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Genetic perturbation screening is an experimental method in bi-
ology to study cause and effect relationships between different bio-
logical entities. However, knocking out or knocking down genes is a
highly error-prone process that complicates estimation of the effect
sizes of the interventions. Here, we introduce a family of generative
models, called the structured hierarchical model (SHM), for proba-
bilistic inference of causal effects from perturbation screens. SHMs
utilize classical hierarchical models to represent heterogeneous data
and combine them with categorical Markov random fields to encode
biological prior information over functionally related biological en-
tities. The random field induces a clustering of functionally related
genes which informs inference of parameters in the hierarchical model.
The SHM is designed for extremely noisy data sets for which the true
data generating process is difficult to model due to lack of domain
knowledge or high stochasticity of the interventions. We apply the
SHM to a pan-cancer genetic perturbation screen in order to identify
genes that restrict the growth of an entire group of cancer cell lines
and show that incorporating prior knowledge in the form of a graph
improves inference of parameters.

1. Introduction. Probabilistic graphical models (PGMs) and Bayesian
hierarchical models (HMs) are integral parts of statistical data analysis and
computational biology. PGMs graphically represent the joint probability dis-
tribution of several random variables by encoding conditional dependencies
between variables as edges in a graph (Koller and Friedman, 2009; Maathuis
et al., 2018). Bayesian HMs are a special case of PGMs, where the graph is
usually a directed tree and parameters of interest are endowed with distri-
butions which themselves are parametrized leading to a conditionally inde-
pendent hierarchy of variables (Gelman et al., 2013).

In bioinformatics and computational biology, PGMs have been found to be
especially useful and have a long history of applications, because biological
measurements, such as gene expression values or metabolite concentrations,
are often correlated making them suitable for joint probabilistic modelling.
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Simple PGMs, such as hidden Markov models (Durbin et al., 1998; Baldi
et al., 1994; Eddy, 1998; Stanke and Waack, 2003; Marioni, Thorne and
Tavaré, 2006; Yoon, 2009; Finn, Clements and Eddy, 2011) have been dis-
cussed in the bioinformatics literature at length.

Bayesian networks (BNs), a more general class of graphical models, where
the underlying graph is a directed acyclic graph (DAG), are computationally
more expensive, but probabilistically more expressive. For instance, Kuipers
et al. (2018) used BNs to identifiy gene-gene interactions in cancer tissues
and for clustering the mutational profiles of cancer types. Other approaches
include Jansen et al. (2003) who used BNs to detect protein-protein inter-
actions (PPIs) from genomic data, such as gene expression values, i.e., the
abundance of messenger RNA (mRNA) of a gene in the cell, Friedman et al.
(2000) where BNs were applied to model gene interactions and analyze ex-
pression data, or Sachs et al. (2005) who used BNs to reconstruct signalling
networks. For time-series data, dynamic Bayesian networks (DBNs) have
been used to, for instance, to identify gene regulatory networks (Murphy
et al., 1999; Zou and Conzen, 2004; Li et al., 2011; de Luis Balaguer and
Sozzani, 2017).

In contrast to BNs, Markov random fields (MRFs) use undirected edges
to encode conditional dependencies. Wei and Li (2007) and Chen, Cho and
Zhao (2011) used MRFs to encode biological pathways and successfully iden-
tified single genes related to diseases. ? used Gaussian MRFs to model the
partial correlations among metabolites and showed that strong correlations
often correspond to pathway interactions. Furthermore, in a recent study
Schubert et al. (2019) used binary MRFs (Ising models) to model genetic
interactions in order to predict epistatic loci that affect antibiotic resistance.
For analysis of time-series gene expression data, Wei and Li (2008) used a
spatio-temporal MRF that models the time- course of the differential gene
expression stages. Recent approaches involving graphical models and net-
work inference in biological applications have, for instance, been reviewed
in Hawe, Theis and Heinig (2019).

HMs have gained wide-spread attention in modelling of biological data,
on the one hand, due to their ability to represent and model the structure of
many data sets, for instance, the nested structure of data, when, for multiple
genes, measurements have been made in multiple conditions (e.g., tissues,
cancer types, viruses, patients), and on the other hand, because biology itself
is inherently hierarchical, for instance, between genes, transcripts, and pro-
teins. Approaches utilizing hierarchical models are, for instance, presented
in Fusi et al. (2014); Rakitsch et al. (2012); Zhou and Stephens (2012); Korte
et al. (2012); Loh et al. (2015).
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STRUCTURED HIERARCHICAL MODELS 3

HMs can share statistical strength for parameter estimation across hier-
archy levels. If we can infer parameters well in one group of the hierarchy, it
can help to infer parameters well in another. In addition, for Bayesian HMs
the choice of appropriate priors can induce an auto-regularizing effect, which
makes HMs suitable for low sample size scenarios. A drawback of HMs is
that one cannot assess statistical significance of the random effect estimates
themselves, even in the frequentist setting

HMs have been found especially useful for the analysis of biological inter-
ventional data, such as genetic perturbation screens. In these screens, the
variables of interest are artificially intervened on by an experimental pertur-
bation. The intervention can either be conducted on a genomic level through
loss-of-function mutations (knock-out), or the transcriptomic level by post-
transcriptional gene silencing (knock-down), or post-translationally on the
proteomic level. On the genomic level, the CRISPR-Cas9 system (Jinek
et al., 2012; Doudna and Charpentier, 2014), where small guide RNAs (gR-
NAs) are used to direct a Cas9 protein to a target gene and a missense
mutation is induced, has become the method of choice. One of the most
frequent applications of genetic perturbation screening is measurement of
downstream causal effects after the intervention. These effects can, for in-
stance, be changes in transcript expression of certain genes when the per-
turbed gene was a transcription factor, or alteration of the viability of a
pathogen (Rämö et al., 2014) or of a cancer cell line (Cowley et al., 2014;
Aguirre et al., 2016; Meyers et al., 2017; Patel et al., 2017). Viability is usu-
ally defined and measured as the log-fold change of the number of surviving
cells pre- and post-intervention. The main interest in viability screens is to
find genes that upon loss-of-function induce restricted or enhanced prolifera-
tion of cells or pathogens. Therapeutically, genes that enhance the growth of
cancer cell lines or pathogens are of particular interest, since these genes can
serve as potential drug targets for disease treatment. Consequently, identi-
fication of genes that enhance growth for an entire group of cancer cell lines
or pathogens are of even greater interest, because of their potential to serve
as targets for drugs with broad-spectrum activity.

However, genetic perturbation screens are often accompanied by several
persisting problems. While improvements in the design and analysis of exper-
iments, such as the composition of nucleotides of gRNA sequences (Doench
et al., 2014; Xu et al., 2015) or using appropriate noise models (Imkeller
et al., 2019), have been made, genetic perturbation screens still suffer from
elevated false negative and false positive rates and bias of estimated effect
sizes of the knock-outs (Munoz et al., 2016; Ong et al., 2017; Zhu et al., 2019;
Meyers et al., 2017). This is due to the fact that, while the biochemical pro-
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cess of an intervention is well understood, other factors, such as off-target
effects, gRNA cytotoxity, and binding affinity, can severely impact the suc-
cess of an intervention (Wu et al., 2014; Doench et al., 2016). For instance,
off-target effects might lead to perturbation of a gene which is non-essential,
rather than the targeted gene which induces cell death. Similarly, high cy-
totoxicity of a gRNA might induce cell death, while an intervention in the
target gene itself is neutral. Other sources of error include stochasticity of
transport of a gRNA into a cell, copy number alterations in cancer, multi-
plicity of infection, and low sequencing depth. Hence, not only is our under-
standing of complex biological systems and the interactions of their entities
still limited, but also our understanding of the process responsible for gen-
erating the data. Due to imperfect interventions, readouts of perturbations
screens are often noisy and confounded and a good model considering all
relevant covariables is challenging to determine.

In addition, biological screening historically faces another problem, namely
low sample sizes due to high costs of genome-wide experimentation. Pub-
lic genome-wide perturbation data, such as provided in the DepMap portal
(Tsherniak et al., 2017), often only have as little as four replicates or less per
intervention. Assessing causal effects and estimation of parameters is there-
fore difficult. In these settings, HMs are useful due to auto-regularization
and borrowing of statistical strength, even though other approaches such
as regularized linear models (Schmich et al., 2015) or empirical Bayesian
procedures exist (Love, Huber and Anders, 2014; Robinson, McCarthy and
Smyth, 2010; Li et al., 2014).

A promising extension of graphical and hierarchical modelling would be to
combine the two approaches. PGMs are useful for probabilistically modelling
biological prior information, e.g., in the form of networks, which can then be
used for the analysis of data sets using HMs. While the idea of incorporating
networks for biological data analyses is not new, (Dirmeier et al., 2017;
Li and Li, 2008; Chen et al., 2012; Kim et al., 2012; Zitnik, Agrawal and
Leskovec, 2018; Zamora-Resendiz and Crivelli, 2019), combining PGMs with
HMs to aid and inform inference of posterior distributions has not been
studied so far.

Here, we propose structured hierarchical models (SHMs), a family of mod-
els that allows incorporating biological prior knowledge in the form of graphs
directly into probabilistic analyses. The main idea is to use a categorical
MRF as latent labelling, i.e., clustering of genes, in order to probabilisti-
cally encode the pairwise relationships of genes using biological networks
(Figure 1). Genes that are functionally related and are neighbors in the
graph have a higher probability to belong to the same cluster than to a
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Fig 1: A biological network of gene-gene interactions that consists of two
groups of genes, A and B. Edges define functional relationships between
two genes. We use a Markov random field to encode similarities of pairs of
genes, where neighboring genes have a higher probability to be in the same
group than in a different one.

different one. For example, for cell-viability assays, the clustering would la-
bel genes as essential or non-essential. If a gene is labelled as non-essential
then the probability of its neighbors to also be non-essential is increased
and vice versa. SHMs use the clustering of genes to inform the inference of
parameters in an HM for which the data generating process is extremely
noisy, difficult to model, and often yields erroneous inferences of parameters
due to misspecification. The MRF pushes information of gene relationships
downwards to inform the inference of parameters. In comparison to other
methods that cluster variables in the data space, our method clusters data
in the latent space of the gene effects. By encoding interactions of genes
through a MRF we incorporate structural information into the inference.
Since the model is fully Bayesian, appropriate choice of priors can further-
more have an auto-regularizing effect making it especially useful for low
sample size scenarios.

The rest of the paper is organized as follows: we first introduce the SHM
and its basic structure, i.e., the core graphical model. We then show some
empirical properties of the SHM in a study using simulated data, before
we apply it to a biological data set from the DepMap portal (Tsherniak
et al., 2017). The DepMap data consists of multiple different cancer cell
lines for which genome-wide perturbation screens have been conducted in
quadruplicate. It is a low sample size data set of multiple conditions that
due to the nature of perturbations should exert high variance. Inference of
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Fig 2: The basic structure of an SHM is a combination of a HM and a MRF.
On the first level of the hierarchy of the HM we model the data ygcn for a gene
g, condition c and observation n as an exponential family distribution that
is parameterized by a gene-condition effect βgc. The gene-condition effect
is modelled as a random variable with parameters γg, the gene effect, and
a nuisance parameter τβ. The gene effects are parameterized by a MRF zg
which clusters the latent gene effects, and vectors of means µγk and standard
deviations τγk .

essential genes in multiple conditions is of great medical interest, because
it could allow divising drugs with broad-spectrum activity. We conclude
the paper with some remarks about Bayesian modelling and the SHM in
general.

2. Structured hierarchical models. Genetic perturbation screens of-
ten exhibit high noise levels and are difficult to model due to frequent incom-
plete domain knowledge, high stochasticity of interventions, and low sample
sizes. If perturbations are conducted for multiple conditions, such as cancer
cell lines, the data have a nested structure which suggests a hierarchical
modelling approach. We combine the hierarchical model with a categori-
cal Markov random field to incorporate biological prior information in the
form of networks to the model. We first describe the two model components
separately and then introduce the SHM.

Bayesian hierarchical model. SHMs use Bayesian HMs as the first com-
ponent to model a data set ygcn with genes g ∈ {1, . . . , G}, conditions
c ∈ {1, . . . , C}, e.g., cell types, patients or tissues, and observations n ∈
{1, . . . , ngc}. The hierarchical model for the data set ygcn is defined follows:
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STRUCTURED HIERARCHICAL MODELS 7

τ2γ , τ
2
β ∼ S0
µ ∼ N (0, 1)

γg | µ, τ2γ ∼ N (µ, τ2γ )

βgc | γg, τ2β ∼ N (γg, τ
2
β)

ygc | βgc ∼ P (h (βgc))

(2.1)

The top level of the hierarchy consists of gene effects γg which describe the
impact of a perturbation of a gene on the cell. The gene effects γg are mod-
elled as normal random variable, with mean µ and standard deviation τγ .
The level below consists of gene effects per condition βgc which are param-
eterized by the gene effects γg and a standard deviation τβ, and describe
the effect of a perturbation on gene within a specific condition. We choose a
unspecific joint prior distribution S0 over τ2γ , τ

2
β that can be specified appro-

priately, e.g., subjectively or by formal rules (Kass and Wasserman, 1996;
Gelman, 2006; Kass et al., 2006). In the model definition above, we assume
homoscedasticity of the errors τ2γ and τ2β , but this is not a requirement and
the distributions can be adapted, too. On the lowest level the random vari-
ables βgc are used to model the distribution of the data which we assume
to follow and exponential family distribution P. For instance, for continuous
data ygcn might be normally distributed, while it could follow a Bernoulli
distribution in the binary case. Like in a generalized linear regression model
(GLM), we use a link-function, h−1, to relate the latent variable βgc to the
mean of the data.

Markov random field. The second component of an SHM is a categorical
MRF z ∈ {1, . . . ,K}G that encodes the assignment of a gene g to one of K
components, for example, clusters of essential and non-essential genes. The
categorical variables z are distributed

z ∼ 1

Q
exp

ζ ∑
(i,j)∈E

φij(zi, zj)

(2.2)

where Q is a normalization constant, ζ is a weight, and E are the edges of a
biological network, such as a PPI. The functions φij are potentials defined
as

φij(zi, zj) = diag (wij , . . . , wij)(2.3)
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8 DIRMEIER ET AL.

The hyperparameters wij are non-negative edge weights of the network. Thus
we encode biological prior knowledge of related genes as probability distri-
butions where two genes i and j, if biologically related, have an increased
probability of having the same label zi and zj .

Structured hierachical model. SHMs combine Bayesian HMs and categor-
ical MRFs, by replacing the distribution of γg in Equation (2.1) with a
distribution conditioned on the MRF. The entire model is defined as follows
(Figure 2):

z ∼ Categorical-MRF(ζ)

τ2γ1 , . . . , τ
2
γK
, τ2β ∼ S0

µ1, . . . , µK ∼ NK(0, 1)

γg | zg,µ, τ 2
γ ∼ N (µzg , τ

2
γzg

)

βgc | γg, τ2β ∼ N (γg, τ
2
β)

ygc | βgc ∼ P (h (βgc))

(2.4)

The top level of the hierarchy is now the categorical MRF from Equa-
tion (2.2) (abbreviated for notational simplicity). We replace the uni-variate
distributions of µ and τ2γ in Equation (2.1) with K-dimensional distribu-
tions. The MRF induces a clustering in the latent space of γ and not in
the data space y. We are primarily interested in grouping genes, i.e., the
variables γ and not the actual data, i.e., the effect sizes of the replicates of
single interventions ygcn. In addition, clustering in the data space is not only
too difficult due to the noisy readouts of biological interventions, but also
hardly ever of biological interest. The rest of the model stays as in (2.1).

The SHM compensates misspecification or incomplete domain knowledge
by pushing down biological prior knowledge using the top-level MRF through
the different hierarchies, thereby informing inference of latent parameters
γg and βgc. More specifically, either the real data generating process of the
biological system under study is unknown and not all covariables and con-
founders that take influence are measured or known, or we cannot include
them as covariables, as inclusion would lead to ill-defined models that are
not, or only weakly, identifiable, e.g., in low sample size settings.

The model in Equation (2.4) serves as a basic structure and needs to be
adjusted for specific domains, i.e., complemented with other covariables and
appropriate distributions for the data at hand.

3. Models for genetic perturbation data. We use the backbone of
the SHM (2.4) to build a concrete model for data from genetic perturbation
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STRUCTURED HIERARCHICAL MODELS 9

screens. This requires specifying appropriate prior distributions for variance
components and a distribution for the data, as well as supplementing the
data generating process with appropriate covariables. For multi-condition
genetic perturbation data sets we define the model as follows:

z ∼ Categorical-MRF(ζ)

τ2γ0 , τ
2
γ1 ∼ Inverse-Gamma(5, 1)

µ0, µ1 ∼ N (0, 1) s.t. µ0 < µ1

γg | zg,µ, τ 2
γ ∼ N (µzg , τ

2
γzg

)

τ2β ∼ Inverse-Gamma(3, 1)

βgc | γg, τ2β ∼ N (γg, τ
2
β)

τ2ι ∼ Inverse-Gamma(3, 1)

ιi | τ2ι ∼ N (0, τ2ι )

σ2 ∼ Inverse-Gamma(2, 1)

ygci | βgc, ιi, σ2 ∼ N (βgc + ιi, σ
2)

(3.1)

where we included variable ιi to correct for effects an intervention might
have, e.g., cytotoxicity of the gRNA used for perturbation (note that this
introduces another level of hierarchy for the interventions i). We choose
inverse-Gamma distributions as priors for variance components, following
Kass et al. (2006). The rest of the model is the same as in Equation (2.4).

Following (Meyers et al., 2017), if information of copy number aberrations
cgc is available, we include it as covariate for every gene and condition.
Adjusting for copy number aberrations is necessary, because in regions of
high copy number gain interventions can occur multiple times leading to
a DNA damage response and cell cycle arrest. This in turn leads to no
proliferation and observed readouts are low independent of the gene that
has been perturbed. This part of the model then becomes

β0 ∼ N (0, 1)

ygci | β0, βgc, ιi, σ2 ∼ N (cgcβ0 + βgc + ιi, σ
2)

(3.2)

where the parameters that are not endowed with priors are distributed as
in model (3.1).

4. Model criticism. We evaluate our model using several simulated
data sets and a biological data set from the DepMap portal to show that
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10 DIRMEIER ET AL.

the inference of parameters can indeed be improved using biological prior
knowledge. We compare SHMs to models, where we replace the MRF on top
of the hierarchy of Equation (2.4) with a conventional mixture model leaving
the rest of the model identical. In this way we can assess the influence of
the network itself.

We investigate the SHMs described in Equations (3.1) and (3.2), and
are interested in estimating effect sizes γg and classifying genes as essential
(zg = 1) or non-essential (zg = 0), since these are the parameters of greatest
biological importance. Thus we use K = 2 mixture components. Every gene
g is perturbed using multiple different gRNAs i in multiple conditions c. If
a gene is essential, i.e, zg = 1, and has a negative gene effect, γg < 0, we
expect to observe cell death upon intervention, while we expect no change
in cell proliferation when the gene is non-essential and has an effect size
γg ≈ 0.

We first introduce criteria to evaluate the models, and then apply different
SHMs to the data sets.

4.1. Criteria of model criticism. To evaluate the model, we are primarily
interested in the estimates of the latent variables γ and z. We assess the
accuracy of the inference of the posterior of gene effects by comparing their
estimated posterior means γ̂g(y) to their true values γg using squared error
loss

L(γ̂g, γg) = (γ̂g (y)− γg)2

In order to assess the correct inference of posterior labels, we compare
means of posterior labels ẑg(y) to their true values zg using the number of
correct and incorrect classifications. Specifically, we estimate the number of
true positives, i.e., the number of predictions of correctly classifying a gene
as

#TP =
G∑
g

I (ẑg(y) ≥ 0.5 ∧ zg = 1)

and the number of false negatives as

#FN =

G∑
g

I (zg = 1)−#TP

We evaluate the number of false positive inferences as
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STRUCTURED HIERARCHICAL MODELS 11

#FP =

G∑
g

I (ẑg(y) ≥ 0.5 ∧ zg = 0)

and the number of true negatives analogously as

#TN =
G∑
g

I (zg = 0)−#FP

We follow the hypothetico-deductive model of (Gelman and Shalizi, 2013;
Gelman et al., 2013) to evaluate posterior inference visually by comput-
ing posterior predictive distributions (PPCs) and plotting them as density
estimates over the data Gabry et al. (2019). The predictive posterior is com-
puted as

(4.1) P (ỹ | y) =

∫
P (ỹ | θ)P (θ | y) dθ,

where θ = (z,γ, . . . ) is a vector of all random variables of an SHM.

4.2. Simulated data. We first evaluate our model on multiple simulated
data sets in order to show that including graph prior knowledge can indeed
inform posterior inference when the data generation process is misspecified.
Specifically, we compare the SHM in (3.1) to a model that uses the same hi-
erarchical structure, but replaces the MRF (2.2) with a conventional mixture
model, i.e., we only replace the first line in (3.1) with:

p ∼ Dirichlet(1, 1)

zg ∼ Categorical(p)(4.2)

Since the HM part is the same in both models, any differences in the inference
of posteriors can only be explained through the MRF, or mixture model,
respectively. We briefly describe the different steps how we generated the
data sets for the validations:

1. Generate a scale-free network of genes using the
powerlaw cluster graph function from networkx package (Hagberg,
Schult and Swart, 2008).

2. Separate the genes of the networks into two groups, a group of essential
genes and a group of non-essential genes.
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12 DIRMEIER ET AL.

3. For essential genes sample γg ∼ N (−1, 0.25), for non-essential genes
sample γg ∼ N (0, 0.1) (argueing that genes with no effect should have
a lower variance, since no effect should be measured).

4. Sample βgc ∼ N (0, 0.25).
5. Sample ιi ∼ N (0, 0.1).
6. In order to simulate low-quality interventions i, set gRNA activity

of some of the essential genes to ai = 0.1 (we call these genes in the
following essential genes with low affinity gRNA). For the other gRNAs
we assume high-quality interventions setting ai = 1.

7. Sample ygci ∼ N
(
aiβgc + ιi, σ

2
)

with n = 10 replicates for every com-
bination of g, c and i and noise variances σ2 ∈ {0.1, 0.2, 0.3, 1}.

Hence, in order to simulate misspecification, i.e., in this case incomplete
domain knowledge, we use a data generating process that includes a covariate
for low-quality interventions ai, but then model the simulated data without
it. Incomplete domain knowledge is frequent in biology.

For the first validation, we were interested in the effect of low-activity
gRNAs of essential genes when neighborhoods consist entirely of other es-
sential genes (Figure 3a). For perfect interventions, i.e., when all affinities
ai = 1 and the data generating processes are perfectly captured by models
(3.1) and (4.2), the two models are identical, as no information of the la-
bels of neighbors is needed, and hence inference should be the same (Figure
3b top). The posterior distributions of the gene effects γg and class assign-
ments zg of these genes illustrate this (Figure 4 top). However, in the case
of some gRNAs having low affinities the influence of the neighbors, medi-
ated through the MRF, improves inference substantially (Figure 3b bottom;
Figure 4 bottom).

We then assessed the influence of the MRF on inference when essential
genes with low-affinity gRNAs have essential as well as non-essential neigh-
bors (Figure 5a). In this case, as long as the essential genes with low affinities
have more essential neighbors than non-essential ones, estimation of param-
eters improves. If there are more non-essential neighbors than essential ones,
the mixture model has negligibly better performance than the SHM. Vice
versa, if there are more essential neighbors, the SHM outperforms the mix-
ture model. In general assessing settings where the number of essential and
non-essential neighbors is roughly the same is difficult, because posterior in-
ference will be dominated by the data itself and not the MRF, i.e., the effect
of the MRF vanishes, because the influence of essential and non-essential
neighbors is equally strong and cancels out (Figure 5b). In these settings,
both models achieve similar results.

Finally, we show how one can break our model, namely by embedding
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Fig 3: Benchmarking of parameter inference for genes that are embedded in
neighborhoods of genes with the same label. (a) The network shows groups of
essential genes (green/red) and non-essential genes (black). For red essential
genes we simulated data where some gRNAs have low activity, i.e., where
interventions do not work as intended and where the data does not show
that the genes are essential. (b) Performance of the mixture model and the
SHM. Every box shows the results of 10 simulated data sets and different
noise levels. The y-axis shows the squared error loss of posterior means
of gene effects of gene 1 and 2 (lower is better). If data are generated with
perfect activity for the red nodes, the mixture and the SHM perform equally
good as expected (top row). If we generate gRNAs with low activity for the
two red nodes the SHM clearly outperforms the conventional mixture model
(bottom row).
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Fig 4: Posterior distributions of the effect sizes γg and labels zg for genes
that are embedded in neighborhoods of genes with the same label. The
experimental setting is as in Figure 3, i.e., the groups of the graph are
the same and the red nodes have low-activity gRNAs. (a) As expected the
SHM and the mixture model infer the same posterior distributions when all
interventions work as intended (top row). When some of the gRNAs have
low activity, the SHM moves the posterior distribution closer to the true
value (dashed line) and outperforms the mixture model (bottom row). (b)
Both models infer the posterior probabilities of the labels zg correctly when
gRNAs work as intended (top row). In the case of low-affinity gRNAs, the
SHM is still able to infer the correct labels, while the mixture model fails to
do so (bottom row).
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Fig 5: Benchmarking of parameter inference when the number of neighbors
with the same label is one higher, or lower, than non-essential neighbors.
(a) The network shows the same graph of genes as in Figure 3 with the
difference that now red genes belong to a different neighborhood. (b) When
the number of essential and non-essential neighbors is roughly the same,
the influence of the SHM vanishes and the data primarily informs infer-
ence. Hence, it is difficult to assume that the SHM outperforms the mixture
model, even though the performances are improved for gene 2. For gene 1
the mixture model slightly outperforms the SHM. Generally, in scenarios
where the number of essential and non-essential neighbors is the same, both
models should perform similarly.
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Fig 6: Benchmarking of parameter inference for genes that are embedded in
neighborhoods of genes with a different label. (a) The network shows the
same graph of genes as in Figure 3 with the difference that now red essential
genes are surrounded by non-essential genes. (b) In this scenario the SHM
wrongly informs posterior inference and the estimates of the effect sizes are
worse in comparison to the mixture model, both for gRNAs with perfect
affinity, as well as for gRNAs with lower affinity.

an essential gene with low-affinity gRNAs in a neighborhood of exclusively
non-essential genes (Figure 6). The neighborhood then wrongly informs the
inference of the gene’s class assignment and the mixture model outperforms
the SHM. In practice, the situation is unlikely to occur, because genes that
are neither functionally nor biochemically related do not form meaningful
protein-protein interactions and are consequently not connected with edges
but instead found in different sub-modules of the graph.

4.3. Biological data. We applied the SHM to a biological data set form
the DepMap portal (Tsherniak et al. (2017); Meyers et al. (2017); data
downloadable from Broad Institute (2019)). The DepMap data consist of
several cancer cell lines (conditions) for which genetic perturbation exper-
iments using CRISPR have been conducted and the effects of a knockout
on cell proliferation have been measured. If a gene is essential we expect
to observe cell death upon intervention, while we expect no change in cell
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proliferation when the gene is not essential.
We downloaded the data from the the DepMap portal and selected screens

with n = 4 replicates and a sufficiently high Cas9 activity, leaving a total of
7 experiments (Table 1).

Table 1
Meta data of the biological data set from the DepMap portal.

ID Cell-line Disease Disease subtype Set

ACH-000120 CHP212 peripheral nervous system neuroblastoma train
ACH-000414 NCIH1944 lung lung NSC train
ACH-000841 NCIH2087 lung lung NSC train

ACH-000312 SKNBE2 peripheral nervous system neuroblastoma test
ACH-000226 SUPM2 lymphoma ALCL test
ACH-000311 NCIH2122 lung lung NSC test
ACH-000118 HUPT3 pancreas test

The DepMap data provides information about true essential and non-essential
genes from (Hart et al., 2014, 2015), i.e., information on some of the genes re-
garding their label. In order to be able to validate our estimates, i.e. whether
we classified genes correctly, we reduced the set of genes to these controls,
leaving roughly 500 genes. We used the SHM (3.2) to model the data.

The latent labels z are distributed as in Equation (2.2) with edge po-
tentials as defined in Equation (2.3) and constant weights wij = 1. We
downloaded the String PPI network (Szklarczyk et al., 2018) and removed
all edges with low confidence, i.e., edges with a score of less than 500 (Fig-
ure 7). This step is done in an effort to reduce potential false positive edges,
i.e., edges erroneously inferred using yeast two-hybrid (Y2H) or other tech-
nologies to detect PPIs. In the network, essential genes and non-essential
genes seem to be surprisingly well separated. Curious about this finding,
we compared this network with the functional network from (Wu, Feng and
Stein, 2010) and the physical interaction network from (Oughtred et al.,
2018) and found that both groups of genes were equally well separated in
these networks, although not all genes from the DepMap data were con-
tained in them, which possibly explains the high number of singletons in
these networks (Supplementary figure 1).

Since the DepMap portal provides estimates of the activity of gRNAs
(Doench-Root scores), i.e., quantification how well a gRNA works, we fit a
second model that has an additional covariate for gRNA affinity ai, but is
otherwise identical to (3.2). For most other experiments, estimates of gRNA
affinity are not available and we were only able to include it here. The data
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Fig 7: Biological network used for inference of essential genes from the
DepMap data. In order to apply the SHM to real data, we downloaded
the STRING network that encodes gene-gene interactions. For visualiza-
tion we also downloaded information about gene essentiality and colored
the nodes respectively. Essential genes seem to cluster into modules of high-
connectivity (compare Supplementary figure 1).

generating process then changes to

ygci | β0, βgc, ιi, σ2 ∼ N
(
ai (cgcβ0 + βgc) + ιi, σ

2
)

(4.3)

We first estimated the hyperparameter ζ using a grid search in [0.05, 0.1, . . . , 1]
with training data consisting of three cell lines (train data sets in Table 1)
resulting in an optimal estimate of ζ = 0.15. We then inferred the param-
eters of the models using test data of four cell lines (Table 1). As in the
simulated data benchmarks, we compared the model against a model where
the MRF is replaced with a conventional mixture model (Equation 4.2) with
two components. As before, with this approach differences in the parameter
estimates are due to the MRF alone, and not the HM. We are assessing in
total four different models (Table 2).

We found that in both cases biological prior information improved infer-
ence of the posterior labels (Figure 8). While the models with Doench-root
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Table 2
Overview of different models used for model criticism with biological data.

Prior gRNA activity Description

MRF no HM (3.2) + MRF (2.2)
Mixture no HM (3.2) + mixture model (4.2)
MRF yes HM (4.3) + MRF (2.2)
Mixture yes HM (4.3) + mixture model (4.2)

scores are very similar and the improvement of the SHM is only marginal,
reducing the number of false negatives from 8 to 2, the improvement of the
SHM over the clustering model when not including the Doench-root score
is substantial: we reduce the number of FNs from 41 to 1. Interestingly
we do not observe improvement in false positives (all 2), which emphasizes
our initial hypothesis: inference of essential genes is mainly a problem of
high false-negative rates and not of false-positive rates. Between the SHM
models there are hardly any improvements, underlining our hypothesis that
better, more robust inferences form noisy data sets can be made when net-
work information is incorporated. On the other hand, the results of the
mixture models are very different which emphasizes the fact that careful
model building is required for interventional studies, a problem that gets
aggravated with missing domain knowledge.

Considering the posterior predictive distributions of the four models that
we fit, we found the distributions to be almost identical (Figure 9). This
shows that the main differences are mainly in inferring the nested parame-
ters, while the actual data generating process stays the same.

5. Implementation. The graphical model representation of the SHM
in (2) has a tree structure (Figure 2) which allows for Gibbs sampling to in-
fer posterior distributions. In particular, we developed a custom Metropolis-
within-Gibbs sampler using the probabilistic programming language PyMC3

(Salvatier, Wiecki and Fonnesbeck, 2016). Here, we show how one can sim-
ulate from the posterior distribution of the SHM in Equation (2.4). The
sampler can be easily extended to more complex models with more covari-
ates and latent variables, as long as the Markov blanket of the class labels
z stays the same.

We denote by D the data and θ = (β,γ, τ2β ,µ, τ
2
γ , σ

2) the continuous pa-
rameters of the model. The full posterior of Equation (2.4) has the following
form:
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Fig 8: Confusion matrices of true and estimated essential genes of four bi-
ological models inferred from the DepMap data. Every confusion matrix
shows the number of false positives and false negatives for each model (Ta-
ble 2). The SHM outperforms the mixture models if Doench-Root scores,
i.e., covariables quantifying gRNA activity, are included by reducing the
number of false negatives from 8 to 2 (top row). When Doench-Root scores
are not included, the number of false negatives is reduced from 41 in the
mixture to 1 in the SHM (bottom row).
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Fig 9: Posterior predictive distributions (PPCs) of the DepMap genetic
screening data sampled using four biological models (Table 2). We sam-
pled data from the posterior predictive distributions using Equation 4.1 and
overlayed the histogram of the original biological data set with the kernel
denisty estimates of the sampled data. All four models can adequately pre-
dict new data from the posterior distributions. The density curves are close
to the original data, especially in the lower tail of the histogram. The PPCs
underestimates the upper tail of the histogram slightly.
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P (θ, z | D) ∝
P (D | β, σ2) · P (β | γ, τ2β) · P (τ2β) · P (σ2)·
P (γ | z,µ, τ 2

γ) · P (z) · P (µ) · P (τ 2
γ)

(5.1)

For every iteration t, a sample (θ, z)t from the full posterior using Metropolis-
within-Gibbs can be obtained in two steps:

1. draw zt from P (z | D,θt−1) ∝ P (γ | z,µ, τg) · P (z) using Gibbs
sampling,

2. draw θt from P (θ | D, zt) using Hamiltonian Monte Carlo.

Developing the Metropolis-within-Gibbs sampler with PyMC3 only requires
implementing a custom sampler for the Markov random field z in step one
(Appendix A for more details). For the continuous variables θ we use a
Hamiltonian Monte Carlo (HMC) (Neal, 2011; Betancourt, 2017) variant,
the No-U-Turn sampler (Hoffman and Gelman, 2014), provided by PyMC3.
In order to avoid divergences and for efficiency, we use a non-centered pa-
rameterization whereever possible (Betancourt and Girolami, 2015).

We implemented the sampler described above in a Python package which
is available from GitHub at github.com/cbg-ethz/shm. The GitHub reposi-
tory also contains the implementations for the models used in section 4.

6. Discussion. We introduced a new family of models, the structured
hierarchical model (SHM), which combines Bayesian hierarchical models
with categorical Markov random fields. Through the random field, it is pos-
sible to aid posterior inference by probabilistically incorporating biological
network information into the model. Since the random field introduces a
latent categorical variable z which is used to parameterize the hierarchical
model, we induce a mixture model of the top-level latent variables of the
hierarchical model. In our application of perturbation data, the clustering
allowed labelling genes as essential or non-essential.

We applied the SHM to simulated data as well as a biological data set
from the DepMap portal and found that including biological prior knowledge
generelly improves estimation of parameters. We found that the biological
networks we considered were all very similar in grouping functionally related
genes together in a biological meaningful way.

The SHM is especially useful for noisy data sets consisting of multiple
conditions which are common in interventional, biological studies. We ex-
pect our model to be of use for computational biologists, because it demon-
strates how to incorporate biological networks into probabilistic analyses.
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For the inference of parameters, HMs borrow statistical strength from other
hierarchy levels. Additionally, when choosing appropriate priors, Bayesian
inference has an auto-regularizing effect which makes it applicable even for
data sets with low sample size. Consequently, Bayesian HMs are very useful
in different branches of computational biology, powerful tools due to their
statistical properties, and easily interpretable.

However, the SHM also has some drawbacks. In general, full Bayesian
inference using sampling is computationally highly demanding and can be
difficult, for instance on a genome-wide scale. Sampling is further compli-
cated due to the high-dimensional categorical variable z, because sampling
discrete parameters usually yields low effective sample sizes and thus re-
quires long chains for convergence. While we usually marginalize out z in
conventional mixture models, this cannot be done here due to the condi-
tional dependencies encoded in the MRF. Furthermore, not much research
has focussed on the theoretical and practical properties of combining an
HMC for continuous parameters with a Gibbs sampler for discrete ones. In
order to speed up posterior inference, approaches using variational inference
could be adopted, but would require to either continuously relax or repa-
rameterize the discrete Markov random field z, e.g., as in (Jang, Gu and
Poole, 2017) or (Guo and Schuurmans, 2006). Applying reparameterization
to conditionally dependent random variables has not received much atten-
tion by researchers though. Thus, a natural, non-Bayesian approach could
be maximum a posteriori (MAP) inference, or approximate approaches such
as empirical Bayes (Efron, 2012). MAP inference, however, has the obvious
drawback of not yielding uncertainty estimates.

The SHM described in Equation (2.4) represents a basic structure which
needs to be adjusted to specific domains. Hence, we did not specify priors
for variance parameters. In our analyses above, the use of inverse-Gamma
distributions for variance parameters has no real justification other than be-
ing weakly-informative and conditionally conjugate. While for the sake of
demonstration of the SHM this is acceptable, in general, one can follow prin-
cipled ways for prior specification, such as (Gelman, 2006; Gelman, Simpson
and Betancourt, 2017; Kass and Wasserman, 1996).

We hope our contributions will be only a first step towards integrating
biological prior knowledge into probabilistic models and that more research
is invested into the topic in general and into efficient (variational) approxi-
mations in particular.
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APPENDIX A: GIBBS SAMPLING A CATEGORICAL MRF

Denote D the data and θ = (β, τβ, σ
2) (note that we use different notation

for θ as before). The first step of the Metropolis-within-Gibbs sampler draws
the posterior P (z | D,θ,γ,µ, τ 2

γ). Following Wainwright and Jordan (2008),
a sample is obtained by conditioning on the Markov blanket of z, which is:

P (z | D,θ,γ,µ, τ 2
γ) =

P (z, D,θ,γ,µ, τ 2
γ)

P (D,θ,γ,µ, τ 2
γ)

=
P (z, D,θ,γ,µ, τ 2

γ)∑
z P (z, D,θ,γ,µ, τ 2

γ)

Use (5.1)
=

P (γ | z,µ, τ 2
γ) · P (z)∑

z P (γ | z,µ, τ 2
γ) · P (z)

= P (z | γ,µ, τ 2
γ)

We sample from P (z | γ,µ, τ 2
γ) componentwise for every zi ∈ {1, . . . ,K},

i ∈ {1, . . . , G} using a Gibbs-sampler:

P (zi = k | z−i,γ,µ, τ 2
γ) =

exp
(∑

(i,j)∈E φi,j(zi = k, zj)
)
P (γi | µzi=k, τ2γzi=k)∑

k̃∈K

[
exp

(∑
(i,j)∈E φi,j(zi = k̃, zj)

)
P (γi | µzi=k̃, τ

2
γzi=k̃

)
]

=
exp (ηk)P (γi | µzi=k, τ2γzi=k)∑

k̃∈K

[
exp

(
ηk̃
)
P (γi | µzi=k̃, τ

2
γzi=k̃

)
]

(A.1)

where we introduced ηk =
∑

(i,j)∈E φi,j(zi = k, zj) for brevity. In the binary
case, Equation A.1 can be simplified to
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P (zi = 1 | z−i,γ,µ, τ 2
γ) =

exp (η1)P (γi | µzi=1, τ
2
γzi=1

)

exp (η0)P (γi | µzi=0, τ2γzi=0
) + exp (η1)P (γi | µzi=1, τ2γzi=1

)

=
1

1 + exp (η0 − η1)
P (γi|µzi=0,τ2γzi=0

)

P (γi|µzi=1,τ2γzi=1
)

=
1

1 + exp

(
η0 − η1 + log

P (γi|µzi=0,τ2γzi=0
)

P (γi|µzi=1,τ2γzi=1
)

)
=

1

1 + exp

(
−
(
η1 − η0 + log

P (γi|µzi=1,τ2γzi=1
)

P (γi|µzi=0,τ2γzi=0
)

))
= sigmoid

(
η1 − η0 + log

P (γi | µzi=1, τ
2
γzi=1

)

P (γi | µzi=0, τ2γzi=0
)

)

SUPPLEMENTARY MATERIAL

Supplementary material: Figures
(link and doi to be assigned by journal). The supplementary material con-
tains figures of other biological networks and the linear dependency of read-
outs and copy number amplifications.
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