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ABSTRACT: Long-read sequencing (LRS) promises to improve characterization of 

structural variants (SVs), a major source of genetic diversity. We generated LRS data on 

1,817 Icelanders using Oxford Nanopore Technologies, and identified a median of 23,111 

autosomal structural variants per individual (a median of 11,506 insertions and 11,576 

deletions), spanning cumulatively a median of 9.9 Mb. We found that rare SVs are larger 

in size than common ones and are more likely to impact protein function. We discovered 

an association with a rare deletion of the first exon of PCSK9. Carriers of this deletion 

have 0.93 mmol/L (1.36 sd) lower LDL cholesterol levels than the population average (p-

value = 2.4·10−22). We show that SVs can be accurately characterized at population scale 

using long read sequence data in a genomewide non-targeted fashion and how these 

variants impact disease. 

Human sequence diversity is partially shaped by structural variants1 (SVs); genomic 

rearrangements affecting at least 50 bp of sequence in forms of insertions, deletions, inversions, 

or translocations. The number of SVs carried by each individual is less than the number of 

single nucleotide polymorphisms (SNPs) and short (< 50 bp) insertions and deletions (indels), 

but their greater size gives them a higher probability to have a functional role2, as they 

potentially affect cumulatively a similar (or greater) number of base-pairs3. 

Large-scale genetic studies mostly rely on whole genome short read sequencing (SRS, 

commonly 100-200 bp), where SNPs and indels can be fairly reliably identified4,5. The size 

limit of the short reads, however, makes the discovery, genotyping and characterization of SVs 

difficult6. The number of SVs found per individual (2-8k) in large scale studies using SRS3,7–9 

is much smaller than the 23-31k SVs observed in recent efforts, including fifteen individuals 

sequenced with long reads at high coverage (70x)10 and three trios sequenced with several 

technologies11. 
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Long-read sequencing (LRS), with read lengths of several kilobases (kb), aims to detect SVs 

with greater accuracy: SVs are commonly found by mapping and comparing sequence reads to 

a reference genome, and LRS reads can be mapped more accurately than SRS reads6. Long-

reads are also more likely to cover entire SVs, enabling better breakpoint resolution and length 

determination. Long-reads, however, currently have high sequencing error rate, frequently over 

10%, depending on samples, sequencing technology, and protocol6. In particular, insertion and 

deletion error rate imbalances in ONT sequencing can result in artifacts6,12, as well as failure 

in SV identification. The introduction of artifacts can be especially challenging in large scale 

studies, as accumulating false-positives (FP) may result in FP-dominated results and hinder 

downstream analysis, such as genome-wide associations. Although previous work on detecting 

and characterizing SVs in human genomes using long-reads6,10,13–15 is available on select small 

datasets, analysis at large scale has not been reported. 

We present the first application of Oxford Nanopore Technologies (ONT) sequencing at a 

population scale. We sequenced 1,817 Icelanders, including 369 trios, recruited as part of 

various studies at deCODE genetics16. DNA was isolated from whole blood (n = 1,698) and 

heart tissue (n = 119) and sequenced with ONT GridION and PromethION sequencing 

machines (Methods). SRS and DNA chip data were also available for all but 24 of these 

individuals17. We introduce a number of tools and approaches to facilitate long-read SV 

analysis at scale. We developed SV filters to analyze sequences with high error rates, and a 

heuristic for merging SVs detected using ONT long-reads across a large dataset. We also 

developed an LRS genotyper for joint genotyping. 

We observed a median LRS aligned coverage of 14.7x (range: 0.05-55.4x, Methods, Fig. 1A). 

The raw sequence data were basecalled and mapped18 to the human reference genome. A 

median of 88% of base-pairs aligned to the reference and the median sequencing error rate was 

estimated to be 15.2% per individual (Fig. 1A). Half of all sequenced base-pairs (N50) 
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belonged to reads longer than 14,763 bps (Fig. 1A). Sequencing errors were biased towards 

deletions; an average error of 3.8% for insertions, 6.7% for deletions, and 4.8% for substitutions 

(mismatches) was observed per individual (Fig. 1B). As bias may lead us to miss SVs14, we re-

basecalled our data using an insertion biased configuration (Fig. S1), where we observed the 

converse error rate behavior (Fig. 1C). 

We generated a high-confidence SV set in four stages: (i) discovery, (ii) merging across 

individuals, (iii) genotyping, and (iv) imputation (Fig. 2A). We discovered SVs using an initial 

set of 822 LRS individuals available at the time, independently for both the deletion and 

insertion biased basecalls. We began (Fig. 2B) by finding a set of highly sensitive SV 

predictions6 and refined these variants at predicted breakpoint sites using SRS data, if 

possible19 (Methods). We then verified their presence using the raw signal-level data20 

(Methods, Fig. S6), to alleviate potential basecalling and alignment errors. We merged SVs 

discovered across individuals and genotyped them twice, independently using 1,817 LRS and 

5,000 SRS Icelanders5,21 (Methods). We finally imputed the genotyped variants into a total of 

166,261 Icelanders17,22,23 and constructed a set of high-confidence SVs, based on imputation 

accuracy. 

We identified 68,050 SVs after merging SVs across individuals, avoiding double counting 

variants occurring at a similar location and of similar size. We saw a more balanced number of 

insertions (32,354) and deletions (35,696), compared to the greater deficit of insertions 

discovered using SRS3,7, where identification of deletions is generally easier. Almost all high 

frequency variants in existing SV call sets3,10 were also found in our dataset (Fig. 3A). We 

categorized 47,936 SVs (22,970 insertions and 24,966 deletions) as high-confidence, in 

addition to 523 fixed (100% frequency) variants, by imputing the genotyped variants into long-

range phased haplotypes from 166,261 chip typed Icelanders. Imputation was not attempted 

for the 2,998 variants on the X chromosome. We identified a median of 23,111 autosomal SVs 
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(a median of 11,506 insertions and 11,576 deletions, Methods, Fig. 3E-F) per individual, of 

which a median of 15,605 (a median of 7,286 insertions and 8,304 deletions) are high-

confidence or fixed, spanning a median of 9.9 Mb. 

The number of variants in our high-confidence SV set rapidly decreases with length, with two 

noticeable peaks at sizes around 300bp and 6kb, corresponding to SINE and LINE elements 

(Fig. 3B-C, Fig. S2), consistent with previous reports10,14. We found more SVs, particularly 

tandem repeats (TRs), in telomeres10 (Fig. 3D, Fig. S3), a reflection of the sequence content of 

telomeres and the high mutation rate of TRs10,24. The number of variants detected decreases 

with increased allele frequency, with the exception of variants that are fixed or close to fixed 

(Fig. 3H). 

The LRS data improved the genotyping and discovery of SVs. Of 47,936 high-confidence SVs 

17,590 and 3,996 SVs were imputed only from LRS and SRS genotyping, respectively. The 

number of variants discovered in LRS per individual increases with sequence coverage, but 

appears to saturate at around 30x (Fig. S4). Variants missed in a single individual may be 

recovered by genotyping SVs discovered in other individuals21,25, particularly if there are many 

carriers. Rare variants are more likely to be missed entirely. 

As harmful variants are subjected to negative selection, we expect that rare SVs (allele 

frequency < 1%) are more likely to have a functional impact. Indeed, while rare variants 

account for 30.2% of high-confidence SVs, they represent more than half (55.6%) of the SVs 

overlapping a coding exon (as annotated by RefSeq26), (p-value: 2.2·10−33, Fisher’s exact test). 

Consequently 2.0% and 0.7% of rare and common (allele frequency ≥ 1%) variants, 

respectively, overlap a coding exon. Excluding TRs, the high confidence rare variants are 

disproportionately large; 15.6% of common variants were longer than 1 kb, but 26.2% of rare 

variants (p-value: 1.3·10−114, Fisher’s exact test). 
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Variants inside coding exons that are multiples of three in length generally result in addition or 

removal of amino-acids from translated proteins, while those that are not result in translational 

frameshift and generally non-functional proteins. In keeping with results23 for indels, among 

212 variants contained in a single coding exon, we observed a deficit in variant lengths that are 

not multiples of three, 74 (35%) compared to two thirds (141) expected (p-value: 3.8·10−21, 

binomial test). These results show that SVs that result in translational frameshift are selected 

against due to their phenotypic impact. 

We asked how the SVs identified impact phenotype and disease. To answer this, we correlated 

the high-confidence SVs with variants reported to associate with phenotypes in the GWAS 

catalog27. Of the 90,440 unique markers reported in the GWAS catalog 6,324 are correlated (r2 

≥ 0.8) with 3,725 SVs in our dataset, suggesting possible functional explanations for these 

associations (Supplementary Table 1). A subset of 30 SVs impacting coding exons that are 

correlated with 82 GWAS catalog markers are plausible causal variants for the associations. 

These variants include loci where the presence of an SV has been previously established using 

alternate methods, including a deletion in LCE3B28 associating with psoriasis and a deletion in 

CTRB2 associating with diabetes29,30 and age related macular degeneration31. We also find loci 

where the co-occurrence of an SV and a GWAS locus has not been reported; including a 

3,930bp deletion that overlaps the first exon of SLC25A24 and correlates with a SNP associated 

with white blood cell count32 and a 120 bp inframe deletion in KAT2B, that removes 40 amino 

acids from the translated protein and correlates with a variant associated with systolic blood 

pressure30,33. 

Targeted approaches have identified several associations between SVs and phenotypes. We 

recapitulate a number of these in a genomewide non-targeted fashion. The first example is a 

rare 2,476 bp deletion which deletes two exons of COLA3 and we have shown to associate with 

hematuria34. A second example is an 84bp insertion in the PRDM9 gene, which results in an 
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addition of a zink-finger motif to the encoded protein, PRDM9. The insertion results in a 

change in the DNA binding motif of PRDM9 and consequently changes the locations of 

meiotic recombinations35,36. Our third example is a 57 kb deletion, overlapping the genes CTNS 

and SHPK, originally associated with cystinosis37 where homozygous carriers of the deletion 

generally develop cystinosis, a lysosomal storage disease characterized by the abnormal 

accumulation of the amino acid cystine. We identified a single homozygous carrier of this 

deletion in our imputation set, not included in our genotyping set, who had been diagnosed 

with cystinosis. 

We associated the high-confidence SVs with phenotypes available at deCODE genetics 

(Methods). We found an association with a rare 14,154 bp deletion overlapping the first exon 

of PCSK9 (Fig. 4) and LDL cholesterol levels (adjusted effect = −1.36 SD and p = 2.4·10−22). 

LDL cholesterol levels were 0.93 mmol/L lower in carriers (n = 75) than in non-carriers (n = 

98,081). We observed a single carrier of the deletion in our LRS dataset, 40 in our SRS dataset 

and 123 heterozygous carriers in our imputation data, corresponding to an allele frequency of 

0.041%. No homozygous carrier was identified. PCSK9 encodes the enzyme proprotein 

convertase sub tilisin/kexin type 9, a key regulator of LDL cholesterol metabolism38 and a 

target of cholesterol lowering drugs39. Loss-of-function variants in PCSK9 are known to result 

in lower levels of LDL cholesterol and reduced cardiovascular risk40–42, consistent with the 

association observed here. 

In this study, we demonstrate the first application of ONT sequencing at population scale, and 

describe how it can be used to identify SVs to assess their impact on disease and other 

phenotypes. LRS technology and its data analysis methods are still maturing and can be 

improved upon. Nevertheless, we were able to use LRS data to identify 23,111 SVs per 

individual, most of the SVs estimated to be present and three times more than reported to be 

found with SRS data. 
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SVs alter on average more basepairs than SNPs and indels and the relative impact of these 

variations is an important avenue of research. Although we have highlighted SVs that overlap 

coding exons due their established functional impact, other SVs may still affect the individual, 

e.g. by removing regulatory regions or changing RNA secondary structure. A better 

understanding of the biochemical mechanisms that lead to and are affected by SVs will be 

essential to understand human evolution and disease. These will in turn also lead to better 

methods and increase our ability to identify SVs and assess their impact. 

SVs have frequently been found using targeted approaches, often relying on discovered SNPs 

or indels in a disease association context. We show that our method can identify SVs in a 

genomewide non-targeted fashion. We show that SVs impacting protein function are 

disproportionately rare; as a result, we believe that large scale SV studies will be essential to 

understand their role in the genetics of disease. Having generated and analyzed LRS data for 

1,817 Icelanders, we believe that this work sets a foundation for further large-scale studies of 

SVs, allowing investigation of their full frequency spectrum.  
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Methods 

 

Participants 

A set of 1,817 individuals was selected for ONT sequencing, including 369 trios (an offspring 

and both parents). The individuals were selected from a large set of Icelandic samples collected 

as part of disease association efforts at deCODE genetics. The samples constitute a database of 

DNA sequence variation in the Icelandic population combined with extensive phenotypic data, 

including information on blood levels of lipids for up to 113,355 genotyped individuals. The 

study population has been described in detail previously16,17,44,45. All participants were 

Icelanders who donated biological samples for genotyping and provided informed consents as 

part of various genetic programs at deCODE genetics, Reykjavik, Iceland. The study was 

approved by The National Bioethics Committee of Iceland (approvals no. VSN-15-023 and 

VSN 05-097-v6, with amendments). 

DNA source  

Most of the DNA samples sequenced in this study were isolated from whole blood (n = 1698). 

DNA from whole blood was extracted using the Chemagic method (Perkin Elmer), an 

automated procedure which involves the use of M-PVA magnetic beads (URLs). The 

remaining DNA samples (n = 119) were isolated from heart tissue. Samples were received and 

subsequently stored in liquid nitrogen. Samples were cut to smaller size on dry-ice if needed. 

Lysis buffer and a sterile 5mm steel bead were added to each sample prior to homogenisation 

on a TissueLyser LT (Qiagen). DNA was extracted from the homogenised lysates using the 

MasterPure DNA Purification kit (epicentre) following the manufacturers protocol, but with 

overnight Proteinase K digestion. Isolated DNA samples were quantified using a Trinean 

DropSenseTM and integrity asessed using the Fragment Analyzer capillary system from AATI. 

Sample preparation  
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Sequencing libraries were generated using the SQK-LSK109 ligation kit from ONT. Sample 

input varied from 1 − 5µg of DNA, depending on the exact version of the prep kit and flowcell 

type used for sequencing (GridION/PromethION). Approximately two thirds of the sample 

cohort underwent partial DNA shearing using the Covaris g-TUBETM to a mean fragment size 

of 10 − 15 kbp. The remainder of the samples were not sheared (cf. Fig. S5 from March 2019 

and onward). Library preparation started with DNA repair/A-tailing using the NEBNext FFPE 

repair mix (#M6630) and the NEBNext End repair/dA-tailing module (E7546), followed by 

AMPure XP bead clean-up. Adapter ligation was performed using the NEB T4 ligase 

(NEBNext quick Ligation Module, #E6056) and the ONT/LSK109 adapter mix (AMX) and 

ligation buffer, respectively. Samples were again purified using AMPure XP beads, using the 

Long Fragment Buffer (LFB) for the wash steps. Final sample elutions from the beads were 

done using 15µL of elution buffer (EB). Samples were quantified using a Qubit fluorimeter 

and diluted appropriately for loading onto the flowcells. 

Sequencing  

Samples were loaded onto either GridION R9.4 or PromethION R9.4.1 flowcells following 

ONT standard operating procedures. Sequencing was performed on either GridION X or 

PromethION devices, respectively. Data acquisition varied from 48 − 60 hours. 

Basecalling 

The squiggle data from the sequencers was basecalled using Albacore (995 individuals, 1, 290 

flowcells) and Guppy (905 individuals, 1, 069 flowcells). We used Albacore Sequencing 

Pipeline Software, version 2.3.1, with model configuration file template 

template_r9.4.1_450bps_5mer_raw_prom.jsn for PromethION flowcells and 

configuration file template_r9.4_450bps_5mer_raw.jsn for GridION flowcells. 

We ran Guppy Sequencing Pipeline Software for GPU machines, version 2.1.3, for 

PromethION flowcells using the corresponding configuration file 
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template_r9.4.1._450bps_5mer_raw_prom.jsn.  

An initial set of 822 individuals basecalled with Albacore that had reached a reference 

genome aligned sequencing coverage of 8x at the time of analysis (end of January 2019) were 

used in SV discovery. 

Using an initial set of ten R9.4.1 flowcells we observed that the Albacore model 

configuration is deletion biased (Fig. 1D). We observed a mean deletion error 7.7%, CI = [5.7, 

11.4], whereas the mean insertion error was 3.9%, CI = [2.3, 7.1]. The deletion error rate was 

thus 4.19%, CI = [1.3, 8.5] higher than insertion error. In order to limit the effects of potential 

false negative SVs due to deletion bias, we altered the stay penalty of the basecaller from a 

deletion biased to an insertion biased model. We observed that changing the stay penalty 

changed the relative error rate of deletion and insertions but not the total error rate. We used -

-stay_penalty = 1.25 and --stay_penalty = 1.00 for Albacore and Guppy, 

respectively, for our deletion biased (db) model and --stay_penalty = 0.05 for our 

insertion biased (ib) model. 

Read mapping  

The basecalled reads were mapped to human reference genome GRCh3843 with minimap218 

(version 2.14-r883), using the recommended option for ONT sequence to reference mapping 

(-x map-ont). In addition we used the parameters --MD -Y. The aligned reads were sorted 

using samtools sort46 and stored in a bam file.  

Sequencing statistics  

To estimate sequencing error we used the following terminology: 

𝑀𝑎 = Number of correct bases in matched basepairs 

𝑀𝑖 = Number of mismatching (incorrect)bases in matched basepairs 

𝐼 = Number of inserted basepairs 
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𝐷 = Number of deleted basepairs 

𝐶 = Number of soft clipped basepairs present in read 

Then we have the quantities 

𝑀 = 𝑀𝑎 + 𝑀𝑖                             Number of matched basepairs 

𝑆 = 𝑀 + 𝐼 + 𝐶                          Sequence length 

𝐿𝑠𝑒𝑞 = 𝑀 + 𝐼                             Aligned read length w.r.t. sequence 

𝐿𝑟𝑒𝑓 = 𝑀 + 𝐷                           Aligned read length w.r.t. refererence 

𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐿𝑠𝑒𝑞 , 𝐿𝑟𝑒𝑓) 

Note, all secondary alignments are ignored. Moreover, when there were supplementary 

alignments available for a read, we took the first alignment present and sum the quantities 𝑀𝑖, 

𝐼, 𝐷, 𝐿𝑠𝑒𝑞, 𝐿𝑟𝑒𝑓 and 𝐿𝑚𝑎𝑥 as long as the subsequent alignments do not overlap the last accepted 

alignment for the combined read. 

 These quantities were calculated for all reads for a basecalled flowcell, except for reads 

that are less than 3000 bp. Shorter reads often have an ambiguous mapping to the reference 

genome and are therefore of less use for SV calling. We did not omit reads labelled as “FAIL”, 

omitting those reads from analysis would result in lower error rates, higher mapping rates but 

lower sequencing coverage. 

 Let r be a read and R be a set of reads. We report the error rate, E, as the total sum of 

erroneous basepairs, normalized by alignment length, 

𝐸𝐼 =
∑ 𝐼(𝑟)𝑟∈𝑅

∑ 𝐿𝑚𝑎𝑥(𝑟)𝑟∈𝑅
∙ 100%                        insertion error (1) 

𝐸𝐷 =
∑ 𝐷(𝑟)𝑟∈𝑅

∑ 𝐿𝑚𝑎𝑥(𝑟)𝑟∈𝑅
∙ 100%                         deletion error (2) 

𝐸𝑀𝑖
=

∑ 𝑀𝑖(𝑟)𝑟∈𝑅

∑ 𝐿𝑚𝑎𝑥(𝑟)𝑟∈𝑅
∙ 100%                      mismatch error (3) 
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𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐼 + 𝐸𝐷 + 𝐸𝑀𝑖
                                          total error (4) 

and the alignment accuracy, A, as alignment length normalized by its read length, 

𝐴 =
∑ 𝐿𝑠𝑒𝑞(𝑟)𝑟∈𝑅

∑ 𝑆(𝑟)𝑟∈𝑅
∙ 100%                                                          (5) 

Mean error rates and alignment accuracy for both basecallers, using either deletion or insertion 

bias, is given in Table S2. On average 1.67% lower overall error rate was observed for flowcells 

basecalled with Guppy than Albacore using our deletion biased model. 

In addition we report aligned coverage as: 

 

𝑋𝑖 =
∑ ∑ 𝐿𝑠𝑒𝑞(𝑟)𝑟∈𝑅𝑗𝑅𝑗∈{𝑅𝑖}

3 ∙ 109
∙ 100%                                                 (6) 

For all reads in a set of flowcells Ri belonging to the same individual i.  

Preliminary structural variant predicting with Sniffles  

A set of preliminary variant predictions was obtained using Sniffles6 for each genome, in a 

highly sensitive fashion (using -s 3, and – ignore_sd) to minimize false negatives due 

to the existence of low coverage regions. Up to 30 supporting reads were reported per variant. 

Other optional parameters were left as default. Insertions and deletions with different start/end 

chromosomes and larger than 1 Mb are discarded. 

Next, deletions and insertions with alternate allele ratio below 0.2 and 0.05, respectively, 

are discarded if detected using a deletion biased basecaller. Similarly, deletions and insertions 

with an alternate allele ratio below 0.05 and 0.2, respectively, are discarded if detected using 

an insertion biased basecaller, as a pre-filter from raw Sniffles calls. 

Breakpoint and variant refinement with SViper  

The variant predictions were either breakpoint refined or not with SViper19 (URLs) using SRS 

data. All optional parameters were left as default. SViper first identifies the ONT long-reads 

supporting the candidate variant and forms consensus sequences flanking the candidate 

breakpoints. It then selects SRS reads near the predicted SV breakpoint(s), if available, and 
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aligns to the ONT consensus sequence for polishing. The polished consensus is re-aligned to 

the human reference to provide the refined breakpoints. 

SV filtering using signal-level raw Nanopore data (SquiggleSVFilter)  

We developed SquiggleSVFilter to filter false SV predictions using the signal-level raw ONT 

sequencing data, i.e. the squiggle. SquiggleSVFilter employs the squiggle-vs-sequence log 

likelihood score function provided by Nanopolish20, and compares the log likelihood scores of 

the predicted alternate allele vs. the reference allele on the squiggle around both of the SV 

breakpoints. The likelihood score is essentially the probability of the signal-level raw data 

given a candidate sequence20. Nanopolish uses the events, which are the step-wise changes in 

the measured electrical currents, as the signal data in its log likelihood score function. 

Accessing an event interval over a predicted SV breakpoint requires a mapping of the read 

sequence indices to reference genome coordinates (i.e. a reference alignment bam file) and to 

event indices, called an “event table”. To achieve this, we generated basecalls and event tables 

for reads that support a predicted SV, using a modified version of Scrappie (URLs), and 

mapped these reads to the reference genome, using minimap2 with parameters as described in 

“Read mapping”. Any read with a basecall score less than 0.1 or a length less than 1000 bp is 

discarded. 

For any SV supporting read, reported by Sniffles, we start by calculating where the 

predicted SV breakpoints correspond in the read using the reference alignment bam file (Fig. 

S6). Next, we determine the read regions spanning the SV breakpoints, which we refer to as 

“subreads”. An alignment may not contain an anchor on the reference on both sides of a 

breakpoint, and may instead be soft-clipped on one of the sides. We therefore determine a left 

and right subread by approaching from the left and right flanks of the variant. Figure S6A and 

S6B, depicts a sample deletion and insertion, respectively. We find a left subread using an 

alignment anchoring the reference from the left side of the breakpoint B (left breakpoint B1 for 
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a deletion). Using a flank size of 500 bp in the reference, we compute the read index Lb mapping 

to reference coordinate B − 500 (B1 − 500 for a deletion), as the begin index of the left subread, 

and set Le = min(z − 1, Lb +1000), as the end index, where z is the length of the read sequence. 

Similarly, we find a right subread using an alignment anchoring the reference from the right 

side of the breakpoint B (left break-point B2 for a deletion). We compute the read index, Re, 

mapping to reference coordinate B + 500 (B2 + 500 for a deletion), as the end index of the right 

subread, and set Rb = max(0, Re − 1000), as the begin index. 

Using the event table, we find the event indices corresponding to the subreads to access 

event slices spanning the SV breakpoints. Given the predicted SV breakpoint sites and 

sequence (for insertions), and the reference alignment bam file, we determine the reference 

(ref) and alternate (alt) allele sequences spanning the left and right subreads. For a deletion, we 

set the ref allele sequences as 500 bps of reference sequence flanking B1, and B2 from both 

sides, for the left and right event slices, respectively. We set the alt allele sequence as 500 bps 

flanking B1 from the left, followed by 500 bps flanking B2 from the right, for both event slices, 

as shown in Fig. S6A. Similarly, for an insertion, we set the ref allele sequences as 500 bps of 

reference sequence flanking B from both sides, for both event slices. We set the alt allele 

sequence as 500 bps flanking B from the left, appended by min(500, m) bp from the insertion 

sequence of the predicted SV, where m is the insertion sequence length, followed by max(0, 

500 − m) bp flanking B from the right, for the left event slice, and similarly for the right event 

slice, as shown in Fig. S6B. Finally, we calculate the raw signal-vs-sequence log likelihood 

scores using the ref and alt allele sequences for both event slices, and use their difference to 

support or reject the candidate variant. We support a variant if at least 3 reads obtain a log 

likelihood score difference of at least 50 for either of the event slices. 

 Figure S7 displays the SV counts per individual and points to the levels of SV filtering 

in successive stages. The alternate allele ratio based pre-filter is followed by SquiggleSVFilter, 
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where we observe a lower variance on the number of SVs across individuals. 

 We estimated false-positive levels for SV discovery per individual by checking whether 

one of the parents also contain the SVs discovered (see Parent support of proband SVs in trios) 

in 96 trios. We observed consistent low false-positive levels (Fig. S8), with the exception of a 

number of individuals where error rates were exceptionally high. 

 We observed SquiggleSVFilter to be especially effective in individuals with high 

number of SVs after the alternate allele ratio based pre-filter, a result of high error rates in a 

fraction of the LRS data. Figure S7A shows this uneven level of filtering achieved by 

SquiggleSVFilter, across individuals, which is a result of the high mean and variance observed 

in error rates (Fig. 1B-C). 

Constructing a single basecaller SV set  

Using a single basecaller, we run SquiggleSVFilter on both the original (Sniffles) variants and 

their breakpoint refined (SViper) forms. If both forms of the variant are acceptable, we accept 

the breakpoint refined form if it has a mean log likelihood difference score greater than 2/3 

times the mean log likelihood difference score of the original variant. Mean log likelihood 

difference scores are calculated using only values ≥ 50. 

We test both the breakpoint refined and unrefined forms of the variant with 

SquiggleSVFilter in case the short-read breakpoint refinement caused a distortion of the 

otherwise correct original form of the variant, resulting in its filtering. We however bias our 

selection towards the breakpoint refined form in order to be more exact at the breakpoint sites, 

for genotyping purposes 

Constructing an individual’s SV set  

Per individual, we construct db and ib SV sets separately, and pool all the variants. Next, in 

any sequence of sorted SVs with a consecutive begin site difference of 250 bp, we pick one 

representative SV. We give precedence first whether it is a breakpoint refined variant, and 
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second whether it is a db SV. See Fig. S9 for the effect of using both db and ib basecalling 

configurations, and their independent contributions. 

Parent support of proband SVs in trios  

We estimated SV discovery precision upper bounds by computing the rate of parent-supported 

SVs on a proband, on available trios (Fig. S8), assuming no de novo events. We accept any 

proband SV discovered at a site close to any SV found in any parent, as parent-supported. An 

insertion is parent-supported if a parent insertion begin site is within 250 bp to the proband 

insertion begin site, and similarly, a deletion is parent-supported if a parent deletion begin site 

is within 250 bp to the proband deletion begin or end site. 

 Although we ran our complete SV discovery pipeline on the proband, in order to 

achieve maximal sensitivity on the parent SVs, we ran Sniffles with 2 reads of support (-s 2) 

and ignoring the sd filter (--ignore_sd) on parent genomes. Other parameters were left as 

default. For simplicity, we used a single basecaller for both parents and the proband in 

calculating the SV parent-support rates. 

Merging of the SVs  

Most SVs are carried by multiple individuals, and thus will be re-discovered, potentially with 

slightly different representations across carriers, varying in length and location. In order to 

eliminate such redundancies, we applied the following SV merging approach, independently 

for insertions and deletions. We represented SVs as nodes in a graph, and drew an edge between 

two SVs if they had a minimum mutual overlap of at least 50%, with 1 − (minimum mutual 

overlap) as edge length. We measured the overlap between two insertions by representing them 

similar to deletions, where an insertion end coordinate is set as its begin coordinate incremented 

by its length. We then formulated the SV merging as a corrupted cliques problem, where given 

a graph G, the aim is to transform G into a clique graph with the smallest number of edge 
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additions and removals, such that a clique represents a single merged SV. To solve this, we 

employed the Cluster Affinity Search Technique (CAST) algorithm47. We segregated all 

discovered SVs into non-overlapping groups, and applied the CAST algorithm on them to find 

the SV cliques. We picked the most frequent SV, determined by site and length, as clique 

representative, i.e. an SV centroid. We broke ties by prioritizing the breakpoint refined and 

deletion biased SVs, in the given order, similar to how we construct an individual’s SV set. For 

insertions, the insertion sequence is arbitrarily picked among the individuals containing the 

clique representative SV. In a list of successive SV centroids with begin coordinates within 

250 bp of each other, we picked the one that represents the SV clique with maximum number 

of individuals contributing to it, as long as it is ≥ 2. Any SV centroid isolated by at least 250 

bp is picked if it represents a clique with at least 2 individuals or a single individual with a 

minimum alternate allele ratio of 0.3. The alternate allele ratio is measured as the number of 

SV supporting reads divided by site coverage. The coverage at the site for insertions is 

determined using the coordinate of the insertion position, and for deletions as the median 

coverage of equidistant 10 coordinates within the deletion interval. 

Construction of the merged SV set VCF file used in SRS and LRS genotyping  

Since the SRS genotyping method we used (Graphtyper) is sensitive to unreported indels near 

SV breakpoints, we provided a VCF file for genotyping purposes where we included all 

flanking variants, if possible. Any variation from the reference sequence, surrounding the 

refined SV breakpoints, on the polished ONT consensus re-alignment to the human reference 

for an SV processed by SViper, is reported in the respective ALT and REF fields on the VCF 

file by processing the CIGAR string. As a result, the sequences given in the VCF may contain 

other variations near the discovered SV, such as target site duplications or imperfections in the 

SV polishing. We note that this approach may change the position and the size of the SVs, thus 

leading to conditions enforced during merging of the discovered SVs invalid. There was, 
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however, no duplicate VCF entries given SV coordinates and sequences involved. 

Tandem repeat identification  

We searched for tandem repeats using Tandem Repeats Finder48 in both the reference and 

alternate allele sequence of all variants. Variants were considered to be tandem repeats if a 

tandem repeat of length at least 50% of the length of the allele was found in either allele 

sequence. 

Comparison of discovered structural variants to available datasets  

We used the same comparison approach described in section “Parent support of proband SVs 

in trios”. We show results for various cutoffs as breakpoint distance. 

Individual selection for short read genotyping  

We selected 5,000 individuals for short read genotyping from our set of Illumina WGS 

individuals generated previously at deCODE genetics17. This set included 1,656 of the 1,817 

ONT sequenced individuals, including 736 of the 822 individuals used in the SV discovery set. 

To increase the probability of finding multiple carriers of rare variants, the set of 5,000 

individuals included 1,533 trios (offspring and the two parents). 

SRS genotyping with GraphTyper  

We provided the merged SV set to GraphTyper5,21, which generates an augmented graph 

genome using the SV predictions, together with previously discovered SNPs and indels5, for 

population scale genotyping. The variants were genotyped on the set of 5,000 individuals, using 

three genotyping models. All three models were used in our imputations (see Imputation of 

SVs). 

LRS genotyping (LRcaller)  

LRcaller is a proof-of-concept genotyping algorithm that genotypes SVs directly from ONT 

sequencing reads. Each breakpoint is genotyped independently, resulting in two genotypings 
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for the canonical deletion and insertion variants identified in this study, corresponding to the 

left and right breakpoints (Fig. S6). Note that the algorithm processes each variant 

independently, i.e. each variant is genotyped without considering other variants in the region, 

which may lead to suboptimal behavior when there are multiple variants present in the same 

region. 

 We use the reads overlapping a breakpoint and two sets of evidence for genotyping; 

(AD) from an alignment of a subread to the reference and alternate alleles and (VA) from the 

alignment present in the bam file as aligned by minimap2. 

 AD genotyping: We start by constructing a sequence for the reference and the alternate 

allele from a VCF record, in a method analogous to the one described by SquiggleSVFilter. A 

sequence for the reference allele is constructed as the sequence in reference coordinates (b − 

500, b + 500), where b is the position of the breakpoint. A sequence for the alternate allele is 

constructed analogously, except the sequence in the ALT field of the VCF record is first 

inserted into the reference and the sequence of the REF field is removed, creating a new 

reference RA. The alternate sequence constructed is the sequence in coordinates (b − 500, b + 

500) in RA. 

 We next select and crop reads used for genotyping. For left breakpoints we select reads 

that map to a position in the interval (b − 500, b). We let cl be the smallest position in the 

interval (b − 500, b) where the read is aligned, let i(cl) be the read index aligned to reference 

position cl and we crop subsequence (max(0, i(cl) − dl), min(i(cl) − dl + 1000, readlength)) from 

the read, where dl = cl − b + 500. For right breakpoints we select reads that map to a position 

in the interval (b, b + 500). We let cr be the largest position in the interval (b, b + 500) where 

the read is aligned and we crop subsequence (max(0, i(cr) + dr − 1000), min(i(cr) + dr, 

readlength)) from the read, where dr = b + 500 − cr. Cropped sequences shorter than 500 bp are 
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ignored. 

We then align cropped reads using the function globalAlignment in Seqan49 with scores 

1 for match and -1 for mismatch, insertions and deletions to the reference and the alternate 

allele, producing alignment scores AS(REF ) and AS(ALT ), respectively. Alignment scores < 

400 are artificially set to 400 and reads where AS(REF) = AS(ALT) are not used. For all other 

reads, r, a score ad(r) computed as ad(r) = (AS(ALT) − AS(REF))/2. We then cap ad(r) to have 

absolute value at most 10. ad(r) = min(max(ad(r), − 10), 10). 

 VA genotyping: We consider the minimap2 alignment to the reference in the interval 

(bl −100, br + 100), bl and br are the left and right breakpoints, respectively. When considering 

the left breakpoint we only consider reads overlapping reference coordinate bl − 100 and are 

not soft clipped (> 500 bp) at the start of the alignment. Reads that are soft-clipped (> 500 bp) 

at the end of their alignment within the window (bl − 100, br + 100) are considered to support 

the alternate variant. For other reads we count, S, the number of inserted or deleted basepairs, 

in stretches of at least 5bp, in the window (bl − 100, br + 100). Reads where S >
1

2
∙ 𝑆𝑉 𝑙𝑒𝑛𝑔𝑡ℎ 

are considered to support the deletion and those where S <
1

10
∙ 𝑆𝑉 𝑙𝑒𝑛𝑔𝑡ℎ are considered to 

support the reference. A read, r, is assigned a score va(r) of −10 or 10 when it supports the 

alternate or reference, respectively. Reads that support neither the alternate nor the reference 

are not used in the computation. An analogous procedure is performed for right variants. 

Joint model genotyping: The output of the two models are then used in a joint model 

as: joint(r) = ad(r) + va(r). 

Relative log likelihoods: These scores are then used to compute l(r|g), the relative log 

likelihood of observing a read r given each of the three possible genotypes, g, of an individual; 

00, 01, 11, representing homozygous reference, heterozygous and homozygous alternate 

genotypes, respectively. The scores are then interpreted to represent log2 of l(r|11) − l(r|00), 
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where a score of x means observing the read is 2x more likely if the individual is homozygous 

alternate than homozygous reference. We then let l(g|01) = max(l(g|00), l(g|11)) − 1, i.e. 

observing a read given the individual is heterozygous is half as likely as observing it if the 

individual is homozygous. 

 A joint relative likelihood of observing all the reads given the three possible genotypes 

is then found by multiplying these relative likelihoods, or summing the log relative likelihoods. 

Genotyping with LRcaller  

The variants were genotyped independently for the left and right breakpoint using the three 

different models presented above for each variant, producing a total of six genotypes per 

individual/marker pair. 

Imputation of SVs  

For each marker a total of 9 different genotypes were produced, 3 from GraphTyper/Illumina 

and 6 from LRcaller/ONT. All genotyped variants are imputed into the haplotypes of 166,281 

Icelanders, using a methodology previously described17,22,23. For each variant the genotyping 

that produced the highest imputation info23 was selected as the best genotype. 

Variants with an imputation info of 0.9 or higher were considered successfully imputed, 

i.e. high-confidence, and used for genome-wide association analysis. 

Calculating autosomal SV counts per individual 

We reported the autosomal SV counts per individual by selecting the best imputed genotyping 

per SV. If an SV had no genotype with an imputation information > 0.9 and at least one 

genotype with imputed allele frequency of 1.0, the LRS AD (right breakpoint) genotyping 

model is selected as a default model since it has the highest number of imputed SVs, compared 

to other models. If the selected genotyping model is from SRS genotyping and with an 

imputation information ≤ 0.9, we accepted the variant if it had a PASS flag, and PASS_AC 

value greater than 0. 
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Parent-offspring transmission rates of selected SV genotypes, prior to imputation, are 

given in (Table S1). 

Association testing  

We tested for association with LDL levels based on the linear mixed model implemented in 

BOLT-LMM50. We used BOLT-LMM to calculate leave-one-chromosome out (LOCO) 

residuals which we then tested for association using simple linear regression. A generalized 

form of linear regression was used to test for association of phenotypes with SVs. We assume 

that the phenotypes follow a normal distribution with a mean that depends linearly on the 

expected allele at the variant and a variance-covariance matrix proportional to the kinship 

matrix51. We used linkage disequilibrium (LD) score regression to account for distribution 

inflation in the dataset due to cryptic relatedness and population stratification52. The inflation 

factors were computed from a set of SNP and indel sequence variants. Using a set of about 1.1 

million SNP and indel sequence variants, we regressed the χ2 statistics from a genome-wide 

association scan against LD score and used the intercept as correction factor. Effect sizes based 

on the LOCO residuals are shrunk and we rescaled them based on the shrinkage of the 1.1 

million variants used in the LD score regression.  

The SV we report on PCSK9 (Fig. 4) in association with LDL cholesterol levels was 

discovered on an earlier SV discovery set available at the time, consisting of 46 LRS 

individuals. The individual the deletion is discovered in is not among the individuals used in 

the construction of the merged SV set. 

Comparison to GWAS catalog 

We downloaded version 1.0.2 of the GWAS catalog with all associations (URLs) on July 12th 

2019 (gwas_catalog_v1.0.2-associations_e96_r2019-07-12.tsv). SNPs 

and indels in the GWAS catalog were matched with in-house SNPs using exact coordinate 

matching and two markers were assumed to be the same if they had the exact same coordinate 
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in GRCh38.  

 An inhouse tool was used to compute correlations between SNPs and indels imputed 

into 166,281 Icelanders and SVs imputed into the same set. Correlations were limited to 

windows of 500kb, such that a correlation between a SNP/indel and a SV is observed if and 

only if they are within 500 kb of each other. 

Computation of parent offspring transmissions  

All trios included in the study were used to compute parent offspring transmission rates. The 

genotypes of the child were computed conditioned on the genotypes of the parents. 

Computations were restricted to SV/trio pairs where a confident call could be made for all 

members of the trio by requiring the phred scaled genotype likelihood of the second most likely 

genotype to ≥ 40 for all members of the trio. 

URLs 

SViper, original repository: https://github.com/smehringer/SViper 

SViper, modified, used in this study: 

https://github.com/DecodeGenetics/SViper/tree/cornercases 

Scrappie, original repository: https://github.com/nanoporetech/scrappie 

Scrappie, modified, used in this study: 

https://github.com/DecodeGenetics/scrappie/tree/v1.3.0.events 

SquiggleSVFilter: 

https://github.com/DecodeGenetics/nanopolish/tree/squigglesv 

GWAS catalog: https://www.ebi.ac.uk/gwas/docs/file-downloads 

LRcaller: https://github.com/DecodeGenetics/LRcaller 

Chemagen: https://chemagen.com 
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Figures 

 

 
Fig. 1 Oxford Nanopore Technologies (ONT) long-read sequencing statistics. (A) Per 

individual distributions of aligned coverage (n = 1817, red vertical line denotes 8x coverage), 

aligned basepairs percentage, and N50 length (n = 1656, data from individuals with aligned 

coverage < 8x omitted). (B, C) Error rates compared to GRCh3843 using deletion biased (db), 

and insertion biased (ib) basecallers, respectively, stratified by error type. Statistics are 

computed over all sequenced reads longer than 3000bp. 
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Fig. 2 Structural variant (SV) analysis workflow. (A) Each individual is basecalled using both 

deletion biased (db) and insertion biased (ib) basecallers, and SVs are identified independently. 

An individual’s SV set is generated by supplementing the db SVs with the ib SV calls. SV sets 

are merged across all individuals, and the merged SV set is used to genotype individuals on 

both short read sequencing (SRS) and long read sequencing (LRS) data, separately. Finally, 

genotyped variants are imputed into long-range phased haplotypes and variants with 

sufficiently high imputation information (≥ 0.9) are accepted as high-confidence variants. (B) 

Reads are mapped to human reference genome (GRCh38) using minimap2, followed by the 

sensitive SV predictions using Sniffles. SV predictions are then pre-filtered based on their 

alternate allele ratio, and SV breakpoints are refined using SRS data, if possible, with SViper. 

Finally, candidate SVs are compared against the raw signal-level data using SquiggleSVFilter 

for further verification. 
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Fig. 3 Merged structural variant (SV) set characteristics. (A) Comparison of the merged SV set 

to 1000 Genomes SV dataset3 using variants with European allele frequency (EUR_AF) ≥ 0.1, 

and the diversity SV set10 using fixed variants (allele frequency (AF) of 1.0), at different 

breakpoint distances. (B,C) Distribution of total number of SVs (B) and number of deletions 

and insertions (C) per individual (n = 1507, individuals with aligned coverage < 8x and those 

not genotyped using short read sequencing (SRS) data are omitted). (D,E) SV length 

distributions in ranges [50 bp, 1 kbp], and [1 kbp, 10 kbp], respectively. The peaks observed 

around 300 bp and 6 kbp correspond to short and long interspersed nuclear elements (SINE 

and LINE), respectively. (F) Number of tandem repeats (TR) and non-TR SVs located at given 

telomere distances (binned at 1 Mb). (G) Allele frequency distribution of imputed high-

confidence SVs.  
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Fig. 4 PCSK9 deletion. Rare (allele frequency 0.041%) 14,154 bp deletion on chromosome 1, 

at basepairs 55,029,214 to 55,043,368 (GRCh38) removes the promoter and first coding exon 

of PCSK9. 
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Supplementary Information 

 
Fig. S1 Insertion biased (ib) basecalling sequencing statistics. Per individual distributions of 

aligned coverage (A) (n = 1817, red vertical line denotes 8x coverage), aligned basepairs 

percentage (B), and N50 length (C) (n = 1656, data from individuals with aligned coverage < 

8x omitted) 
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Fig. S2 Structural variant (SV) length distributions in ranges [50 bp, 1 kbp] (A), and [1 kbp, 10 

kbp] (B), using all merged SVs. 
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Fig. S3 Number of tandem repeat (TR) and non-TR SVs located at given telomere distances 

(binned at 1 Mb), using all merged structural variants (SVs). 
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Fig. S4 Aligned coverage vs. number of discovered structural variants (SVs), per individual. 
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Fig. S5 A grand total of 2,357 flowcells were analysed for 1,817 individuals from May 2018 

until June 2019. Thereof 127 were sequenced on GridION (red), and 2,232 on PromethION 

(blue) instruments. (A) A mean yield for a GridION flowcell is 2x coverage versus 11x for 

PromethION flowcells. (B, C) In February 2019 we upgraded our basecaller from Albacore to 

Guppy, resulting in a mean 1.6% decrease in alignment error. Moreover, in March 2019 we 

stopped partially shearing the DNA, resulting in approximately 2.6x lower coverage per 

flowcell. However N50 increased by a mean 5,500 basepairs. 
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Fig. S6 SquiggleSVFilter overview. Given a candidate structural variant (SV), and an SV 

supporting read, SquiggleSVFilter first identifies the subread of the ONT basecalled read 

overlapping the SV, using the reference alignment BAM file. Next it finds the squiggle slice 

of the identified subsequence using the event table. For both the left and right flanks around 

the variant, it determines the reference and alternative sequences given the candidate variant, 

and computes their raw data-vs-sequence log likelihood scores with the squiggle slice. A 

sufficiently high log likelihood score difference for the alternate allele marks the read as an SV 

supporting read. 
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Fig. S7 Structural variant (SV) filtering. Per individual SV calls (A for deletion biased (db) and 

B for insertion biased (ib) SVs) are shown for Sniffles (red), a local alternative allele ratio 

based pre-filtering (blue), and SquiggleSVfilter (green), where each subsequent step uses the 

output of the previous step as input SV set. 

  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848366doi: bioRxiv preprint 

https://doi.org/10.1101/848366
http://creativecommons.org/licenses/by-nd/4.0/


41  

 
Fig. S8 Parent support rates on discovered structural variants (SVs) in 96 children (panel A for 

deletion biased (db), and B for insertion biased (ib) SVs). Red denotes the percent of parent 

supported SVs at 250bps breakpoint distance on the pre-filtered Sniffles variants, whereas blue 

denotes on SquiggleSVfilter filtered variants. 
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Fig. S9 The effect of supplementing a deletion biased (db) configuration of the basecaller with 

an insertion biased (ib) configuration. (A) Structural variant (SV) counts using the db and ib 

basecallers independently, and combined (db+ib), per individual. (B) Contributions from the 

db and ib SVs to combined used of basecallers (db+ib), per individual. 
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 0/0 0/1 1/1 

0/0 + 0/0 99.51% 0.49% 0.00% 

0/0 + 0/1 45.53% 54.28% 0.18% 

0/0 + 1/1 1.11% 98.09% 0.80% 

0/1 + 0/1 15.26% 71.82% 12.92% 

0/1 + 1/1 0.38% 56.20% 43.42% 

1/1 + 1/1 0.02% 1.39% 98.59% 

Table S1: Parent-offspring structural variant (SV) transmission rates, in percentages. Rows and columns 

denote parent and offspring genotypes, respectively.  
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basecaller bias #flowcells 𝑬𝒕𝒐𝒕𝒂𝒍
 𝑬𝑰

 𝑬𝑫
 𝑬𝑴𝒊

 𝑨 

Albacore db 1288 16.3% 3.47% 7.66% 5.20% 82.7% 

Albacore ib 1282 17.9% 8.47% 3.86% 5.52% 73.8% 

Guppy db 1069 14.7% 3.92% 6.31% 4.43% 90.7% 

Guppy ib 985 15.0% 5.57% 4.66% 4.77% 88.8% 

Table S2: Alignment error estimates and alignment ratio defined by Eqs.  (1)-(5) for both basecallers  

Albacore  and  Guppy,  using  either  the  deletion  biased (db)  or  insertion  biased  (ib)  basecalling 

configurations. 
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