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Abstract. Our ability to reconstruct genomes from metagenomic datasets has rapidly evolved 

over the past decade, leading to publications presenting 1,000s, and even more than 100,000 

metagenome-assembled genomes (MAGs) from 1,000s of samples. While this wealth of 

genomic data is critical to expand our understanding of microbial diversity, evolution, and 

ecology, various issues have been observed in some of these datasets that risk obfuscating 

scientific inquiry. In this perspective we focus on the issue of identical or highly similar genomes 

assembled from independent datasets. While obtaining multiple genomic representatives for a 

species is highly valuable, multiple copies of the same or highly similar genomes complicates 

downstream analysis. We analyzed data from recent studies to show the levels of redundancy 

within these datasets, the highly variable performance of commonly used dereplication tools, and 

to point to existing approaches to account and leverage repeated sampling of the same/similar 

populations.  

 

While initially, the reconstruction of MAGs was only achievable in lower-diversity or highly 

uneven communities (1), in the past five years reports on the reconstruction of hundreds to 

thousands of MAGs have become routine (2-5). In the past year, highly automated assembly and 

binning pipelines have accelerated this trend (6, 7). While these advances open up exciting 

prospects for addressing questions regarding the physiology, ecology, and evolution of microbial 

life, MAGs are inherently less reliable than isolate genomes due to their assembly and binning 

from DNA sequences originating from a mixed community. Various reports have highlighted 

issues associated with MAGs, including how misassemblies and/or incorrect binning can lead to 

composite genomes (8, 9) and how fragmented assembly due to strain variation can lead to 

incomplete genomes that lead to wrong conclusions (10, 11). The latter is a reason why 
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independent assembly of each individual sample is often preferable to avoid assembly 

fragmentation due to genomic variation between conspecific populations in different samples. 

However, this often leads to highly similar or identical MAGs being generated across the sample 

dataset. Multiple tools have been developed to remove redundant MAGs, mainly based on 

average nucleotide identity between MAGs after sequence alignment using blastn (e.g., pyANI 

(12)), or faster algorithms combining Mash (13) and gANI (14) or ANIm (15) (e.g., as 

implemented in dRep (16)). 

Why dereplicate? Dereplication is the reduction of a set of genomes, typically assembled from 

metagenomic data, based on high sequence similarity between these genomes. The main reason 

to do so is that when redundancy in a database of genomes is maintained, the subsequent step of 

mapping sequencing reads back to this database of genomes leads to sequencing reads having 

multiple high quality alignments which, depending on the software used and parameters chosen, 

leads to reads being randomly distributed across the redundant genomes with one random 

alignment reported from many possible options, or read alignments being reported at all 

redundant locations. When using these data to make inferences about the relative abundance and 

population dynamics across samples, relative abundance for the species will look artificially low, 

and it will appear that multiple ecologically equivalent populations co-occur. Instead, the correct 

conclusion would be that one more abundant population exists across all samples (Figure 1). 

This issue has been acknowledged in multiple studies, and authors have chosen varying cutoffs 

to avoid this issue (e.g., >95% average nucleotide identity (Almeida, 2019); >98% average 

nucleotide identity (3, 17), >95 % amino acid identity (18), >99.5% amino acid identity (4)).  
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Figure 1: Relative abundance of a set of closely related MAGs from Parks et 

al, 2017 estimated from read alignment from a metagenomic dataset 

(SRR1702559) using all genomes in the tree (left column ranging from grey to 

dark blue) or only those retained after dereplication with pyANI using a 99% 

ANI cutoff (right column). To calculate relative abundance, all MAGs were 

combined into a multifasta file. Reads were then mapped to each multifasta 

fasta file using bwa mem with default parameters (19). Average coverage per 

contig (grey to blue colors) was computed with pileup.sh from bbtools 

(https://sourceforge.net/projects/bbmap/). The phylogenetic tree was created 

by searching for marker genes with pylosift (20) using its default set of marker 

genes. The genes were then aligned with phylosift, the resulting alignments 

concatenated, and the tree was created with Fasttree (21) using the -nt and -

gtr parameters. 

Why not dereplicate? Obtaining sequences of multiple individuals of a single population or of 

individuals of multiple, related populations (a population being defined as individuals of the 

same species occurring at the same time and place), is valuable as it allows for population 

genomic analyses that give insights into the intersection between microbial evolution and 

ecology (22). The standard approach to dereplicate removes genomes based on sequence identity 

of shared parts of the genome. As such, when removing genomes, in addition to data on single 

nucleotide polymorphism variation, we may lose information on variability in the auxiliary gene 

content among representatives from the same species. As an example, we analyzed the effect of 

dereplication on database auxiliary gene content using two of the most commonly used tools 

(dRep and redundancy removal based on pyANI results). We used a set of 46 Microcystis 
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aeruginosa MAGs we previously generated with extensive manual curation (11). The ANI 

between pairs of these 46 genomes averages 96.4%.  Out of a total of 9,175 unique gene clusters 

across the 46 MAGs, dereplication led to the removal of up to 2,228 auxiliary genes when using 

dRep gANI with a 96.5 % cutoff (used for species 

delineation using genome sequences (14)) (Fig. 2). 

On the other extreme, using dRep default, no 

genomes were removed from the MAG set thus no 

gene clusters were lost, while intermediate 

numbers of gene clusters were removed when 

using pyANI (213) and dRep gANI (447) at 99% 

thresholds.  

 

 

Figure 2: Retained gene clusters of the Microcystis pangenome when using different 

dereplication tools and settings. 

Variable performance of commonly used software. As already indicated from the analysis in 

Figure 2, different dereplication tools lead to different outcomes, even when using the same 

sequence identity cutoffs. Using publicly available MAG data sets (4, 6, 7), we evaluated the 

performance of two commonly used dereplication tools, dRep and pyANI. For dRep, we used the 

default parameters based on genome-wide alignments using animf with nucmer and a cutoff of 

99% (23), and dRep using the gANI option that does gene-based alignments using nucmer with a 

cutoff of 99% and 96.5%. For pyANI, we used a 99% ANI cutoff and sequence identity is 

calculated using blast-based genome-wide alignments. While slower, we consider it the reference 
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to compare to due to the higher accuracy of blast-based alignments (24). Prior to running pyANI, 

in order to avoid calculating ANI for distantly related pairwise comparisons so as to reduce 

computation time, groups of MAGs were formed by calculating pairwise distances using Mash 

(default parameters; (13)). The computed pairwise distances were then used to cluster genomes 

into similar groups with hierarchical clustering using a custom python script with fcluster from 

SciPy (http://www.scipy.org/) with a threshold of 2. pyANI was then run within each group 

created from the clustering. 

First, we performed a comprehensive analysis of a set of 7,800 genomes generated from 1,550 

public metagenomes (4). In this study, no dereplication was done for most analyses except for 

building the tree represented in Figure 2 in this study. For the latter analysis, dereplication was 

performed by removing genomes with an amino-acid identity (AAI) ≥99.5% as calculated using 

CompareM (https://github.com/dparks1134/CompareM), resulting in the removal of 27.5% of all 

MAGs. In our own analyses, relative to the pyANI reference (32.9% removal), default dRep 

removed fewer genomes (19.3%), while the gANI dRep approach removed more MAGs (48.1% 

(99% ANI), 56.9% (96.5% ANI)) (Fig. 3A). A closer look at one cluster of related MAGs 

indicated that dRep gANI regularly removed genomes that did not require removal, while dRep 

with default parameters was not removing a sufficient number of MAGs (Fig. 3D).  
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Figure 3: Tool-dependent effects of dereplication. (A-C) Number of MAGs remaining after 

dereplication tools were run. (D) Phylogenetic tree of the same group of MAGs used in Figure 1, 

showing differential removal of MAGs after dereplication (filled square indicates MAG was 

removed after dereplication). dRep default does not remove multiple near-identical MAGs, while 

dRep-gANI removes MAGs that are more distantly related than the 99% or 96.5% ANI cutoff.   

 

For a recent study that generated more than 90,000 MAGs (6), we performed our comparative 

dereplication analysis on the 1,952 uncultured bacteria species that were identified and focused 

by the authors. These were MAGs not classified at the species level in current databases that had 

been dereplicated by removing less complete MAGs that shared ANI > 95% across 60% of their 

sequence length. In this case, pyANI removed four times fewer MAGs than the different 

implementations of dRep (Fig. 3B). In contrast with our preceding analyses, dRep default 

removed more MAGs than pyANI, potentially due to the fact that the authors had already 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/848176doi: bioRxiv preprint 

https://doi.org/10.1101/848176
http://creativecommons.org/licenses/by/4.0/


derpelicated their MAG set at 95% ANI. Finally, we analyzed two MAG groups, clustered at the 

species level (95% ANI) by the authors of a recent study generating more than 150,000 MAGs 

(7). In this case, dRep-default again removed fewer MAGs than pyANI, while dRep using gANI 

removed many more MAGs (Fig. 3C). 

 

Available approaches to leverage sampling of between-population variation. Several tools 

have been developed to maintain the auxiliary genomes of closely related strains while avoiding 

redundancy when tracking strain-resolved population dynamics in the environment using 

metagenomic data (reviewed in (11)). They typically use metagenomic data in combination with 

a genomic database of genomes of closely related isolates or MAGs based on whether alleles of 

shared genes (StrainPhlAn (25); ConStrains (26)), strain-specific auxiliary genes (PanPhlAn 

(27))}, or both are present in a sample (MIDAS (28)). Similarly, the Anvi’o package 

incorporates a metapangenome workflow that reduces a set of user-defined conspecific genomes 

to gene clusters representing core and auxiliary genes and then estimates strain abundances 

across metagenomic datasets (29). In principle, all of these approaches avoid the issues 

associated with database redundancy highlighted in Fig. 1, and loss of population-specific 

auxiliary genes highlighted in Fig. 2. Although variant identification errors do remain, which are 

tool and likely database and metagenomic dataset dependent, this has been reported to be as low 

as 0.1% (25). While potential issues with these approaches have not been fully evaluated, 

analyses focusing on populations where the dominant strain can be more readily resolved have 

been able to go as far as tracking in situ bacterial evolution in environmental biofilms and the 

human gut (30, 31). 
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Conclusions. Genome-centric metagenomics has opened a view onto the undescribed branches 

of the tree of life (32). Yet, full awareness of the risks associated with MAGs is needed to avoid 

misinterpretation of the data and populating databases with questionable genomes. Dereplication 

is a step carried out by many researchers as part of metagenomic informatic pipelines, but we 

highlight large differences between commonly used tools in how many genomes are removed. 

Tools able to resolve closely related genomes exist and may circumvent issues with redundancy 

while maximally leveraging all data contained in MAGs from conspecific population. As the 

ability to resolve closely related genomes is dependent on the genetic distance between genomes 

in the database and between database genomes and those of sampled populations, these tools 

need broader adaptation and evaluation to fully evaluate their accuracy. This in turn may lead to 

guidelines for a minimum level of dereplication necessary to enable their use. 

 

Code availability. All code written and used for the analyses described in this manuscript can be 

found at https://github.com/DenefLab/Dereplication-Letter-Code.  
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