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Summary

The interrelated programs essential for cellular fitness in the face of stress are critical to
understanding tumorigenesis, neurodegeneration, and aging. However, modelling the
combinatorial landscape of stresses experienced by diseased cells is challenging, leaving
functional relationships within the global stress response network incompletely
understood. Here, we leverage genome-scale fitness screening data from 625 cancer cell
lines, each representing a unique biological context, to build a network of "coessential"
gene relationships centered around master regulators of the response to proteotoxic,
oxidative, hypoxic, and genotoxic stress. This approach organizes the stress response
into functional modules, identifies genes connecting distinct modules, and reveals
mechanisms underlying cellular dependence on individual modules. As an example of the
power of this approach, we discover that the previously unannotated HAPSTR (C160rf72)
promotes resilience to diverse stressors as a stress-inducible regulator of the E3 ligase
HUWE"1. Altogether, we present a broadly applicable framework and interactive tool

(http://fireworks.mendillolab.org/) to interrogate biological networks using unbiased

genetic screens.
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INTRODUCTION

All living organisms retain an evolutionarily conserved capacity to adapt to
physiological stress. Highly relevant to human disease, cellular stress response pathways
empower aging neurons to clear protein aggregates, sun-exposed melanocytes to repair
damaged DNA, and large tumors to proliferate despite having outgrown their blood
supply. Certain types of stress, such as thermal stress, are easily studied. Others,
however, such as the landscape of misfolded proteins in tumors, are more difficult to
model experimentally. Moreover, diseased cells rarely face one stress in isolation. Do
cells grown in a hypoxic incubator in pH-buffered, nutrient-rich media adequately model
the stresses faced by an ischemic cardiomyocyte after vessel occlusion? Isolated stress
perturbations are invaluable to provide mechanistic insight into individual stress response
programs, but they fail to capture the complexity that may be found in disease states
where these pathways function in a global, integrated network. Unfortunately, it is
intractable to comprehensively study all possible combinations of different stresses and
stress doses. Alternative strategies are needed to probe stress response pathways in
disease-relevant contexts and to identify the mechanisms by which these pathways are
integrated.

One approach to investigate context-specific biological relationships is to leverage
the heterogeneity of cancer cell lines, each representing a unique genomic and
epigenomic landscape obtained through rapid evolution from diverse cells of origin. In
studying stress biology, cancer cells may be a particularly suitable model of

physiologically relevant states, as tumors routinely co-opt stress response systems to
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withstand the physiologic challenges imposed by carcinogenesis (Luo et al., 2009). For
example, individual tumors may suppress the Hippel-Lindau tumor suppressor (VHL) to
induce constitutive hypoxia signaling (Maxwell et al., 1999). Other tumors may
alternatively splice pyruvate kinase to promote a metabolic shift toward aerobic glycolysis
(Christofk et al., 2008). Still others may activate Heat Shock Factor 1 (HSF1) to
coordinate protein homeostasis (proteostasis) during anabolic proliferation (Santagata et
al., 2013). Thus, the contextual breadth of cancer cells and the multitude of mechanisms
by which they activate stress response pathways may provide unique insights into the
regulation and integration of these pathways in diseased cells.

Large-scale fitness screening efforts have now quantified the essentiality of most
protein-coding genes across hundreds of different cancer cell lines (Hart et al., 2015;
Meyers et al., 2017; Tsherniak et al., 2017). These studies reveal that, even in cancer
cells, most critical regulators of the stress response are not universally essential for cell
viability. But are all cancer cell lines similarly affected by the loss of individual stress
response factors? If not, what mechanisms underlie the requirement for these factors in
some cell lines but not others, and which other genes share this context-specific
phenotype? Regarding the latter question, recent work has demonstrated that correlated
patterns of gene essentiality ("coessentiality") across many cancer cell lines can indeed
identify functional relationships between genes (Boyle et al., 2018; Kim et al., 2019; Pan
et al., 2018; Wang et al., 2017). These studies utilize a top-down approach, organizing
the genome into coessential clusters which have already proven to yield valuable insights.
However, due to technical limitations, such as spurious correlations between genes within

genomic regions subject to copy number variation and the relatively modest signal for
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genes which function outside of obligate protein complexes, much of the genome is left
incompletely explored by these methods. Overcoming these technical limitations may
thus expand the reach of this approach to biological systems of greater regulatory
complexity, such as the cellular stress response network.

In this article, we develop a framework to use genome-scale, CRISPR-Cas9 fitness
screening data from 625 cancer cell lines to build a bottom-up network of coessential
relationships centered around critical regulators and effectors of the stress response. Our
approach organizes functional modules within the stress response, corresponding to both
canonical and novel functions of these factors, and identifies genes which represent
points of crosstalk between distinct modules. We demonstrate that context, in tumor
subtype and cell lineage, is associated with dynamic changes in the organization and
utilization of stress response modules in a manner reflecting therapeutically-targetable
biology. Finally, we identify novel genes in a global stress network, validating that the
previously unannotated HAPSTR (C160rf72) promotes cellular adaptation to diverse
stressors as a stress-inducible regulator of HUWE1, an E3 ligase which modulates
genotoxic, proteotoxic, and hypoxic stress responses (Kao et al., 2018). More broadly,
we demonstrate the power of our approach using the global stress response network as
proof of principle and provide an interactive web-based tool

(http://fireworks.mendillolab.org/) to facilitate studies of other biological networks.
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RESULTS

Assembling a coessentiality network around the master regulator of cytosolic
proteostasis

Previous reports have demonstrated that genes with shared functions, particularly
those which encode components of obligate protein complexes, have convergent effects
on fitness when deleted in cancer cell lines (Kim et al., 2019; Pan et al., 2018). Consistent
with prior analyses performed in few cell lines, network analysis of the strongest
coessential relationships in the genome (r>0.6; 1532 pairings) successfully identifies
modules of biological relevance with highly correlated fitness profiles (Figure S1B).
However, these clusters are dominated by few pathways, many of which center on major
protein complexes — primarily, the ribosome, oxidative phosphorylation, and spliceosome
machinery. Indeed, the gene pairs with the most correlated (coessential) knockout fitness
effects overwhelmingly represent protein complex members (86% of top gene pairs; 23%
expected by chance; Figure S1C). For example, the tuberous sclerosis complex proteins
TSC1 and TSC2 represent the strongest coessential relationship in the genome (r=0.92,
p=1e-269). Indeed, despite remaining highly statistically significant, the average
magnitude of the top-ranked correlation for genes encoding transcription factors is
substantially less than that for genes in the CORUM human protein complex database
(Figure S1D). Moreover, in this network, non-informative clusters emerge which
correspond to genes in the same chromosomal region, likely reflecting the confounding
fithess effect of double-stranded breaks in regions with copy number alteration (CNA)

(Aguirre et al., 2016) (Figure S1B). CNA-based corrections, now standard in defining
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gene essentiality from CRISPR-Cas9 screens (Meyers et al., 2017), address the
magnitude of signal attributable to a gene at an amplified locus. However, this uniform
correction does not address the shared patterns of relative essentiality between genes at
that locus, fundamentally biasing correlation-based analyses. Thus, in a genome-scale,
top-down coessentiality analysis, true biological signal is lost for genes encoding proteins
which function independently from large molecular assemblies and/or have variable copy
number across tumors — such as master regulator transcription factors of the cellular
stress response (Figure S1E).

To address the limitations of existing coessentiality approaches, we developed a
bottom-up approach to generate a locus-adjusted, rank-based network from central
source node(s) of interest (Figure 1A). We first investigated HSF1, a transcription factor
considered the master regulator of cytosolic proteostasis. Across cancer cell lines of
diverse cell lineage and tumoral subtype, HSF1 loss negatively impacts cellular fitness,
with a spectrum of relative essentiality within each lineage (Figure 1B). Notably, HSF1 is
located on chromosome 8q, a region commonly amplified in cancer. In contrast to HSF1
transcript levels (Figure 1C), HSF1 essentiality was not correlated with copy number
(Figure 1D). This reflects the copy number adjustment performed to obtain the CERES
score, a continuous measure of the fitness effect of individual gene loss (Meyers et al.,
2017). However, the genes most coessential with HSF1 still showed substantial
enrichment for genes in the same chromosomal neighborhood (p = 7e-5; Figure 1E). We
found that correcting for the median fitness effect of neighbor genes prior to performing

genome-wide correlations eliminated this locus bias (Figure 1E).
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We next profiled the top ranked HSF 1-coessential genes using our locus-adjusted
method. Remarkably, despite lower magnitudes of correlation as compared with protein
complexes, the genes with fitness profiles most similar to HSF1 included genes having
known functional relationships with HSF1, such as Heat Shock Factor 2 (HSF2), HSP70
and HSP110 family members (HSPA4, HSPA14), and HSP90 ligands (ANKRD49,
FKBPL). Gene set enrichment analysis (GSEA) of top HSF1-coessential genes confirmed
enrichment for canonical HSF1-related processes (i.e. chaperone-mediated protein
folding; Figure 1F). GSEA also corroborated pathways with emerging relationships to
HSF1, such as ribosome biogenesis and RNA processing, where HSF1 senses ribosome
activity during translation (Santagata et al., 2013), and mitochondrial protein import,
where HSF1 drives the multifaceted response to cytosolic accumulation of non-imported
mitoproteins (Boos et al., 2019).

To better understand functional modules within the HSF1 coessential gene set, we
generated an HSF1 coessentiality network containing the top 100 HSF1-coessential
genes and up to 5 secondary connections per gene (Figure 1G). Like GSEA, the network
approach reveals functional modules connecting to HSF1, with the additional advantage
of illuminating the interplay within and between modules. For example, enzymes critical
to protein glycosylation or UFMylation connect only to HSF1 and other genes in the same
functional module. On the other hand, nucleolin (NCL) — a heat-shock responsive
nucleolar protein which functions in the first step of rRNA processing (Daniely et al., 2002;
Ginisty et al., 1998) — is central to a subnetwork which bridges the heat shock and RNA

processing moedules.
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We next investigated whether the HSF1 coessentiality network would vary by
cancer subtypes, indicating lineage-specific biological relationships which did not emerge
in pan-cancer analyses. As expected, the correlation of HSF1 with heat shock module
genes was the most consistent correlation lineages, indicating that this canonical role of
HSF1 is highly conserved across tissue types and genetic backgrounds (Figure 1H).
Gene sets corresponding to other biological processes which have been previously linked
to HSF1, such as glycolysis (Dai et al., 2007; Santagata et al., 2013; Zhao et al., 2009),
had similar knockout phenotypes to HSF1 only in some cancer subsets, suggesting that
context may drive these relationships (Figure 1H).

A notable exception to the otherwise subtype-conserved correlation between
HSF1 and heat shock genes was found in acute myeloid leukemia (AML), where no
relationship was observed between HSF1 and the heat shock module (Figure 1H).
Rather, the most correlated module comprised genes involved in ribosome biogenesis.
To better understand the contexts driving HSF1 essentiality in AML, we compared the
transcriptome, metabolome, and proteome for the cell lines most dependent on HSF1
with the cell lines least dependent on HSF1. Strikingly, nearly every gene overexpressed
in the HSF1-dependent AML lines encoded a protein involved in translation (enrichment
p = 6e-25). Fittingly, protein levels of eukaryotic elongation factor 2 (EEF2) and p70s6k
were elevated in these cell lines (Figure 11), together indicating a high-translation
phenotype which does not correspond to any known subtype of AML. Remarkably, a
previous report described that inhibiting translation initiation with rocaglates potently
inactivates HSF1, suppressing the high-translation malignant state in a manner which

most potently impacted AML cells (Santagata et al., 2013). Notably, HSF1 dependence
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does not strongly correlate with this RNA signature of translation in other cancer subtypes
(Figure 1J). Moreover, the observation that this phenotype exists in a spectrum within
AML garners further consideration, given the ongoing exploration of
rocaglates/translation initation inhibitors for cancer care (Cunningham et al., 2018). Gene
expression data from AML patient tumors reveals that the protein synthesis genes
identified in our cell line analysis above stratify patients into distinct prognostic
populations (Figure 1K), suggesting that translation initiation inhibitors may be most
efficacious in this patient subset. Moreover, these data suggest the existence of a low-
translation, poorer prognosis group which may require alternative therapeutic
approaches. Altogether, these data identify canonical and context-specific functions for
HSF1, integrate genetic fitness data in a manner relevant to targeted cancer therapeutics,
and serve as proof of principle for bottom-up, locus-adjusted coessentiality network

analysis.

A chaperone coessentiality network resolves functionally and spatially
differentiated proteotoxic stress responses

While HSF1 is a critical upstream regulator of the proteotoxic stress response, the
cellular proteostasis network also includes hundreds of effector chaperones and co-
chaperones, many with distinct clients, patterns of activation, and subcellular localization.
Reflecting the functional nature of chaperones to physically interact with client proteins,
our understanding of chaperone biology is highly influenced by physical interaction
studies, which are often constrained by the overexpression of tagged proteins, limited

numbers of cell lines, and chemical inhibitors which fail to distinguish highly similar family
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members. Our genetic approach is not subject to these limitations and can identify
functional relationships which do not require physical interaction. Thus, we expanded our
network from HSF1 to the major chaperone families to provide functional insights into the
broader cellular protein homeostasis network.

We first investigated the essentiality of the HSP40/J-domain protein (JDP), HSP70,
HSP90, HSP110, HSP60/10, and small HSP chaperone family members (Figure 2A).
Even within these families comprising highly related members, we observe great
variability in the essentiality of individual chaperones. For example, within the HSP70
family, HSPA9 (Mortalin) and HSPA5 (BiP/Grp78) are broadly required for cellular
proliferation (mean essentiality, 1.53 and 1.32; essentiality rank, 203 and 436 of 18333),
whereas targeting either HSPA12A or HSPA12B has no deleterious effect on cellular
fithess whatsoever (mean essentiality rank, 16738 and 13407). While most HSP70 family
members are cytosolic, the two highly essential HSP70s represent the primary HSP70 in
the mitochondria (HSPA9) and endoplasmic reticulum (HSPAS5). Likewise, the ER-
localized HSP90B1 (Grp94) is more essential than the cytosolic HSP90AA1 and
HSP90AB1, suggesting that the specialization of these factors limits the capacity of the
cell to buffer their loss via the expression of more closely related paralogs. Supporting
this model, we observe that dependence on individual cytosolic HSP90 isoforms is
predicted by relative expression of that isoform (Figure S2A,B). For example, leukemias
preferentially express and depend on HSP90AB1, whereas cervical cancers preferentially
express and depend on HSP90AA1 (Figure S2C). Because therapeutic modulation of

chaperones remains a goal in many areas of patient care, these data argue for the
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consideration of paralog redundancy/buffering for any therapy targeted to a particular
chaperone.

Next, to investigate interplay between chaperone genes, we constructed a
coessentiality network using these chaperone family members as source nodes (Figure
2B). Topologically, the chaperone network is more interconnected than would be
expected by chance (p<0.001 vs. randomly permuted network), with several canonical
relationships recapitulated. These included strong reciprocal connections between
specific HSP70s and the JDP cochaperones with which they function, such as HSPA14
and DNAJC2. To further analyze the network, we performed Markov clustering, which
revealed several distinct modules containing clear biological connections (Figure 2C).
Cluster 1 contains the chaperones most correlated with core cellular fitness processes,
such as DNA replication (PCNA), translation (RPL11, RPL37, RPS13), and transcription
(POLR2J). Cluster 5 contained five member genes, four of which have known functions
at the inner mitochondrial membrane, strongly suggesting that the outlier node
(DNAJC24) also plays a role in mitochondrial protein maintenance. Remarkably, the 11
genes in Cluster 2 all localize to the ER lumen and have known functional connections to
the ER stress response. On the other hand, multiple clusters emerged containing
primarily to cytosolic proteins. To support the biological segregation of these cytosolic and
ER lumen gene sets beyond localization, we investigated the transcriptional response of
MDA-MB-231 cells to either 2-deoxyglucose (2DG; an inducer of protein misfolding in the
ER lumen) or heat shock (HS; an inducer of protein misfolding in the cytosol). We found
striking induction of ER cluster genes by 2DG, but not HS, and induction of cytosolic

cluster genes by HS but not 2DG (Figure 2C, rightmost panels), indicating a functional
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differentiation of these modules in the response to distinct proteotoxic stressors. More
broadly, these data demonstrate that bottom-up coessentiality network approach
identifies functional modules, points of functional redundancy, and putative novel

interactions within a highly interconnected and compartmentalized proteostasis network.

Identifying topology and crosstalk between functional modules in a global stress
response network

As disease states often impose multiple simultaneous stressors, we next sought
to expand beyond proteostasis to investigate the crosstalk between diverse stress
response programs. Thus, we used the approach outlined above to generate a global
stress response coessentiality network centered around master regulators of the
response to genotoxic, proteotoxic, hypoxic, nutrient, and oxidative stresses (Figure 3A).
For this network, we also included highly-ranked negative correlations to capture
antagonistic relationships (Figure 3B).

The stress network (Figure 3B), comprising proteins with diverse molecular
activities (Figure 3C), has far greater connectivity than would be expected by chance
alone. Moreover, this network is replete with examples of canonical signaling
relationships. For example, within the genotoxicity cluster, TP53 and ATM share
connections with many genes critical to the response to double-stranded DNA breaks
(e.g. CHEK2, CDKN1A/p21, TP53BP1). NFE2L2/NRF2 was highly anticorrelated with its
canonical negative regulator, KEAP1, sharing multiple divergent nodes — i.e. nodes
correlated to one source node and anticorrelated with the other. These divergent nodes

included PDCD10/CCM3, which phosphorylates the Ezrin/Radixin/Moesin family proteins
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to promote fithess under oxidative stress (Fidalgo et al., 2012). The HIF family of
transcription factors were also tightly connected, with the exception of the atypical HIF3A.
Furthermore, VHL anticorrelated with both HIF1A and EPAS1 (HIF2A), but not ARNT
(HIF1B), consistent with the known function of VHL to stimulate degradation of HIFa but
not HIFB proteins. The heat shock factor paralogs HSF1 and HSF2 were strongly
connected, both displaying connections to the genotoxic stress cluster via genes such as
NCL, which is known to mobilize from the nucleolus to nucleoplasm after heat shock or
DNA damage in a p53-dependent process (Daniely et al., 2002).

Other clear modules in the stress network included a large cluster corresponding
to ERN1 and XBP1. In response to proteotoxic stress in the ER lumen, ERN1 cleaves
XBP1 to initiate one of the three branches of the unfolded protein response (UPR).
Indeed, we find that ERN1 and XBP1 share a dense cluster of coessential genes enriched
for UPR/ER stress signaling (e.g. HERPUD1, DNAJC3; enrichment p = 1e-9).
Interestingly, EIF2AK3 and ATF6 — the sensors for the other two branches of the UPR —
did not share many coessential genes with ERN1 and XBP1, consistent with recent data
suggesting that specific contexts confer differential dependence on different branches of
the UPR (Adamson et al., 2016). An exception to the lack of connectivity between UPR
branches is MANF, which correlates with XBP1, but anticorrelates with EIF2ZAK3/PERK.
Consistent with our network, MANF has conserved, divergent genetic interactions with
XBP1 and EIF2AKS, but not ATF6 (Lindstromet al., 2016). Moreover, MANF was recently
identified to stabilize a subset of HSPA5-client complexes in the ER lumen (Yan et al.,

2019). Indeed, HSPAS is highly coessential with MANF in addition to correlating with
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XBP1 and anticorrelating with EIF2AKS3, supporting a model in which MANF is a point of
regulation between the functionally differentiated branches of the UPR.

Another highly interconnected cluster comprised genes involved in nutrient
stress/autophagy, including the source nodes EIF2AK4 (GCN2) and GCN1 (nutrient
sensors), ATGS and ATG7 (critical genes for autophagosome formation), TSC1 and
TSC2 (negative regulators of mMTORC1), and ATF4. ATF4 is perhaps best known for its
role downstream of EIF2AK3/PERK in the UPR, and does indeed connect to EIF2AK3 in
the network via Thrombospondin 1 (THBS1), an ER-localized protein which promotes a
protective ER stress response (Lynch et al., 2012). However, ATF4 clusters much more
closely with the nutrient stress/autophagy genes, consistent with a more recently
described role for ATF4 in mTORC1 signaling (Ben-Sahra et al., 2016). More globally,
the autophagy cluster connected strongly with the oxidative stress module, featuring
crosstalk genes such as TXNDC17 (TRP14), a disulfide reductase which has both
peroxidase (Jeong et al., 2004) and autophagy-inducing (Tan et al., 2019; Zhang et al.,
2015) activities.

While the stress network readily identifies canonical stress response signaling
relationships, not all of the genes in the stress network have established connections to
stress response biology. This may be because many of these genes have not been
studied directly (Figure 3E). To test whether the genes in our network are regulated by
stress, we treated MDA-MB-231 cells with five different perturbations which capture the
breadth of the stress network (CoClI2: hypoxia mimetic, Cyclophosphamide/CPA: DNA
damaging agent (CoClI2: hypoxia mimetic, Cyclophosphamide/CPA: DNA damaging

agent, 2DG: ER stress inducer and metabolic stress, serum starvation (SS): nutrient
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stress, and HS: cytosolic proteotoxic stress). We observed that many genes in our stress
network are stress-responsive at the transcript level, including three genes induced by
multiple stressors which have not been studied directly (CCDC113, C160rf72, UBALDA1;
Figure 3F). While most genes were regulated by multiple stressors, certain genes
corresponding precisely to one module were primarily induced by the stressor most
associated with that module, such as TSC2 in serum/amino acid starvation, EGLN1 in
CoCl2/pseudohypoxia, and the previously discussed MANF in 2DG/ER stress (Figure
3F). Altogether, the stress network recapitulates positive and negative regulatory
interactions between distinct stress response modules, identifies genes which represent
points of crosstalk between modules, and identifies a set of minimally-studied genes as

putative members of an integrated stress response.

Cancer cell dependence on dynamic stress modules reflects targetable
vulnerabilities

While pan-cancer coessentiality analysis allows for the greatest sampling of
distinct cell states, there are likely lineage-specific relationships within the stress network
which might be obscured at the pan-cancer level. To identify such relationships, we
constructed a stress response network using cancer cell lines from each lineage
containing at least 10 cell lines and systematically assessed connectivity between source
nodes (Figure 4A).

Across lineages, the most highly connected stress response subnetwork
corresponded to the TP53-ATM genotoxicity cluster, which had members in nearly every

lineage, but was most predominant in skin cancers (18 members in skin; mean members
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in other lineages, 5.4) (Figure 4B). This is perhaps unsurprising, as melanoma classically
contains the largest mutational burden of major cancers (Zhang et al., 2018). In contrast
to the relatively conserved genotoxicity subnetwork, we identified an ATF3-EIF2AK3
network highly specific to neuroblastoma (17 members; one total member in other
lineages). This network was comprised entirely of divergently correlated nodes — i.e.
correlated with ATF3 and anticorrelated with EIF2AK3/PERK, or vice versa (Figure 4C).
Notably, in neuroblastoma, ATF3 and EIF2AK3 are each the most anticorrelated gene for
the other (r= -0.87, p=6e-6) while they are unrelated in the pan-cancer analysis (r=-0.04,
p=0.3). ATF3 functions as a transcriptional repressor, and is induced by EIF2AK3
downstream of the ER stress response (Jiang et al., 2004). Querying ENCODE ChlIP-seq
data, we find that ATF3 can bind an EIF2AK3 enhancer (Figure S4). Taken together,
these data suggest that ATF3 and EIF2AK3 operate in a negative feedback loop
particularly relevant to neuroblastoma.

Another subnetwork with lineage-enriched membership was the ERN1-XBP1 UPR
subnetwork, which had 15 members in the hematopoietic lineage network (mean
membership in other lineages, 0.75) (Figure 4D). Interestingly, unlike the skin network
(Figure 4B), which featured crosstalk between all three branches of the UPR, the
hematopoietic lineage network was enriched only for the ERN1-XBP1 branch. We find
that that this ERN1-XBP1 relationship in hematopoietic cells is primarily driven by multiple
myeloma (Figure 4E), a malignancy characterized by constitutive UPR signaling due to
high protein secretion load (Obeng et al., 2006). (Figure 4E). Strikingly, the XBP1-ERN1
network in myeloma was enriched for both network connectivity (highly correlated within

the lineage) and network essentiality (selective essentiality within the lineage) (Figure
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4F). Thus, the ERN1-XBP1 UPR branch is an exquisite vulnerability specific to a subset
of multiple myeloma which could, in principle, be exploited by targeting any individual
member of the network.

To further investigate this ERN1-XBP1-dependence in multiple myeloma, we
compared available transcriptome, metabolomic, and drug sensitivity data for the
myeloma lines most dependent on this network with those least dependent on the
network. We found that this high-dependency subset of myeloma was characterized by a
transcription and metabolic signature suggesting diminished oxidative metabolism
(Figure 4G). Interestingly, these cell lines were more sensitive to Bortezomib (Figure 41),
a proteasome inhibitor used clinically in multiple myeloma which induces pro-apoptotic
UPR signaling (Obeng et al.,, 2006). In contrast, the low-UPR-dependent, relatively
proteasome inhibitor-resistant subset of myeloma was particularly sensitive to
Elesclomol, an inhibitor of oxidative metabolism recently identified as a selective
vulnerability in proteasome inhibitor-resistant myeloma (Tsvetkov et al.,, 2019). To
investigate the relevance of these data to clinical care, we queried tumor microarray data
from a clinical trial of Bortezomib, finding that the patients whose tumors shared this low-
OXPHOS signature (>1 standard deviation from mean; n=29) were more likely to respond
to Bortezomib therapy as compared with the other enrolled patients (n=159; Figure 4J).
Altogether, these data demonstrate the utility of intra-lineage coessentiality network
analysis to identify regulatory relationships and therapeutic vulnerabilities particularly

relevant to cells of a specific lineage.
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C160rf72 is a stress-inducible modulator of the cellular adaptation to diverse
stressors

To demonstrate the power of our approach to identify a novel gene critically
relevant to the stress response, we chose to study C16o0rf72, a previously
uncharacterized gene in our stress network which was also induced by multiple stressors
(Figure 3C,E-F). Mining publicly available datasets, we found that C160rf72 is indeed
expressed across cancer cell lines, normal tissue, and tumors (Figure S7), with its
expression in tumors being prognostic in many cancers (Figure 5A). C160rf72 loss is
broadly deleterious to the fitness of cancer cell lines particularly those derived from kidney
tumors (Figure 5B). Evolutionarily, C160rf72 is highly conserved through C. elegans
(Figure 5C), with CRISPR-Cas9 fitness screening data in Drosophila cells (Viswanatha
et al., 2018) indicating that its importance for cellular viability is also conserved (Figure
5D).

To validate the essentiality data for C160rf72 using an orthogonal approach, we
tested the effect of C160rf72 depletion with siRNA on the short-term proliferation of three
breast cancer cell lines with varying dependence on C160rf72: SK-BR-3 (C160rf72
essentiality score, 1.65; cell line rank, 1/625), ZR-75-1 (essentiality score, 1.09; cell line
rank, 38/625), and MDA-MB-231 (essentiality score, 0.05; cell line rank 581/625). As
expected, proliferation of SK-BR-3 cells was most impacted by C160rf72 depletion,
followed by ZR-75-1, with no fitness effect at 72 hours in MDA-MB-231 cells (Figure 5E).
Interestingly, C160rf72 depletion produced a similar overall transcriptional effect in each

of these three cell lines (Figure 5F), consistently inducing genes related to DNA damage
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(e.g. CDKN1A/p21) and suppressing genes related to inflammatory, hypoxic, and other
stress response programs.

C160rf72 emerged in our stress network, is induced by multiple stressors, and
alters the transcription of stress response genes. Moreover, the C160rf72-coessentiality
network contained clear modules related to genotoxic, hypoxic, proteotoxic, and nutrient
stress (Figure 5G). To test the hypothesis that C160rf72 plays a broad role in the cellular
response to stress, we designed a targeted screen to test the effects of C160rf72
depletion on cancer cells subjected to perturbagens which induce these diverse stress
response pathways. We found that C160rf72-silenced cells were strikingly less tolerant
to these stressors, except for the proteasome inhibitor MG132 (Figure 5H). Of note, MDA-
MB-231 cells — which did not exhibit a proliferation defect upon C160rf72 depletion in the
non-stressed, baseline condition — had a marked fitness defect when C160rf72 depletion
was combined with stressors.

Because C160rf72 depletion most sensitized MDA-MB-231 cells to CoCl2
(hypoxia mimetic), serum starvation (nutrient stress), and CPA (DNA-damaging agent),
we chose to further investigate the interplay between C160rf72 and these three stressors.
Corroborating the ATP-based viability assay (Figure 5H), live cell imaging revealed
reduced proliferation of C16o0rf72-depleted MDA-MB-231 cells in these conditions as
compared with controls (Figure 5I-K). Moreover, knockdown of C160rf72, which was
induced from baseline levels by each of the three stressors in the siNT control group,
dramatically altered the transcriptional response to these stressors (Figure 5I-K). For
example, 1367 genes were differentially expressed in serum starved cells without

C160rf72 as compared to serum starved cells with C160rf72 (Figure 5I-K). Across all
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three stress conditions, knockdown of C160rf72 suppressed expression of genes
corresponding to stress and inflammatory response pathways. Additionally, context-
specific patterns of regulation emerged, whereby C160rf72 knockdown resulted in
misregulation of amino acid metabolism genes under amino acid starvation, replication
stress genes under interstrand crosslinking conditions, and oxygen response genes
under hyperactive oxidative radical production. Altogether, our data identify C160rf72 as
a conserved, stress-inducible gene which promotes cellular fitness in the face of diverse

stressors.

C160rf72/[HAPSTR modulates the stress response by interacting with the stress-
responsive E3 ligase HUWE1

To investigate the mechanism by which C160rf72 enables this striking resilience
to stress, we first expressed a 3xFLAG-tagged C160rf72 construct in HEK293T cells.
C160rf72 predominantly localized to the nucleus (Figure 6A), driven by a conserved
nuclear localization signal at the protein's N-terminus (Figure 5C, S6). Next, we performed
affinity purification coupled with mass spectrometry to identify proteins which interact with
C160rf72. The most prominent hit was the Hect ubiquitin E3 ligase HUWE1 (Figure 6B),
which has known functional roles in the response to diverse stress conditions, such as
genotoxicity, proteotoxicity, and hypoxia (Choe et al., 2016; Kao et al., 2018; Maghames
et al., 2018). Confirming a physical interaction, we co-immunoprecipitated endogenous
HUWE1 with C160rf72 using antibodies targeting both HUWE1 and FLAG in 293T cells

(Figure 6C,D).
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Interestingly, HUWE1 is also C160rf72's most coessential gene (r=0.49; Figure
6E). Several other proteins with which C160rf72 physically interacts also shared
correlated fitness profiles with C160rf72 (Figure 6F). In contrast with the anticorrelated
fithess profiles often observed between E3s and the targets they mark for degradation
(e.g. MDM2 and TP53, r = -0.704), the highly convergent fitness profiles of C160rf72 and
the E3 ligase HUWE1 suggest a cooperative function for these interacting proteins.
Supporting the hypothesis that C160rf72 is not simply a HUWE1 substrate, we observe
no significant change in C160rf72-FLAG expression or ubiquitination in response to
HUWE1 knockdown (Figure 6G). Moreover, treatment of MDA-MB-231 cells with siRNAs
targeting C160rf72, HUWE1, or both genes resulted in strikingly similar transcriptional
profiles (Figure 6H). Of note, HUWE1 had a more substantial ma Taken together, these
data strongly suggest a direct, cooperative physical interaction between C160rf72 and
HUWE!1.

To next address whether this putative cooperative function of C160rf72 may be
related to the E3 ligase activity of HUWE1, we stably expressed FLAG-tagged ubiquitin
under a doxycycline-inducible promoter in 293T cells and used FLAG affinity purification-
mass spectrometry to identify changes in the ubiquitinated proteome after knockdown of
either HUWE1 or C160rf72. Across three separate experiments, including baseline
conditions (48h and 72h of knockdown) and 24h of serum starvation (72h of knockdown),
C160rf72 and HUWE1 had nearly identical effects on the ubiquitinated proteome (Figure
6l). Specifically, C160rf72 and HUWE1 depletion independently resulted in under-
ubiquitination of many proteins (Figure 6J). These included known HUWE1 substrates,

such as TP53 (notably, C160rf72's second-ranked fitness anticorrelation; r = -0.32, p =
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6e-17), as well as putative HUWE1 substrates suggested from prior high throughput
studies, such as GNL3/nucleostemin, a protein which promotes genome integrity during
DNA replication (Tsai, 2014). Remarkably, of the 20 proteins which had highly significant
changes in ubiquitination after C16orf72 and HUWE1 depletion, only UBE2L3 had
increased ubiquitination. UBEZ2L3 is an E2 ligase which functions to transfer ubiquitin
directly to the active-site residue of HUWE1 (a unique feature of Hect E3s). Together,
increased ubiquitination of HUWE1's E2 ligase and decreased ubiquitination of its
substrates demonstrate that C16orf72 depletion is sufficient to markedly suppress
HUWE1 ubiquitin ligase activity in a manner independent of a change in HUWE1
expression (Figure 6J,K). Moreover, C160rf72 depletion recapitulates the effect of
HUWE1 loss on protein levels of established HUWE1 substrates (Mcl1, DDIT4, p53) as
well as the putative substrate GNL3/nucleostemin (Figure 6K). Altogether, these data
demonstrate a critical role for C160rf72 as a a stress-responsive cofactor for HUWE1, a
fitness-essential gene known to modulate the stress response (Kao et al., 2018).
Considering these data, we propose that this Huwe 1-associated modulator of proliferation
and the stress response be named HAPSTR. More broadly, the framework we use to
identify HAPSTR provides a paradigm for the identification of other uncharacterized

genes.

DISCUSSION
Most genes in the human genome are not essential for cellular proliferation in
standard culture conditions (Hart et al., 2015; Meyers et al., 2017; Tsherniak et al., 2017).

Yet, many of these "nonessential" genes are critical to cell fitness in the context of
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physiological stress. Foundational work has demonstrated that, in yeast, only ~17% of
the genome is essential for growth in rich media (Winzeler et al., 1999), but nearly every
gene (~97%) becomes required for optimal growth in at least one chemical or
environmental stress condition (Hillenmeyer et al., 2008). Here, we use the extraordinary
heterogeneity of hundreds of cancer cell lines as a model for diverse cellular stress
contexts, demonstrating that the contexts in which stress response genes become
essential reflects the underlying biology of those factors. We exploit these context-specific
essentiality patterns of known stress response genes to build a network of genes having
similar context-specific fitness effects, effectively recapitulating canonical regulatory
relationships, detailing treatment-relevant tumor dependencies, and identifying novel
genes relevant to a global stress response network. Because an imbalance between
stressors and the cellular capacity to adapt to those stressors underlies a broad spectrum
of human disease, the data uncovered using this approach has broad therapeutic and
prognostic implications.

The principle that convergent or epistatic knockout phenotypes may identify
functional relationships between genes is not new (Dobzhansky, 1946). Great insights
have been gained from pairwise genetic screens in model organisms, most prominently
budding yeast (Costanzo et al., 2016), but the larger human genome has proved
challenging for genome-wide combinatorial study of genetic perturbations. With the
advent of high quality CRISPR-Cas9 screening libraries in recent years, the coessentiality
approach has emerged as an alternative to pairwise genetic perturbations for the
discovery of novel genes and genetic interactions (Boyle et al., 2018; Kim et al., 2019;

Pan et al., 2018). These first coessentiality studies detail a top-down approach which
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effectively resolves major protein complexes and identifies functional clusters in the
genome. Our locus-adjusted, rank-based approach addresses certain limitations of these
studies, which include bias from copy number variable regions, overrepresentation of
obligate protein complexes, and limited capacity to resolve genes which have dynamic
functions across many cellular states — such as the transcription factors and chaperones
of the cellular stress response. For example, HSF1 drives distinct transcriptional
programs depending on cellular context (Filone et al., 2014; Mendillo et al., 2012; Scherz-
Shouval et al., 2014), and both the chaperone (Joshi et al., 2018; Rizzolo et al., 2017;
Rodina et al., 2016) and DNA damage response networks (Bandyopadhyay et al., 2010)
are known to rewire under stress conditions.

In each of the networks elucidated in this study, canonical signaling relationships
were recapitulated and modules of functionally related genes emerged. For example,
within the chaperone network, we observe clusters distinguished both by subcellular
localization and by patterns of induction in response to mechanistically distinct proteotoxic
stresses. Of note, many chaperone and co-chaperone genes still have unresolved
functional partners and localization, particularly within the HSP40/JDP family (Kampinga
et al.,, 2019). Our network corroborates recent reports revealing the localization of
individual JDPs, such as DNAJB11 in the ER lumen (Chen et al., 2017) and DNAJC11 at
the inner mitochondrial membrane (loakeimidis et al., 2014). Thus, the novel relationships
observed in our network, such as DNAJC24 at the inner mitochondrial membrane, are
valuable targets for future study. Beyond chaperones, in the global stress network, we
identify not only genes corresponding to individual stress pathways but also the genes

which connect distinct stress programs. These genes, such as C160rf72/HAPSTR and
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NCL (bridging cytosolic proteostasis and DNA damage) and TSC1/2 and TXNDC17
(bridging oxidative stress and nutrient stress) represent points of crosstalk which likely
play critical roles in diseased cells facing combinatorial stresses.

An overarching theme in these data is that cancer cells represent a breadth of
disease-relevant cellular states which may offer functional insight not obtained from
studies using limited numbers of cell lines or stress perturbations without a direct
physiological correlate. For example, we identify a small subset (~1%) of cancer cell lines
particularly sensitive to the loss of genes involved in the ERN1-XBP1 branch of the UPR.
Remarkably, these cell lines comprise multiple myeloma, a malignancy derived from
plasma cells, which are characterized by a dramatically expanded ER network to
accommodate the secretion of thousands of immunoglobulin molecules each second
(Calame et al., 2003). Myeloma cells are burdened by a specific stress encountered in
many disorders of secretory cells (e.g. pancreatic B cells in hereditary diabetes mellitus),
and may thus serve as a more disease-relevant ER stress model than tool compounds
such as thapsigargin (which induces ER stress by depleting ER calcium stores). Indeed,
while all three branches of the UPR critically modulate the response to thapsigargin
(Adamson et al.,, 2016), the ERN1-XBP1 branch is selectively required in these
hypersecretory cells. In the clinical care of multiple myeloma patients, proteasome
inhibitors are already employed to exploit the ER stress phenotype of malignant plasma
cells. However, as the proteasome is a core essential component of all cells, our data
suggest direct targeting of ERN1-XBP1 — for example, with available ERN1 inhibitors —

may retain therapeutic efficacy while minimally affecting non-tumor cells.
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Importantly, our data also indicate that there exists a spectrum of individual stress
subnetwork utilization, even within a given lineage. Returning to the example of ERN1-
XBP1, while this subnetwork was generally more essential in multiple myeloma, not all
myeloma lines were equally impacted by ERN1-XBP1 loss. Thus, while targeting ERN1-
XBP1 may have utility in the treatment of multiple myeloma, our data indicate that some
tumors will be more susceptible than others to this modulation. Moreover, we find that the
myeloma subset less likely to respond UPR modulation has a multiomic phenotype of
increased oxidative metabolism and is, in turn, more susceptible to Elesclomol. Similarly,
in AML, we observe variable dependence on the translation-HSF1 link, identify a
transcriptional signature reflective of this phenotype, and demonstrate that this signature
stratifies AML patients in a m(Choe et al., 2016)eaningful fashion. It is worth noting that
this approach to identify multiomic signatures of subnetwork dependency is unlikely to
provide meaningful insight in pan-cancer analyses due to the powerful confounding
effects of cell lineage. Thus, these data suggest a paradigm by which intra-lineage
dependence on individual genes or gene networks can be translated into potentially
actionable insight about an individual patient's tumor.

Finally, we demonstrate the potential of our approach to identify novel genes
relevant to a complicated biological network, such as C160rf72/HAPSTR. HAPSTR's
coessentiality network successfully predicted its cooperative relationship with HUWE1,
as well as its role in the response to genotoxic, nutrient, proteotoxic, and oxidative stress.
Corroborating our data, HAPSTR was also one of 117 genes identified to protect cells
from inhibition of ATR, the primary sensor for single stranded DNA breaks, in a recently

published screen (Hustedt et al., 2019). As HUWE1 is known to alleviate replication stress
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through an interaction with PCNA (Choe et al.,, 2016), our data reveal the likely
mechanism of this observed chemical genetic interaction between HAPSTR and ATR
inhibitors. Beyond genotoxicity, the interplay between HAPSTR, HUWE1, and proteins
critical to diverse stress response programs sets the stage for many future studies. More
broadly, because HAPSTR impacts the response to diverse stress states, is essential to
some but not all cancer cells, and is prognostic of patient outcomes in diverse cancer
diagnoses, HAPSTR may be a promising therapeutic target in cancer. It is also worth
noting that HAPSTR is highly expressed in the developing brain (Figure S7B) and
genomic alterations in both HAPSTR and its cooperative partner HUWE1 have been
associated with neurodevelopmental disorders, such as autism (Bosshard et al., 2017;
Levinson et al., 2011; Sanders et al., 2011) . Thus, it is likely that misregulation of the
evolutionally conserved, multi-stress-responsive protein HAPSTR plays a role in human
pathology beyond neoplasia.

Far beyond HAPSTR and the response to stress, we emphasize that the approach
detailed here is easily adapted to facilitate targeted study of other genes and pathways.

To support such efforts, we make available an interactive web application

(http://fireworks.mendillolab.org/) where individuals may input gene(s) of interest and
quickly visualize a locus-adjusted coessentiality network. Moreover, this tool facilitates
the integration of multiomic data to define the mechanisms underlying context-specific
relationships. It is our hope that this resource will broadly augment efforts to identify

functional interactions within biological networks.

METHODS
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Curation of gene essentiality data in cancer cell lines

Data from CRISPR-Cas9 genome scale loss of function screening of 625 cancer
cell lines was obtained from DepMap (https://depmap.org/portal/download/). CERES
scores were used to quantify the fitness effect of individual gene loss, with "essentiality"
in this paper represented as the inverse CERES score (i.e. more positive scores for genes
which cause greater dropout of cells with guides targeting that gene. The screen
performed in Drosophila melanogaster was identified through a search of BioORCs for
any screens performed in Drosophila or C. elegans which targeted that species' C160rf72

homolog.

Integration and analysis of Cancer Cell Line Encyclopedia Multiomic Data
Processed RNA-seq, reverse phase protein array, copy number, and metabolomic
data were obtained from the DepMap data portal (https://depmap.org/portal/download/).
These data are described in detail in (Ghandi et al., 2019). For descriptive comparisons
of different cell lines stratified by dependency signatures, the cell lines with 75" percentile
or higher dependency on that signature were compared with cell lines having 25

percentile of lower dependency.

Determination of coessential genes
To determine a locus-corrected coessentiality value for each gene pair, gene
essentiality scores for each gene were subtracted from the median essentiality score for

that gene's nearest 10 neighbor genes (5 downstream, 5 upstream) on the same
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chromosome. Strength of coessential relationships are represented as Pearson r, with
coessentiality rank used for all network analyses to mitigate bias from p-value inflation or

differing numbers of cell lines in cancer cell line subsets.

Coessentiality network visualization and clustering

Rank-based networks were constructed from a single or set of input genes, using
a soft rank threshold for each analysis —i.e. correlations below the specific rank were not
included. Edges are not weighted by correlation strength or rank. To remove potentially
spurious correlations from genes only expressed in certain lineages, networks excluded
transcripts where the median expression across cell lines was equal to 0. All networks

were visualized in Cytoscape v3.7.2 (https://cytoscape.org/). Unless otherwise specified,

networks used a force-directed layout with modest adjustments made by hand to improve
legibility. The circular layout for the stress network was manually arranged following the
groupings obtained by hierarchical clustering of source nodes. Statistical evaluation of
network connectivity relative to randomly-permuted networks followed the method

described in (Pan et al., 2018).

Data analysis and visualization

Unless otherwise specified, data were analyzed with Python (version 3.6.4,
Anaconda Inc.) using the modules Pandas (v0.23.4) and Numpy (v1.14.2) and
visualization used the modules Matplotlib (v2.2.2) and Seaborn (v0.9.0). For heatmaps
visualizing gene essentiality patterns across cell lines and cancer subsets, essentiality

scores for a given gene are standard scaled to the minimum and maximum essentiality
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of that gene across all cancer cells. P-values were considered significant at an alpha of
0.05 or lower, as specified for each analysis. Benjamini-Hochberg false discovery rate
correction was performed where indicated to adjust for multiple comparisons (Benjamini

and Hochberg, 1995).

Gene Set Enrichment Analysis

GSEA was performed using the Molecular Signature DataBase as accessible at
http://software.broadinstitute.org/gsea/msigdb/annotate.jsp  (Liberzon et al.,, 2015;
Subramanian et al., 2005). The gene sets queried were as follows: hallmark (H),
positional (C1), KEGG pathways (C2), REACTOME (C2), GO Biological Process (C5),

and GO Molecular Function (C5).

Protein conservation analysis

C160rf72 protein sequences for multiple species were obtained from ENSEMBL
(http:/luseast.ensembl.org/index.html). Multi-sequence alignment was performed using
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), with visualization of the

alignment in Jalview v2.11 (https://www.jalview.org/).

Analysis of Patient Survival and Drug Response

For gene expression-stratified survival analysis, hazard ratios and log-rank test p-
values were obtained through KM-plotter (https://kmplot.com/analysis/), using standard
settings and the pan-cancer TCGA RNA-seq transcription dataset (Nagy et al., 2018). For

AML analyses, we employed BloodSpot (http://servers.binf.ku.dk/bloodspot/) (Bagger et
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al., 2019). Bortezomib (Velcade) drug response likelihood was assessed using pre-
treatment microarray data of multiple myeloma patients (GEO: GSE9782) (Mulligan et al.,

2007).

Functional classification and annotation of proteins

Grouping of proteins into functional classes was performed using PANTHER
(pantherdb.org) to analyze a list of all genes targeted in the AVANA sgRNA library (Mi et
al., 2019). NCBI Gene References Into Function (GeneRIFs; data downloaded from
ftp://ftp.ncbi.nih.gov/gene/GeneRIF/), manually annotated blurbs summarizing findings in
individual papers, were queried to bin the stress network genes by degree of prior existing

knowledge.

Experimental model and subject details

HEK293T and Hela cells were grown in DMEM media supplemented with 10%
FBS and 1% pen/strep. MDA-MB-231, ZR-75, and SK-BR3 cells were grown in RPMI
media supplemented with 10% FBS and 1% pen/strep. Doxycycline inducible FLAG-Ub
expressing HEK-293T cells were generated by transducing lentivirus containing
pCW57.1-FLAG-Ub and selected in 2 ug/ml puromycin.  All cells were passaged with

Accumax unless otherwise specified.

Plasmids, Lentivirus Generation and Infection
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FLAG tagged ubiquitin was cloned in pCW57.1 vector (Addgene # 41393) between
BsrG1 sites and verified through sequencing. PLenti6 vectors containing DNA constructs
of interest were co-transfected with pMD2.G and psPAX2 into 293T cells using
Lipofectamine 3000. After 48 hours, media was removed, filtered with an 0.45 pm filter,
and centrifuged at 21000xg for 10 min to yield packaged lentivirus in the supernatant.
Lentivirus was then added directly to cells for transduction. The C160rf72-FLAG
overexpression vector contained a blasticidin resistance cassette, and stable
overexpressing cell lines were selected for in blasticidin at 10 ug/mL (293T) or 20 ug/mL

(MFC7, MDA-MB-231) for 5 days.

Gene silencing and co-transfections

Smart-pool siRNAs were obtained for each target gene of interest, as well as a
non-targeting sequences, and transfected using RNAimax (Thermo Fisher) using a
standard protocol. Unless otherwise specified, cells were harvested 72h after siRNA
transfection. Knockdown was confirmed for each siRNA experiment by gqPCR or

immunoblot.

Drug and environmental perturbagen sensitivity in C16orf72-knockdown cells
MDA-MB-231, SKBR3, and ZR75 cells were reverse transfected with C160rf72 or
non-targeting siRNA at 1000 cells/per well in a 384-well plate. After 1 day, RPMI media
was replaced and drugs were arrayed at half-log intervals into wells using a Tecan D300E
drug printer. RPMI media contained 10% FBS and 1% Pen/Strep, except for the serum

starvation condition, which contained 0% FBS and 1% Pen/Strep. Drugs were selected
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based on pathways identified in the C160rf72 coessentiality network, as discussed. Drug
concentrations, selected based on a pilot experiment to avoid complete cytotoxicity in the
wild-type cell background, were as follows (M) : CoCI2 (25, 79, 250), Actinomycin D
(ActD; 0.001, 0.0032, 0.01), Tunicamycin (0.05, 0.158, 0.5), echinomycin (0.01, 0.03,
0.1), Thapsigargin (0.05, 0.158, 0.5), Ganetespib (0.001, 0.0031, 0.01, 0.03, 0.1), MG132
(0.5, 0.158, 0.05), Topotecan (0.05, 0.158, 0.5), Doxorubicin (1e-6, 3.2e-6, 1e-5),
Cyclophosphamide (0.05, 0.158, 0.5), Bleomycin (0.05, 0.158, 0.5), Paraquat (0.01,

0.032, 0.1).

Proliferation and viability assays

Proliferation was assessed using live-cell images obtained via Incucyte. Cells were
grown in 384-well plates, in triplicate for each condition, with whole-well images being
taken every 2 hours. Area under the proliferation curve represented endpoint confluency
subtracted from initial confluency for each well. Viability was assessed using an adapted
CellTiterGlo (Promega) protocol; briefly, 384-well plates were brought to room
temperature for 15 min, 12 uL of CellTiterGlo reagent mix was added to each well
containing 50 uL of media, and the plate was agitated for 2 min. Luminescence was read

out on a Tecan infinite M1000 pro platereader.

Immunoblot
Protein samples were lysed in RIPA buffer or ubiquitin lysis buffer (as specified
below) containing 1mM PMSF and a Roche Protease Inhibitor Cocktail tablet and passed

through a 21 gauge syringe 15 times per sample. Protein concentration was assessed by
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standard BCA assay (Pierce, #23255), denatured in 4X Laemmli sample buffer containing
beta-mercaptoethanol, and heated at 95C for 10 min. Electrophoresis was performed
using 4-20% Bis-Tris gradient gels unless otherwise specified, with transfer to PVDF
membranes using a 7-minute protocol on an iBlot machine. Membranes were blocked for
1 hour at room temperature in 5% fat-free milk. Primary and secondary antibodies were
diluted in 5% fat free milk and exposed to membranes overnight at 4C and for 1 hour at
room temperature, respectively. Imaging was performed with the BioRad ChemiDoc
Touch Imaging System (732BR0783) after incubation for 2 min in HRP substrate

(Immobilon, Millipore). Blots were analyzed using ImagelLab v6.0.1 (BioRad).

Immunofluorescence

Cells were grown on poly-D-lysine treated sterile coverslips in a 24 well-plate.
Steps were performed at room temperature unless otherwise specified. Cells were
washed three times with cold PBS, fixed with 4% paraformaldehyde for 10 min, and
permeabilized with 0.2% Triton X100 for 5 min. Blocking encompassed incubation in 2%
FBS for 30 min. Primary antibodies were diluted at 1:500 and secondary antibodies were
diluted at 1:1000 in 2% FBS and exposed to cells for 1 hour each, with 3 PBST washes
between. Coverslips were mounted to a slide using a DAPI/mounting mixture and allowed

to dry overnight before imaging.

Microscopy and Image Analysis
Images were acquired at 63x magnification using a Zeiss LSM800 confocal

microscope. A z-stack slicing distance of 0.7uM was used, with final images visualized as
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an orthogonal projection of the maximal value per pixel across stacks. No non-linear

adjustments were performed. ImageJ/Fiji (hitps://imagej.net/Fiji#Downloads) was used

for all microscopy analyses.

Immunoprecipitation

Cells were rinsed twice with cold PBS, removed from plates by scraping, and
centrifuged for 4 min at 1000g and 4° C before pellet resuspension in cold lysis buffer.
For immunoprecipitations of ubiquitin or of targets for downstream ubiquitination analysis,
cells were vortexed and passed through a syringe in ubiquitin lysis buffer (2% SDS,
150mM NaCl, 10 mM Tris HCI pH 8, 1 Roche protease inhibitor tablet, 5mM N-
ethylmaleide, and 1TmM PMSF) and heated at 95° C for 10 min before dilution in ubiquitin
lysis buffer with 1% triton and no SDS, resulting in a final SDS concentration of 0.2%. For
all other immunoprecipitations, the lysis buffer was 1% NP40, 100 mM NaCl, 50 mM Tris
pH7.5,0.2mM EDTA, 5% glycerol, and 1mM PSMF and lysis was achieved by sonication
in a 4C water bath (10 cycles of 30 sec on, 1 min off). After lysis, cells were spun at
21000xg and 4C for 10 minutes and the supernatant kept for input and
immunoprecipitation. FLAG-immunoprecipitations were performed using M2 affinity

agarose (Thermo Fisher).

Mass Spectrometry
A protein gel band was submitted to the Northwestern University Proteomics Core
Facility for an in-gel digestion. Peptides were analyzed by LC-MS/MS using a Dionex

UltiMate 3000 Rapid Separation nanoLC coupled to a Orbitrap Elite Mass Spectrometer


https://doi.org/10.1101/847996
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/847996; this version posted November 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

(Thermo Fisher Scientific Inc, San Jose, CA). Samples were loaded onto the trap column,
which was 150 um x 3 cm in-house packed with 3 um ReproSil-Pur® beads. The
analytical column was a 75 um x 10.5 cm PicoChip column packed with 3 um ReproSil-
Pur® beads (New Obijective, Inc. Woburn, MA). The flow rate was kept at 300nL/min.
Solvent A was 0.1% FA in water and Solvent B was 0.1% FA in ACN. The peptide was
separated on a 120-min analytical gradient from 5% ACN/0.1% FA to 40% ACN/0.1% FA.
MS' scans were acquired from 400-2000m/z at 60,000 resolving power and automatic
gain control (AGC) set to 1x10°. The 15 most abundant precursor ions in each MS' scan
were selected for fragmentation by collision-induced dissociation (CID) at 35%
normalized collision energy in the ion trap. Previously selected ions were dynamically

excluded from re-selection for 60 seconds.

Proteins were identified from the MS raw files using Mascot search engine (Matrix
Science, London, UK; version 2.5.1). MS/MS spectra were searched against the UniProt
Human database (SwissProt 2019, 20303 entries). All searches included
carbamidomethyl cysteine as a fixed modification and oxidized Met, deamidated Asn and
GIn, acetylated N-term as variable modifications. Three missed tryptic cleavages were
allowed. The MS' precursor mass tolerance was set to 10 ppm and the MS? tolerance
was set to 0.6 Da. The search result was visualized by Scaffold (version 4.9.0. Proteome
Software, INC., Portland, OR). Peptide identifications were accepted if they could be
established at greater than 90.0% probability by the Peptide Prophet algorithm (Keller et
al., 2002) with Scaffold delta-mass correction. Protein identifications were accepted if they
could be established at greater than 99.0% probability and contained at least 1 identified

peptide. Protein probabilities were assigned by the Protein Prophet algorithm
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(Nesvizhskii et al., 2003). Proteins that contained similar peptides and could not be
differentiated based on MS/MS analysis alone were grouped to satisfy the principles of

parsimony.

RNA-sequencing

RNA was extracted using a Qiagen RNeasy kit; briefly, cells were lysed in buffer
RLT, nucleic acids were precipitated with ethanol and applied to columns, columns were
treated with DNase, and RNA was eluted after washing/cleaning. Libraries were prepped
using a QuantSeq 3' mMRNA-Seq Library Prep Kit FWD for lllumina (Lexogen) using 100ng
of input RNA in an automated protocol adapted for the SciClone. Libraries were then
analyzed for quality using the Agilent High Sensitivity DNA kit and for quantity using Qubit
dsDNA HS assay, in 384-well format, using 20uL reactions in triplicate (19uL working
reagent + 1uL sample or standard). For the Qubit assay, 11 standards were prepared
from either 0-3ng/pL or 0-10ng/pL depending on BioAnalyzer concentrations. On plate
reader, shake for 5 seconds, then read fluorescence: excitation: 480nm, emission:
530nm. Excitation/emission bandwidth: 5nm, settle time: 100ms. Sample concentrations
were determined using the standard curve. Libraries were then pooled and sequenced
using a NovaSeq 6000 SP Reagent Kit (100 cycles). Libraries were pooled at 25nM each,
denatured with 1M NaOH added to a 0.2M final concentration (5 min at room
temperature), and quenched with 200mM Tris HCI (pH 7). 1% PhyX spike-in (lllumina)
was included. Pooled, denatured libraries were run on an lllumina NovaSeq using 51bp

reads, 6bp index reads, and paired-end single read parameters.
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Data and Code availability
All code and data for these analyses will be deposited in public repositories. Our
approach is implemented in in an interactive web application

(http://fireworks.mendillolab.org/).
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FIGURE LEGENDS

Figure 1: Developing a coessentiality network for the master regulator of cytosolic
proteostasis. A. Schematic of overall approach. B. HSF1 loss is deleterious to cell fithess
across lineages and has an essentiality spectrum within lineages. Essentiality is defined
as the inverse of the CERES score, which quantitates the fitness cost associated with
sgRNAs targeting a given gene in a given cell line; one is typical for a core fitness-
essential gene and zero represents no fitness effect. C. HSF1 copy number is associated
with HSF1 transcript level. D. The magnitude of HSF1 essentiality is not predicted by
HSF1 copy number. E. The genes with the most similar fitness profile to HSF1 are highly
enriched for genes in the same locus (chr8q). This bias is corrected by subtracting the
median essentiality of 10 neighbor genes (5 upstream, 5 downstream) prior to performing
genome-scale Pearson correlations. A sliding window of 10 genes most specifically
reduced this locus bias. F. Visualization of the top 200 HSF1-coessential genes, where
columns are cell lines, rows are genes, and hue corresponds to row-normalized gene
essentiality. Also shown are gene sets for which the HSF1-coessential genes are
enriched (FDR < 0.0001). G. Network visualization of the top 100 HSF1-correlated genes
(primary nodes) plus the top 5 coessential genes for each primary node (secondary
edges/nodes). Nodes are visualized if they have more than one connection in the
network. H. Cancer subtype-specific coessentiality patterns for modules enriched in the
pan-cancer HSF1 network, including a conserved heat shock correlation in all subtypes
but acute myeloid leukemia (AML). |. Multiomic data integration to characterize the high-

HSF1-dependence state in AML lines. J. HSF1 essentiality is highly correlated with the
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transcriptional signature of translation/protein synthesis genes in AML but not most other
cancers. K. The translation-dominant RNA signature associated with HSF1-dependence
in AML stratifies AML patient prognosis, as depicted by the top statistically-associated

gene, EIF3L. P value from log-rank test.

Figure 2: A chaperone coessentiality analysis reveals functionally and spatially
differentiated networks. A. Essentiality scores and transcript expression of heat shock
factors (HSFs) and major chaperone family members across 625 cancer cell lines. B.
Rank 15 positive correlation coessentiality network of the genes in (A). Nodes are
visualized if they have connections to more than one gene in the network. C. Selected
Markov clusters from the network which represent biological functional groups
corresponding to gene essentiality, localization, and/or divergent proteotoxic stress
responses. RNAseq datasets derive from MDA-MB-231 cells treated with either 2-
deoxyglusose (2DG) to induce ER stress or heat shock (HS; 42C x 1hr) to induce cytosolic

proteotoxicity. Enrichment **p < 0.005, ***p<0.0005, Kolmogorov—Smirnov test.

Figure 3: A global stress response coessentiality network. A. Essentiality scores and
transcript expression of master regulators of diverse stress response programs across
625 cancer cell lines. B. Visualization of coessential gene relationships within stress
response modules and between stress response modules at rank 30 for both positive and
negative correlations. Stress networks thresholded at other ranks (10, 50, 100) are
detailed in Figure S5. C. The stress network has greater connectivity (edge density ratio)

than expected from 10,000 random network permutations using the same parameters. D.
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PANTHER functional classes of the 125 stress network genes pulled in as a function of
coessentiality with source nodes; * indicates P<0.005, Fisher's exact test. E.
Representation of the degree to which stress network genes have been previously
studied, using NCBI Gene References Into Function (GeneRIFs) as a surrogate for
existing knowledge on a given gene. F. Transcriptome profiling by RNAseq of the stress
network genes in MDA-MB-231 cells after treatment with Cyclophosphamide (CPA;
genotoxic stressor), CoCI2 (hypoxia mimetic and oxidative stressor), 2-deoxyglucose
(2DG; ER and nutrient stressor), heat shock (HS; 42C x 1hr; cytosolic proteotoxic

stressor), or serum/amino acid starvation (SS; nutrient stressor). Selected genes

elaborated in the text are labeled. *indicates gene with 0 GeneRIFs as indicated in (E)

Figure 4: Systematic profiling of lineage-specific coessentiality patterns in the
stress response. A. Lineage-specific subnetworks were created and profiled for relative
enrichment of each possible source node pair subnetwork, with enrichment defined as
membership relative to subnetwork membership across all other lineages and visualized
as shares of a pie chart. B. The skin coessentiality network features the largest TP53-
ATM genotoxicity network across cancer subsets, as well as crosstalk between all three
branches of the UPR. C. The autonomic (neuroblastoma) network contains a highly
anticorrelated network between ATF3 and EIF2AK3 which was not present in other
lineages. D. The hematopoietic lineage features a striking ERN1-XBP1 subnetwork, but
no relationships between other branches of the UPR (ATF6, EIF2AK3/PERK). E. Multiple
myeloma drives the correlation of ERN1 and XBP1 in hematopoietic tumors, and there is

a subset of myeloma particularly sensitive to the loss of ERN1 and XBP1. F. The tightly
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correlated ERN1-XBP1 network in multiple myeloma also represents a selective
vulnerability. Other networks more moderately enriched for both essentiality and
correlation included ARNT-EPAS1 (hypoxia) in kidney cancers. G. The myeloma lines
most dependent on XBP1 and ERN1 have a low OXPHOS multiomic signature. |I. The
high-ERN1-XBP1-dependent myeloma lines are more susceptible to the proteasome
inhibitor Bortezomib and substantially less sensitive to Elesclomol, which targets
mitochondrial metabolism in myeloma lines resistant to proteasome inhibition (Tsvetkov
et al., 2019). J. Patients enrolled in a clinical trial of Bortezomib (Mulligan et al., 2007)
were more likely to respond if their tumors had >1 SD underexpression of the OXPHOS
transcriptomic signature from (G). P values determined by Mann-Whitney U test.

Figure 5: C160rf72 is a conserved and stress-induced modulator of diverse stress
responses. A. C160rf72 expression is prognostic in many tumors. Subtypes shown had
log-rank P value less than 0.05. B. C160rf72 loss is deleterious to the fitness of cancer
cell lines across diverse backgrounds, particularly kidney cancer lines. C. C160rf72 is a
275aa protein conserved through C. elegans. Region shown represents a portion of a
conserved nuclear localization signal as elaborated in Figure S6. D. A CRISPR screen in
Drosophila cells (Viswanatha et al., 2018) indicates conservation of C160rf72's
importance to cellular proliferation. E. Validation of the Project Achilles fithess screen data
suggesting that SKBR3 cell proliferation is highly dependent on C160rf72, ZR-75-1 cells
are moderately dependent on C160rf72, and MDA-MB-231 cells are minimally affected
by C160rf72 loss. F. Transcriptomic profiling of C160rf72 knockdown in these three cell
lines identifies conserved regulation of pathways including multiple stress response

networks. G. The C160rf72 coessentiality network demonstrates enrichment for
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ubiquitination pathways and multiple stress response networks. H. C160rf72 knockdown
greatly hampers the ability of SKBR3, ZR75, and MDA-MB-231 cells to adapt to diverse
stressors. |, J, K: Live cell imaging and RNA-seq of the three conditions with had the
greatest combined effect on fitness in the background of C160rf72 depletion in MDA-MB-

231 cells.

Figure 6: C160rf72 functions as a cooperative binding partner with the E3 ligase
HUWE1. A. Expression of C160rf72-FLAG in HEK293T cells revealed a predominantly
nuclear localization. B. C160rf72-FLAG affinity purification coupled with tandem mass
spectrometry analysis identifies many binding partners for C160rf72, most prominently,
the Hect E3 ligase HUWE1. Spectral counts were first normalized to the sum of spectral
counts for the sample, then protein length, and finally compared vs. the maximum value
for that protein from three separate control (GFP) IP-MS experiments. C. Immunoblot
validation of HUWE1 IP using C160rf72-FLAG as bait. D. Co-IP of endogenous HUWE1
(bait) identifies C160rf72-FLAG. E. HUWE1 is the top-ranked gene in the C160rf72
coessentiality network. F. Many other proteins which interacted with C160rf72 were also
coessential with C160rf72. G. C160rf72-FLAG protein levels and relative ubiquitination
levels do not change with HUWE1 depletion, indicating that C160rf72 is not a
ubiquitination substrate of HUWE1. H. Transcription profiling reveals that depletion of
C160rf72, HUWE1, or both genes in MDA-MB-231 cells has a striking phenotypic overlap.
I. The ubiquitinated proteome, as measured by FLAG-ubiquitin affinity purification coupled
with mass spectrometry, is altered highly similarly by loss of either C160rf72 or HUWE1.
J. C160rf72 and HUWE1 depletion converge on the under-ubiquitination of many

proteins, such as GNL3/nucleostemin, and the over-ubiquitination of one protein,
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UBEZ2L3, which serves as an E2 for HUWE1. K. Representative immunoblots of
established HUWE1 target protein levels after C160rf72 or HUWE1 siRNA treatment for
3 days. L. C160rf72 and HUWE1 depletion in HelLa cells increases baseline levels of
GNL3/nucleostemin and reduce the capacity to eliminate the protein under stress (serum

starvation).

Figure S1: A top-down, genome-scale coessentiality network analysis does not
resolve major stress response genes. A. Schema representing the 625 cancer cell
lines screened by the AVANA sgRNA library and included in these analyses. B.
Visualization of the most coessential genes reveals dominant clusters corresponding to
major molecular machines, as well as clusters corresponding to a known bias of assigning
gene essentiality in CRISPR screens: copy number altered regions. C. Representation of
proteins which form physical interaction complexes is substantially higher than would be
expected in the genes which are most coessential across the genome D. The top fitness
correlation for a generic transcription factor or chaperone is less than that of a protein
complex member, suggesting reduced representation of these genes in any non-rank-
based, top-down coessentiality approach. E. Of the 21 stress response master regulators
of primary interest to this paper, only ATM and P53 have a functional module identified in

a top-down genome scale clustering approach.

Figure S2: Cytosolic HSP90 isoform essentiality is predicted by HSP90 isoform
expression in a manner related to cell lineage. A. HSP90AA1 and HSP90AB1 are not
coessential, despite physically interacting in a major protein complex. B. Cytosolic HSP90
isoform expression predicts relative essentiality of thatisoform. C. Certain tumor subtypes

have higher expression and dependence on individual cytosolic HSP90 isoforms.
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Figure S3: Alternative rank threshold coessentiality networks centered around
stress response master regulators. Rank 10, 30 (as shown in Figure 3, but with
hierarchical layout), 50, and 100 stress network organization using a force-directed

layout. Red connections indicate positive correlations, blue indicate anticorrelations.

Figure S4: ATF3 binds to an EIF2AK3/PERK enhancer. ENCODE ChlP-seq data were
queried for EIF2AK3, revealing that ATF3 binds strongly to an intronic regulatory element
of EIF2AKS cells characterized by high DNase sensitivity and annotated as an enhancer.

Data shown derive from K562 cells.

Figure S5: C160rf72 is expressed across broad cell types in adult tissues and
tumors, as well as throughout human development. A. GEPIA output detailing tumor
vs. normal transcriptional profiling of C160rf72; significant differences represented by red
text. B. Expression of C160rf72 across human development; data from (Cardoso-Moreira

et al., 2019).

Figure S6: C160rf72's nuclear localization is driven by an N-terminal bipartite NLS.
A. Querying C160rf72's amino acid sequence with cNLS mapper (http:/nls-

mapper.iab.keio.ac.jp/) revealed a predicted bipartite NLS at position 252-275. Score filter

was set at 7, the most stringest cutoff. B. Deletion of the putative NLS is sufficient to
establish a cytosolic/perinuclear localization of C160rf72 in 293T cells as compared with

its baseline nuclear localization (Figure 6A)
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