HUWE1. H. Transcription profiling reveals that depletion of 

C16orf72, HUWE1, or both genes in MDA-MB-231 cells has a striking phenotypic overlap. 

I. The ubiquitinated proteome, as measured by FLAG-ubiquitin affinity purification coupled 

with mass spectrometry, is altered highly similarly by loss of either C16orf72 or HUWE1. 

J. C16orf72 and HUWE1 depletion converge on the under-ubiquitination of many 

proteins, such as GNL3/nucleostemin, and the over-ubiquitination of one protein, 
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UBE2L3, which serves as an E2 for HUWE1. K. Representative immunoblots of 

established HUWE1 target protein levels after C16orf72 or HUWE1 siRNA treatment for 

3 days. L. C16orf72 and HUWE1 depletion in HeLa cells increases baseline levels of 

GNL3/nucleostemin and reduce the capacity to eliminate the protein under stress (serum 

starvation). 

Figure S1: A top-down, genome-scale coessentiality network analysis does not 

resolve major stress response genes. A. Schema representing the 625 cancer cell 

lines screened by the AVANA sgRNA library and included in these analyses. B. 

Visualization of the most coessential genes reveals dominant clusters corresponding to 

major molecular machines, as well as clusters corresponding to a known bias of assigning 

gene essentiality in CRISPR screens: copy number altered regions. C. Representation of 

proteins which form physical interaction complexes is substantially higher than would be 

expected in the genes which are most coessential across the genome D. The top fitness 

correlation for a generic transcription factor or chaperone is less than that of a protein 

complex member, suggesting reduced representation of these genes in any non-rank-

based, top-down coessentiality approach. E. Of the 21 stress response master regulators 

of primary interest to this paper, only ATM and P53 have a functional module identified in 

a top-down genome scale clustering approach. 

Figure S2: Cytosolic HSP90 isoform essentiality is predicted by HSP90 isoform 

expression in a manner related to cell lineage. A. HSP90AA1 and HSP90AB1 are not 

coessential, despite physically interacting in a major protein complex. B. Cytosolic HSP90 

isoform expression predicts relative essentiality of that isoform. C. Certain tumor subtypes 

have higher expression and dependence on individual cytosolic HSP90 isoforms. 
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Figure S3: Alternative rank threshold coessentiality networks centered around 

stress response master regulators. Rank 10, 30 (as shown in Figure 3, but with 

hierarchical layout), 50, and 100 stress network organization using a force-directed 

layout. Red connections indicate positive correlations, blue indicate anticorrelations.  

Figure S4: ATF3 binds to an EIF2AK3/PERK enhancer. ENCODE ChIP-seq data were 

queried for EIF2AK3, revealing that ATF3 binds strongly to an intronic regulatory element 

of EIF2AK3 cells characterized by high DNase sensitivity and annotated as an enhancer. 

Data shown derive from K562 cells. 

Figure S5: C16orf72 is expressed across broad cell types in adult tissues and 

tumors, as well as throughout human development. A. GEPIA output detailing tumor 

vs. normal transcriptional profiling of C16orf72; significant differences represented by red 

text. B. Expression of C16orf72 across human development; data from (Cardoso-Moreira 

et al., 2019). 

Figure S6: C16orf72's nuclear localization is driven by an N-terminal bipartite NLS. 

A. Querying C16orf72's amino acid sequence with cNLS mapper (http://nls-

mapper.iab.keio.ac.jp/) revealed a predicted bipartite NLS at position 252-275. Score filter 

was set at 7, the most stringest cutoff. B. Deletion of the putative NLS is sufficient to 

establish a cytosolic/perinuclear localization of C16orf72 in 293T cells as compared with 

its baseline nuclear localization (Figure 6A) 
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