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Normative theories and statistical inference provide comple-
mentary approaches for the study of biological systems. A nor-
mative theory postulates that organisms have adapted to ef-
ficiently solve essential tasks, and proceeds to mathematically
work out testable consequences of such optimality; parameters
that maximize the hypothesized organismal function can be de-
rived ab initio, without reference to experimental data. In con-
trast, statistical inference focuses on efficient utilization of data
to learn model parameters, without reference to any a priori no-
tion of biological function, utility, or fitness. Traditionally, these
two approaches were developed independently and applied sep-
arately. Here we unify them in a coherent Bayesian framework
that embeds a normative theory into a family of maximum-
entropy “optimization priors.” This family defines a smooth
interpolation between a data-rich inference regime (character-
istic of “bottom-up” statistical models), and a data-limited ab
inito prediction regime (characteristic of “top-down” normative
theory). We demonstrate the applicability of our framework
using data from the visual cortex, and argue that the flexibil-
ity it affords is essential to address a number of fundamental
challenges relating to inference and prediction in complex, high-
dimensional biological problems.
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Ideas about optimization are at the core of how we ap-
proach biological complexity (1–3). Quantitative predic-
tions about biological systems have been successfully de-
rived from first principles in the context of efficient cod-
ing (4, 5), metabolic (6, 7), reaction (8, 9), and transport (10)
networks, evolution (11), reinforcement learning (12), and
decision making (13, 14), by postulating that a system has
evolved to optimize some utility function under biophysi-
cal constraints. Normative theories generate such predictions
about living systems ab initio, with no (or minimal) appeal to
experimental data. Yet as such theories become increasingly
high-dimensional and optimal solutions stop being unique,
it gets progressively hard to judge whether theoretical pre-
dictions are consistent with data (15, 16), or to define rigor-
ously what that even means (17–19). Alternatively, data may
be “close to” but not “at” optimality, and different instances
of the system may show variation “around” optima (20, 21),
but we lack a formal framework to deal with such scenar-
ios. Lastly, normative theories typically make non-trivial
predictions only under quantitative constraints which, ulti-
mately, must have an empirical origin, blurring the idealized
distinction between a data-free normative prediction and a
data-driven statistical inference.
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Fig. 1. Normative theories and statistical inference. Both approaches make state-
ments about values of system parameters (middle row; center panel). Normative
theories predict which parameters would be of highest utility to the system (middle
row in red; left panel) without reference to experimental data. Data analysis infers
parameter values from experimental observations (middle row in blue; right panel).
Large amounts of data support reliable inference of parameters. We consider a
continuum of regimes that are applicable with different amounts of data (bottom
row).

In contrast to normative theories which derive system pa-
rameters ab initio, the fundamental task of statistical infer-
ence is to reliably estimate model parameters from exper-
imental observations. Here, too, biology has presented us
with new challenges. While data is becoming increasingly
high-dimensional, it is not correspondingly more plentiful;
the resulting curse of dimensionality that statistical models
face is controlled neither by intrinsic symmetries nor by the
simplicity of disorder, as in statistical physics. To combat
these issues and simultaneously deal with the noise and vari-
ability inherent to the experimental process, modern statis-
tical methods often rely on prior assumptions about system
parameters. These priors either act as statistical regularizers
to prevent overfitting or to capture low-level regularities such
as smoothness, sparseness or locality (22). Typically, how-
ever, their statistical structure is simple and does not reflect
the prior knowledge about system function.

Normative theories and inference share a fundamental sim-
ilarity: they both make statements about parameters of bi-
ological systems. While these statements have traditionally
been made in opposing “data regimes” (Fig. 1), we observe
that the two approaches are not exclusive and could in fact
be combined with mutual benefit. To this end, we develop a
Bayesian statistical framework that combines data likelihood
with an “optimization prior” derived from a normative the-
ory; contrary to simple, typically applied priors, optimization

Młynarski & Hledík | bioRχiv | February 10, 2020 | 1–13

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2020. ; https://doi.org/10.1101/848374doi: bioRxiv preprint 

https://doi.org/10.1101/848374
http://creativecommons.org/licenses/by-nd/4.0/


priors can induce a complex statistical structure on the space
of parameters. This construction allows us to rigorously for-
mulate and answer the following key questions: (1) Can one
derive a statistical hypothesis test for the consistency of data
with a proposed normative theory? (2) Can one define how
close data is to the proposed optimal solution? (3) How can
data be used to set the constraints in, and resolve the degen-
eracies of, a normative theory? (4) To what extent do opti-
mization priors aid inference in high-dimensional statistical
models? We illustrate the application of these questions and
the related concepts to simple model systems, and demon-
strate their relevance to real-world data analysis by analyzing
receptive fields of neurons in the visual cortex.

Results
Bayesian inference and optimization priors. Given a
probabilistic model for a system of interest, P (x|θ), with
parameters θ, and a set of T observations (or data) D =
{xt}Tt=1, Bayesian inference consists of formulating a (log)
posterior over parameters given the data:

logP (θ|D) = logL(θ) + logP (θ) + const, (1)

where the constant term is independent of the parameters,
L(θ) =

∏T
t=1P (xt|θ) is the likelihood assuming indepen-

dent and identically distributed observations xt, and P (θ) is
the prior, or the postulated distribution over the parameters
in absence of any observation. Much work has focused on
how the prior should be chosen to permit optimal inference,
ranging from uninformative priors (23), priors that regular-
ize the inference and thus help models generalize to unseen
data (24, 25), or priors that can coarse-grain the model de-
pending on the amount of data samples, T (26).
Our key intuition will lead us to a new class of priors
fundamentally different from those considered previously.
A normative theory for a system of interest with param-
eters θ can typically be formalized through a notion of
a (upper-bounded) utility function, U(θ); optimality then
amounts to the assumption that the real system operates at
a point in parameter space, θ∗, that maximizes utility, θ∗ =
argmaxθ U(θ). Viewed in the Bayesian framework, the as-
sertion that the system is optimal thus represents an infinitely
strong prior that the parameters are concentrated at θ∗, i.e.,
P (θ) = δ(θ− θ∗). In this extreme case, no data is needed:
the prior fixes the values of parameters and typically no fi-
nite amount of data will suffice for the likelihood in Eq (1)
to move the posterior away from θ∗. This concentrated prior
can be however interpreted as a limiting case of a softer prior
that “prefers” solutions close to the optimum.
Consistent with the maximum entropy principle put forward
by Jaynes (27), we therefore consider for our priors distribu-
tions that are as random and unstructured as possible while
attaining a prescribed average utility:

P (θ|β) = 1
Z(β) exp[βU(θ)] . (2)

This is in fact a family of priors, parametrized by β: when
β= 0, parameters are distributed uniformly over their domain

without any structure and in absence of any optimization; as
β →∞, parameter probability localizes at the point θ∗ that
maximizes the utility to Umax (if such a point is unique) ir-
respective of whether data supports this or not. At finite β,
however, the prior is “smeared” around θ∗ so that the average
utility, Ū(β) =

∫
dθ P (θ|β)U(θ) < Umax increases mono-

tonically with β. For this reason, we refer to β as the “opti-
mization parameter,” and to the family of priors in Eq (2) as
“optimization priors.”
The intermediate regime, 0 < β <∞, in the prior entering
Eq (1) is interesting from an inference standpoint. It repre-
sents the belief that the system may be “close to” optimal
with respect to the utility U(θ) but this belief is not absolute
and can be outweighed by the data: the log likelihood, logL,
grows linearly with the number of observations, T , match-
ing the roughly linear growth of log prior with β. Varying
β thus literally corresponds to the interpolation between an
infinitely strong optimization prior and pure theoretical pre-
diction in the “no data regime” and the uniform prior and pure
statistical inference in the “data rich regime”, as schematized
in Fig. 1.
In the following, we apply this framework to a toy model sys-
tem, a single linear-nonlinear neuron, which is closely related
to a linear classifier. This example is simple, well-understood
across multiple fields, and low-dimensional so that all math-
ematical quantities can be constructed explicitly; the frame-
work itself is, however, completely general. We then apply
our framework to a more complex neuron model and to real
data from the visual cortex.
Taken together, these examples demonstrate how the ability
to encode the entire shape of the utility measure into the op-
timization prior opens up a more refined and richer set of
optimality-related statistical analyses.

Example: Efficient coding in a simple model neuron.
Let us consider a simple probabilistic model of a spiking neu-
ron (Fig. 2A), a broadly applied paradigm in sensory neuro-
science (28–32). The neuron responds to one-dimensional
continuous stimuli xt either by eliciting a spike (rt = 1), or
by remaining silent (rt = 0). The probability of eliciting a
spike in response to a particular stimulus value is determined
by the nonlinear saturating stimulus-response function. The
shape of this function is determined by two parameters: po-
sition x0 and slope k (see Methods).
Parameters θ = {x0,k} fully determine the function of the
neuron, yet remain unknown to the external observer. Sta-
tistical inference extracts parameter estimates θ̂ using experi-
mental dataD consisting of stimulus-response pairs (Fig. 2B,
left panel), by first summarizing the data with the likelihood,
L(θ) (Fig. 2B, right panel), followed either by maximiza-
tion of the likelihood, θ̂ = argmaxθL(θ) in the maximum-
likelihood (ML) paradigm, or by deriving θ̂ from the poste-
rior, Eq (1), in the Bayesian paradigm.
To apply our reasoning, we must propose a normative the-
ory for neural function, form the optimization prior, and
combine it with the likelihood in Fig. 2B, as prescribed by
the Bayes rule in Eq (1). An influential theory in neu-
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Fig. 2. Efficient coding in a toy model neuron and the corresponding optimization prior. (A) Model neuron uses a logistic nonlinearity (middle panel) to map continuous
stimuli xt (left panel) to a discrete spiking response rt (right panel). The shape of the nonlinearity is described by two parameters: slope k and offset x0. (B) An example
dataset (left panel) consisting of stimulus values (gray line) and associated spiking responses (empty circles – no spike, full circles – spike). Likelihood function of the
nonlinearity parameters defined by the observed data. Dark blue corresponds to most likely parameter values. (C) Distribution of natural stimuli to which the neuron might
be adapted. In this example, each mode corresponds to a behaviorally relevant state of the environment: presence of a predator, a prey or a mate. (D) Efficient coding utility
function, here, the mutual information between neural response rt and the state of the environment, ct, with stimuli drawn from the distribution in panel C). The amount of
information conveyed by the neuron depends on the position and slope of the nonlinearity. Insets depict example nonlinearities corresponding to parameter values marked
with black crosses. (E) Four maximum-entropy optimization priors over parameters for the neural nonlinearity (left panel). Distributions are specified by the utility of each
slope-offset combination. Increasing parameter β constrains the distribution (lowers its entropy) and increases the expected utility of the parameters (right panel). Orange
numbers on the horizontal axis specify the fraction of the entire domain effectively occupied by parameters at given β.

roscience called “efficient coding” postulates that sensory
neurons maximize the amount of information about natu-
ral stimuli they encode into spikes given biophysical con-
straints (5, 31, 33–36). This information-theoretic optimiza-
tion principle (37) has correctly predicted neural parameters
such as receptive field shapes (34, 38) and the distribution of
tuning curves (17, 39), as well as other quantitative proper-
ties of sensory systems (4, 40–44), ab initio, from the dis-
tribution of ecologically relevant stimuli (2, 34). As such,
efficient coding is also a suitable normative theory for our
model neuron.

To apply efficient coding, we need to specify a distribution
from which the stimuli xt are drawn. In reality, neurons
would respond to complex and high-dimensional features of
sensory inputs, such as a particular combination of odorants,
timbre of a sound or a visual texture, in order to help the ani-
mal discriminate between environmental states of very differ-
ent behavioral relevance (e.g. a presence of a predator, a prey
or a mate). To capture this intuition in our simplified setup,
we imagine that the stimuli xt are drawn from a multi-modal
distribution, which is a mixture of three different environ-
mental states, labeled by ct (Fig. 2C). Efficient coding then
postulates that the neuron maximizes the mutual information,
I(rt;ct), between the environmental states, ct, that gave rise
to the corresponding stimuli, xt, and the neural responses, rt.

Mutual information, which can be evaluated for any choice
of parameters k, x0, provides the utility function, U(k,x0) =
I(rt;ct), relevant to our case. Figure 2D shows that U is

bounded between 0 and 1 bit (since the neuron is binary),
but does not have a unique maximum. Instead, there are
four combinations of parameters that define four degener-
ate maxima, corresponding to the neuron’s nonlinearity be-
ing as steep as possible (high positive or negative k) and lo-
cated in any of the two “valleys” in the stimulus distribution
(red peaks in Fig. 2D). Moreover, the utility function forms
broad ridges on the parameter surface, and small deviations
from optimal points result only in weak decreases of utility.
Consequently, formulating clear and unambiguous theoreti-
cal predictions is difficult, an issue that has been recurring in
the analysis of real biological systems (18, 45, 46).
Given the utility function, the construction of the maximum-
entropy optimization prior according to Eq (2) is straightfor-
ward. Explicit examples for different values of β are shown
in Fig. 2E (left panel); more generally, the average utility of
the prior monotonically increases as the prior becomes more
localized around the optimal solutions, as measured by the
decrease in entropy of the prior (Fig. 2E, right panel). This
can be interpreted as restricting the system into a smaller part
of the parameter domain. If an increase in average utility
requires a reduction in entropy by 1 bit, this means that the
parameters will be sampled from at most half the available
domain. This completes our setup and allows us to address
the four questions posed in the Introduction.

Question 1: Statistical test for the optimality hypoth-
esis. Given a candidate normative theory and experimental
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Fig. 3. Statistical test of optimality. (A) The utility function U(k,x0). The crosses
and numbers show the locations of ground truth parameters. (B) Likelihood of the
nonlinearity parameters obtained from 20 stimulus–response (xi,ri) pairs. The
three examples correspond to three ground truth parameter values (black crosses
in panel A), and are ordered by increasing utility. (C) Marginal likelihood of the op-
timality parameter β, L̃(β) = P (D|β), corresponding to the data in A). Maximum
likelihood estimates of β, β̂1,2,3 (denoted by blue circles), indicate that the data
would be most probable with no preference for high utility U (left panel, β̂1 = 0 –
note that we do not allow negative β̂), some preference for high U (middle panel,
β̂2 > 0 finite) and strong preference for high U (right panel, β̂3 →∞; blue circle
displayed at β = 200 for illustration purposes). The likelihood ratio statistic λ1,2,3
compares the marginal likelihood of β at β = 0 vs. β = β̂1,2,3 (see Methods). (D)
The null distribution of the test statistic λ. The point mass at λ= 0 corresponds to
the cases when the maximum likelihood optimality parameter is zero, β̂ = 0. High
values of λ are evidence against the null hypothesis that β = 0, and hence support
optimality. The dashed vertical line shows the significance threshold at α = 0.05,
and blue circles are the values λ1,2,3. Only λ3 crosses the threshold, indicating
that the corresponding data would be surprising without preference for high utility
parameters.

data for a system of interest, a natural question arises: does
the data support the postulated optimality? This question is
non-trivial for two reasons. First, optimality theories typi-
cally do not specify a sharp boundary between optimal and
non-optimal parameters, but rather a smooth utility function
U(θ) (Fig. 3A): how should the test for optimality be defined
in this case? Second, a finite dataset D might be insufficient
to infer a precise estimate of the parameters θ, but will in-
stead yield a (possibly broad) likelihood surface (Fig. 3B):
how should the test for optimality be formulated in the pres-
ence of such uncertainty?

Here we devise an approach to address both issues. The ba-
sis of our test is a null hypothesis that the system is not op-
timized, i.e., that its parameters have been generated from
a uniform random distribution on the biophysically accessi-
ble parameter domain. This distribution is exactly the opti-
mization prior P (θ|β = 0). The alternative hypothesis states
that the parameters are drawn from a distribution P (θ|β) with
β > 0. To discriminate between the two hypotheses, we use
a likelihood ratio test with the statistic λ, which probes the
overlap of high-likelihood and high-utility parameter regions.
Specifically, we define the marginal likelihood of β given
data, L̃(β) = P (D|β) =

∫
dθL(θ)P (θ|β) (Fig. 3C), and then

define λ as the log ratio between the maximal marginal like-
lihood, maxβ>0 L̃(β), and the marginal likelihood under the

null hypothesis, L̃(β = 0) (see Methods).
The test statistic λ has a null distribution that can be esti-
mated by sampling (Fig. 3D), with large λ implying evidence
against the null hypothesis; thus, given a significance thresh-
old, we can declare the system to show significant degree of
optimization, or to be consistent with no optimization. This is
different from asking if the system is “at” an optimum: such
a narrow view seems too restrictive for complex biological
systems. Evolution, for example, might not have pushed the
system all the way to the biophysical optimum (e.g., due to
mutational load or because the adaptation is still ongoing),
or the system may be optimal under slightly different utility
function or resource constraints than those postulated by our
theory (21). Instead, the proposed test asks if the system has
relatively high utility, compared to the utility distribution in
the full parameter space.
While principled, this hypothesis test is computationally ex-
pensive, since it entails an integration over the whole param-
eter space to compute the marginal likelihoods, L̃(β), as well
as Monte Carlo sampling to generate the null distribution.
The first difficulty can be resolved when the number of ob-
servations T is sufficient such that the likelihood of the data,
L(θ), is sharply localized in the parameter space; in this case
the value of the utility function at the peak of the likelihood
itself becomes the test statistic and the costly integration can
be avoided (see Methods). The second difficulty can be re-
solved when we can observe many systems and collectively
test them for optimality; in this case the distribution of the test
statistic approaches the standard χ2 distribution (see Meth-
ods).

Question 2: Inferring the degree of optimality. Hypoth-
esis testing provides a way to resolve the question whether
the data provides evidence for system optimization or not (or
to quantify this evidence with a p-value). However, statisti-
cal significance does not necessarily imply biological signif-
icance: with sufficient data, rigorous hypothesis testing can
support the optimality hypothesis even if the associated util-
ity increase is too small to be biologically relevant. There-
fore, we formulate a more refined question: How strongly is
the system optimized with respect to a given utility, U(θ)?
Methodologically, we are asking about what value of the
optimization parameter, β, of the prior is supported by the
data D. In the standard Bayesian approach, all parameters
of the prior are considered fixed before doing the inference;
the prior is then combined with likelihood to generate the
posterior (Fig. 4A). Our case corresponds to a hierarchical
Bayesian scenario, where β is itself unknown and of inter-
est. In the previous section we chose it by maximizing the
marginal likelihood, L̃(β) to devise a yes/no hypothesis test.
Here, we consider a fully Bayesian treatment, which is par-
ticularly applicable when we observe many instances of the
same system. In this case, we interpret different instances
(e.g., multiple recorded neurons) as samples from a distribu-
tion determined by a single population optimality parameter
β (Fig. 4B) that is to be estimated. Stimulus-response data
from multiple neurons are then used directly to estimate a
posterior over β via hierarchical Bayesian inference.
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Fig. 4. Inferring the degree of population optimality. (A) Posterior over non-
linearity parameters, inferred for a single system with a utility-derived prior at fixed
optimality parameter, β = β∗. (B) A hierarchical model of a population of optimized
systems. Population optimality parameter β controls the distribution of parameters
for individual systems (n = 1, . . . ,N ), θn, which give rise to observed data, Dn.
(C) Nonlinearity parameters (red dots) sampled from different ground truth distri-
butions. 64 samples from a strongly optimized population (β = 12; left panel),
32 samples from a weakly optimized population (β = 4; middle panel), 32 sam-
ples from a non-optimal distribution (Gaussian distribution; right panel). For each
model neuron θn, data Dn consists of 100 stimulus-response pairs. (D) Results
of hierarchical inference. Posteriors over population optimality β (purple lines) were
obtained using simulated data from C). Posterior averages, β̂, shown as dashed
purple lines. Priors (gray lines) were uniform on the [0,20] interval. (E) Average
utility, I(rt;ct), reported as a fraction of the maximum value. Estimated values
(purple bars) closely match ground truth (gray bars). Roman numerals correspond
to scenarios from panel C. (F) Entropy and relative average utility of ground truth
distributions (gray, filled circles) and inferred distributions parametrized by β̂ (purple,
empty circles). Roman numerals correspond to scenarios from panel C.

To explore this possibility, we generated parameters θn of
model neurons from three different distributions: strongly
optimized (β = 12; Fig. 4C, left panel), weakly optimized
(β = 4; Fig. 4C, middle panel) and non-optimal (Gaus-
sian distribution of parameters; Fig. 4C, right panel). From
each neuron we obtained an experimental dataset Dn of
100 stimulus-response pairs. Using standard hierarchical
Bayesian inference we then computed the posterior distri-
butions over the population optimality parameter, β (purple
lines in Fig. 4D; see Methods). In each of the three cases,
posterior averages, β̂ (Fig. 4D; dashed purple lines) closely
approximated ground truth values.
Following the hierarchical inference, we can interpret the in-
ferred population parameter β̂. We note that parameter es-
timate β̂ can be mapped onto normalized average utility (as
illustrated in Fig. 2E), which enables us to report the opti-
mality on a [0,1] scale. Normalized values of utility for three
different ground truth are displayed in Fig. 4E (purple bars),

side-by-side with relative utilities of corresponding ground-
truth distributions (gray bars). These normalized utility val-
ues can be then compared to the average utility assuming no
optimization, Ū(β = 0).
The maximum-entropy, probabilistic inference framework
enables us to draw unique inferences about system’s opti-
mality, which are not possible otherwise. For example, in
addition to estimating average relative utility, we can also
quantify how restrictive the optimization needs to be in or-
der to achieve that level of utility. This restriction is mea-
sured by the entropy associated with β̂ (Fig. 4F, horizontal
axis). In example I from Fig. 4C-F, β̂ = 12.03 is associated
with a decrease in entropy of about 1.75 bits compared to
β = 0, meaning that nonlinearity parameters are effectively
restricted to a fraction about 2−1.75 ≈ 0.3 of the parameter
domain. Example III with β̂ = 0.2 is consistent with high en-
tropy and indicates almost no such restriction. This is despite
the fact that the parameters were sampled from a Gaussian
highly concentrated in the parameter space — but not in a
region with high utility. The average utility value equal to
that from example III could be obtained if the parameters had
been sampled uniformly. This implies, that such a system
may be optimized for a different utility function or shaped
by other processes. The system could also be anti-optimized,
i.e. prefer negative values of U . Such cases could be easily
identified if we allowed β̂ to be negative — but we focus on
positive β for simplicity. Taken together, the location of a
system on the entropy-average utility plane Fig. 4F presents
two different insights into optimality of the system’s param-
eters which are not accessible by other means.
Finally, another clear benefit of the probabilistic framework
is the possibility of computing uncertainty estimates of β and
the associated average utility and entropy.

Question 3: Data resolves ambiguous theoretical pre-
dictions. When the predictions of a normative theory are de-
generate, with multiple maxima of the utility function, the
biological context typically forces us to choose between two
interpretations. On the one hand, we may observe multiple
instances of the biological system and each instance could be
an independent realization sampled from any of the maxima:
statistical analyses of optimality thus need to consider and in-
tegrate over the whole parameter space, as in the approaches
described above. On the other hand, we may observe a single
(e.g., evolutionary) realization of the biological system which
we hypothesize corresponds to a single optimum of the util-
ity function. Our task is then first to identify that relevant
maximum; if it exists, subsequent analyses can follow up on
how well data agrees with that prediction and how surprising
such an agreement might be in face of multiple alternative
maxima.
In our example, multiple values of slope and offset yield opti-
mal or close to optimal neural performance, resulting in am-
biguous theoretical predictions. As a simple illustration of
how data can break such ambiguities, we consider three ex-
ample neurons with varying degree of optimality (Fig. 5A)
and observe how their posteriors look like after seeing as
few as T = 12 stimulus-response pairs from each neuron
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(Fig. 5B). All three simulated datasets reduced the uncer-
tainty (entropy) about the neuron’s parameters by a similar
amount, as reflected by the entropy and utility of the posterior
versus the entropy and utility of the prior (Fig. 5C). Despite
similar reductions in entropy, the resulting inferences were
very different in terms of agreement with the theory. Only
the posterior of the first neuron concentrated in a high-utility
region of the parameter domain, thus clearly identifying one
of the four peaks of the utility function as consistent with the
operating regime of the simulated neuron. The two remain-
ing posteriors are concentrated in regions of the parameter
space which weakly overlap with the prior, or where prior
probability is close to 0. To capture these qualitative differ-
ences mathematically, we define and compute the mode en-
tropy, where each mode corresponds to the attraction basin of
a local utility maximum. Optimality theories with degenerate
maxima will allocate the prior probability relatively evenly
among the modes, resulting in high mode entropy (here, 2
bits, i.e., 4 possible local maxima). A few observations of
neuron 1 consistent with an optimal solution drastically col-
lapsed this mode uncertainty and identified the single relevant
utility maximum; this decrease was smaller for slightly sub-
optimal neuron 2 and vanished for neuron 3 (Fig. 5D).

This is a very non-standard application of the Bayesian
framework at small sample sizes, T : here, the structure of
the prior (i.e., the normative theory) dominates the poste-
rior, in what we refer to as the “data-regularized prediction”
regime. We recall that our goal is to derive ab initio theo-
retical predictions, not fit parameters to reproduce the data,
and the data is only used to disambiguate the prediction –
to identify which utility maximum, if any, is realized. If we
track the evolution of the average utility, full posterior en-
tropy, and the mode entropy with the number of data points
T , we clearly see the transition from such “data-regularized
prediction” regime dominated by the prior normative theory,
to the “theory-regularized inference” regime in the large sam-
ple limit (Fig. 5E). In the first regime, data removes the theo-
retical ambiguity and collapses the mode entropy with T < 10
samples; in the second regime, the actual parameter values
(k,x0) are inferred with increasing precision, as evidenced
by posterior entropy that continues to decrease linearly in the
log sample size (corresponding to the standard asymptotic in-
verse scaling of the variance in parameter estimates with the
sample size).

In the “data-regularized prediction” regime, β also serves
a novel role: when the normative theory has multiple op-
tima with a broader spectrum of utility values, β determines
which of the peaks are considered as nearly degenerate can-
didate predictions. A peak with utility U ′ < Umax will be
suppressed in the prior by ∼ exp(−β(Umax−U ′)), and, for
sufficiently high β, the alternative theoretical prediction cor-
responding to U ′ will be disregarded irrespective of the data.

Here we showed that the ambiguities of normative theories
can often be resolved in our Bayesian framework in the “data-
regularized prediction” regime by a very small amount of
data, which breaks the degeneracy of the theoretical predic-
tions. This power may appear trivial at first glance, because

the parameter space of our example is two dimensional and so
priors and posteriors can be evaluated explicitly and plotted
across their whole domain. In more realistic cases involving
tens of parameters, however, finding all (nearly) degenerate
maxima of the utility function and deciding whether data is
“close to” any one of them becomes a daunting task due to
the curse of dimensionality. In the past, this has severely lim-
ited the application of optimality principles to complex sys-
tems with more than a few parameters (9, 31, 42), except in
those rare cases where strict guarantees exist (21). In con-
trast, even in spaces of high dimensionality, posteriors result-
ing from our framework can be sampled with Monte-Carlo
methods or optimized by well-developed methodology (25),
with search concentrated around the unique peak of the nor-
mative theory that is simultaneously permitted by the chosen
value of β and is consistent with the data, if such a peak ex-
ists. Intuitively, theory “proposes” possible optimal solutions
ab initio while data “disposes” with those degenerate solu-
tions for which there is no likelihood support.

Question 4: Optimization priors improve inference for
high-dimensional problems. To answer the last question
we extend our toy model neuron with 2 parameters to a more
realistic model with 16×16 parameters. The purpose of this
exercise is two-fold: technically, we will show that an appli-
cation of our framework to a realistically high-dimensional
problem is feasible; formally, we will show that optimiza-
tion priors can play a powerful role in regularizing such high-
dimensional inference problems.
We simulated the responses of a Linear-Nonlinear-Poisson
(LNP) neuron (30) to natural image stimuli (Fig. 6A). Natural
image patches xt (16× 16 pixels each) are projected onto a
linear filter φ, and the output of the filter st is transformed
with a logistic nonlinearity into average neural firing rate λt.
The number of spikes elicited by the neuron rt is then drawn
from a Poisson distribution, with mean λt. The goal of data
analysis is to estimate the linear filter φ ∈ R16×16, which
determines the sensory feature encoded by the neuron, from
data consisting of stimulus-response pairs, D = {xt, rt}Tt=1.
Experimentally observed filters φ have been suggested to
maximize the sparsity of responses st to natural stimuli (34).
A random variable is sparse when most of its mass is concen-
trated around 0 at fixed variance. These experimental obser-
vations have been reflected in the normative model of sparse
coding, in which maximization of sparsity has been hypothe-
sized to be beneficial for energy efficiency, flexibility of neu-
ral representations, and noise robustness (38, 47). Filters op-
timized for sparse utility Us(φ) (see Methods) are oriented
and localized in space and frequency (Fig. 6B, left panel).
To simulate a realistic experiment, we constructed a model
neural population of 64 neurons with 40 filters optimized un-
der sparse utility, and 24 generated according to a related,
but different criterion (Fig. 6C; see Methods for details). We
generated neural responses by exposing each model neuron
to a sequence of 2000 natural image patches. Using these
simulated data we then inferred the filter estimates, φ̂, using
Spike Triggered Average (STA) (18, 48), which under our
assumptions is equivalent to the maximum likelihood (ML)
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estimate (30) (see Methods). STAs computed from limited
data recover noisy estimates of neural filters (Fig. 6C, right
panel).
We then asked whether normative theories can provide pow-
erful priors to aid inference in high-dimensional problems.
Using our sparse utility, Us(φ), we formulated optimization
priors for various values of β and computed maximum-a-
posteriori (MAP) filter estimates φ̂(β) from simulated data
(Fig. 6D; see Methods for details). Increasing values of β in-
terpolate between pure data-driven ML estimation (Fig. 6D,
second column from the left) that ignores the utility, and
pure utility maximization (Fig. 6D, right column) at very
high β = 103 where the predicted filters become almost com-
pletely decoupled from data; these two regimes seem to be
separated by a sharp transition.
For intermediate β = 10,100, MAP filter estimates show
a large improvement in estimation performance relative to
the ML estimate (as quantified by Pearson correlation) with
the ground truth. Optimization priors achieve this boost in
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Fig. 6. Optimality analysis and inference of high-dimensional receptive fields.
(A) A lineear-nonlinear-Poisson (LNP) neuron responding to natural scenes. High-
dimensional stimuli (natural image patches, xt) are projected onto a linear filter
φ. Filter output is transformed with a logistic nonlinearity into average firing rate
which drives Poisson spiking, rt. (B) Filters optimized for maximally sparse re-
sponse to natural stimuli. Inset depicts histograms of filter responses to natural
images (black line) overlaid on top of histograms of random filter responses (gray-
shaded histogram). (C) Model neural population consisting of 16 sub-optimally
sparse (3 top rows, orange marker) and 40 optimally sparse filters (5 bottom rows,
green marker; see Methods for details). Corresponding spike-triggered averages
(maximum-likelihood filter estimates) computed from responses to 2000 natural
stimuli (right panel). (D) MAP estimates of two optimally sparse filters (left column;
green frames) and two sub-optimally sparse filters (left column; orange frames) ob-
tained with optimality prior of increasing strength. White digits denote correlation
with the corresponding ground truth. (E) Average correlations of filter estimates
with the ground truth as a function of prior strength β. Green and orange lines cor-
respond to optimally and sub-optimally sparse neuron sub-populations respectively.

performance because they implicitly encode many notions
about how neural filters look like (localization in space and
bandwidth, orientation), which the typical regularizing pri-
ors (e.g., L2 or L1 regularization of φ components) will fail
to do. While specialized priors designed for receptive field
estimation can capture some of these characteristics explic-
itly (18, 49), optimization priors grounded in the relevant nor-
mative theory represent the most succinct and complete way
of summarizing our prior beliefs about receptive fields. Im-
portantly, using an optimization prior does not imply that the
neural data must have been generated by an optimal neuron:
even if the real neuron is not optimal, the inference will bene-
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fit from the implied smoothness, localization, and orientation
properties suggested by the prior (Fig. 6D, two bottom rows).
This intuition is reflected in our analysis - on average opti-
mality priors increased the quality of optimally-sparse filters
by a larger amount and at higher β values (Fig. 6E, green line)
than sub-optimal filters (Fig. 6E, orange line). Sub-optimal
filter estimation, however also benefited from the presence of
the prior. In practice, the value of β which determines how
strongly the prior shapes the resulting inference can be set
via the standard method of cross-validation to maximize the
performance of the inferred model on withheld data.
Taken together, we suggest that whenever a normative theory
for a high-dimensional system exists and the task at hand is
to infer the system parameters from data – a task which is
typically under-determined for biological complex systems
and networks – optimization priors could lead to a crucial
boost in the performance of our inferences. Beyond capturing
the low-level statistical expectations for the parameters (such
as their smoothness or sparsity), optimization priors impose
a complex structure on the parameter space and, for example,
a priori exclude swaths of parameter space that lead to non-
functioning biological systems. In this way, the statistical
power of the data can be used with maximum effect in the
parameter regime that is of actual biological relevance.

Statistical analysis of optimality in the visual
cortex
In this section we demonstrate the applicability of our frame-
work to real biological data. We analyze receptive fields
(RFs) of neurons in the primary visual cortex (V1) of the
Macaque monkey (50) (Fig. 7A). This system is a particularly
good test case, since multiple candidate optimality theories of
V1 were developed and tested against data (34, 38, 51, 52).
For the purpose of our analysis, we consider two well known
utility functions of neural RFs: sparseness and slowness.
Sparse utility Us, described in detail in the previous sec-
tion, prioritizes receptive filters which rarely generate strong
neural responses in natural conditions. Slowness utility Ul
assumes that neurons extract invariant properties of sensory
data (51) (see Methods for details). Optimally slow RFs min-
imize temporal variability of neural activity in natural sen-
sory enviromnents (53). On the level of individual neurons,
these two optimality criteria yield very different predictions.
In contrast to optimally sparse RFs which are localized in
space and frequency (Fig. 7B, left column), RFs optimized
for slowness are broad and non-local (Fig. 7B, right col-
umn).
We first asked whether RFs of individual neurons support the
optimality hypothesis, under both utilities, Us(φ) and Ul(φ)
as in Question 1. Given the high-quality of RFs estimates
(Fig. 7A), we evaluate each utility function directly on in-
ferred RFs and use it as a test statistic. In that way, we
avoid costly marginalization of the high-dimensional likeli-
hood. To construct null distributions for the test, we sam-
pled 106 random filters consistent with optimization prior
P (φ|β = 0), and declared the 95th percentile of these distri-
butions to be the optimality threshold (Fig. 7C left and right

columns, dashed red lines). Orange and green dots in Fig. 7C
denote utility values of non-significant and significant RFs,
respectively. Examples of significant and non-significant RFs
are displayed in green and orange frames, respectively. The
large majority (204) of V1 neurons passes the sparse opti-
mality thresholds, while only 3 pass the test of slowness op-
timality. This result is expected given the apparent visual
similarity of neural RFs and optimally sparse filters.

We next asked whether all RFs can be used together to quan-
tify the degree of population optimality, as in Question 2. We
estimated approximate posteriors over parameter β via rejec-
tion sampling (see Methods), using all RFs in the population
(Fig. 7D, purple lines). For comparison, we also computed
posteriors using 250 utility-maximizing filters (Fig. 7D, red
lines), and 250 utility-minimizing filters (Fig. 7D, gray lines).
We next computed the maximum-a-posteriori (MAP) esti-
mate of the population optimality parameter β (Fig. 7D, ver-
tical dashed lines). MAP estimates obtained with simulated
maximal and minimal utility RFs provide a reference for the
interpretation of β estimated from real data (β̂V 1). In case of
sparse utility (Fig. 7D, left column), β̂V 1 is very close to the
parameter value of the optimally sparse filters, implying high
degree of optimization. This is in contrast to slowness utility,
where β̂V 1 takes a small negative value, implying that indi-
vidual V1 neurons are slightly "anti-optimized" for slowness.
This means that a set of RFs drawn from a uniform distribu-
tion over the parameter domain would yield a higher average
slow utility value than the one observed in the data.

Locating the distributions parametrized by infered values of
β in the entropy-utility plane as in Fig. 4F was not feasible –
estimating entropies is notoriously difficult in spaces of large
dimension (though it may be possible using advanced Monte
Carlo sampling methods (54)). However, the percentiles
of the mean utility within the null distribution p(U |β = 0),
Fig. 7C (blue dots) provide a similar insight into the restric-
tion within the parameter (RF) domain. This percentile was
99.6% for the sparse utility Us, meaning that only 0.4% of
the parameter domain has higher utility than was observed
on average. Taken together, this analysis illustrates how the
“degree of population optimality” can be obtained from ex-
perimental data.

Population optimality β parametrizes the entire distribution
of receptive fields with a particular average utility. Inference
of β therefore enables us to draw conclusions and make pre-
dictions which would not be possible by other means (e.g.
by averaging utilities of all RFs in the population). For ex-
ample, we can predict the distribution of utility values which
could be observed in future experiments and be consistent
with the inferred degree of optimality p(U(φ)|β̂) (Fig. 7E,
purple lines). This distribution can be different from the em-
pirically observed one (Fig. 7E, blue lines) due to small sam-
ple size, but also if the system is optimized for a different
utility or is subject to further constraints – violating the max-
imum entropy assumption. This is the case for slowness util-
ity (Fig. 7E, right column). On the other hand, the predicted
and empirical distributions are very similar for sparse utility
(Fig. 7, left column), for which the system was found to be
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strongly optimized.
Another rich set of predictions can be made about corre-
lations and other statistical features of system parameters
(here–RF shapes), consistent with the given degree of opti-
mality and average utility. As an example of such a com-
plex statistical property, we consider spatial autocorrelation
of RFs (Fig. 7F). Extreme values of β predict very different
autocorrelation patterns (Fig. 7F, left and right column, left
and right panels). Autocorrelation patterns consistent with
inferred degrees of optimality resemble the average autocor-
relation of V1 neurons more than the edge cases (Fig. 7F, left
and right column, middle panels). These high-order statis-
tics determined by the β estimate form a rigorous prediction
about statistical properties of a system optimized to a given
degree.
In this section, we analyzed utility of indiviudal neurons,
treating them as independent realizations from an underlying
distribution of parameters. It is important to stress that si-
multaneous optimization a population of model neurons for
maximal slowness yields filters which very closely resemble
RFs of visual neurons (38, 53). Our analysis is therefore not
a proof of lack of optimization for slowness at the popula-
tion level. It is rather a demonstration of applicability of the
framework to real data. Analysis of optimality of neural pop-
ulations is a subject of future work.

Discussion
In this paper, we presented a statistical framework that uni-
fies normative, top-down models of complex systems which
derive the system’s parameters ab initio from an optimiza-
tion principle, with bottom-up probabilistic models which fit
the system’s parameters to data. The union of these two ap-
proaches, often applied separately, becomes straightforward
in the Bayesian framework, where the normative theory en-
ters as the prior and data enters as the likelihood. The two
traditional approaches are recovered as limiting cases; more
importantly, interpolation between these two limits spans a
mixed regime of optimization and inference that is highly
relevant for understanding complex biological systems. We
illustrated the relevance of our framework by describing how
(i) measurements can be used to test a given system for con-
sistency with an optimization theory; (ii) “closeness to op-
timality” can be defined and inferred; (iii) degeneracies of
theoretical predictions can be broken by a small amount of
data; (iv) optimization theories can provide powerful priors
to aid inference in high-dimensional problems.
Our framework dovetails with other approaches which ad-
dress the issues of ambiguity of theoretical predictions and
model identifiability given limited data in biology. The
framework of “sloppy-modelling” (55, 56), grounded in dy-
namical systems theory, characterizes the dimensions of the
parameter space which yield qualitatively similar behavior of
the system. In our framework, these dimensions correspond
to regions of the parameter space of equal or similar utility.
Another important conceptual advance grounded in statistical
inference has been the usage o limited data to coarse-grain
probabilistic models (26, 57, 58). Here, we demonstrate that
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Fig. 7. Analysis of neural data. (A) Six example receptive fields (RFs) from
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green and orange frames respectively. Blue dots show the average utility of recep-
tive fields, which are equal to the 99.6th percentile (sparse Us) and 46th percentile
(slow Ul) of p(U |β = 0). (D) Approximate log-posteriors over population optimal-
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Młynarski & Hledík | bioRχiv | 9

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 11, 2020. ; https://doi.org/10.1101/848374doi: bioRxiv preprint 

https://doi.org/10.1101/848374
http://creativecommons.org/licenses/by-nd/4.0/


breaking degeneracies of theoretical predictions with small
data samples can be seen as a related coarse-graining ap-
proach.

Applications and extensions. In theoretical biology one is
frequently confronted with a scenario where a biological sys-
tem is hypothesized to be optimal (e.g., neuron maximizes
information transmission) under some quantitative constraint
(e.g., a limit to the maximal firing rate, or intrinsic noise;
(17, 28, 32)). When the value of the constraint is known, the
prediction naturally emerges from the theory – but what if the
constraint value is not known? One way of addressing the
problem in our framework would be to consider the system
parametrized by all parameters (including the constraints). In
a pure optimization setup, the utility function reaches a non-
trivial maximum within the allowed interval for some param-
eters, while the other parameters would be driven to extreme
values (e.g. zero or infinity) by the optimization—even when
that is physically impossible. In our classifier example, op-
timality sets the position of the nonlinearity, x0, to a finite
value, whereas it attempts to increase the slope, k, without
bound—physically, this would imply reducing the noise in
the classifier to zero. In contrast, in our framework, data will
localize the otherwise-unbounded k value, reflecting the ex-
istence of a physical constraint in the real system. Thus, opti-
mization prediction will correspond to finding the optimal x0
given the value of k that is supported by data. In other words,
our framework has the ability to jointly infer the parameters
that correspond to constraints while simultaneously learning
the remaining parameters from the normative theory. In more
realistic settings, this ability could be greatly potentiated. For
example, a standard neuron model could be parametrized by
hundreds of parameters (corresponding to the receptive field)
plus several parameters for the nonlinearity, with essentially
all parameters determined by optimality except for the non-
linearity steepness (noise constraint) and/or maximum value
(maximum firing rate constraint). Traditionally, these two
values would be set manually and then optimization would
be carried out for receptive field parameters for all values of
the constraint(s) to test for match with data. A manual adjust-
ment of the bounding intervals for those parameters that are
unconstrained by optimality theory to yield consistency of
optimality predictions with data is clearly problematic from
the statistical viewpoint. Such manual “fine-tuning” of con-
straints would de facto amount to (over-)fitting that is not
controlled for. Our framework solves such problems auto-
matically in a single step, by reinterpreting constraints as the
remaining model parameters to be rigorously inferred from
data, formally reducing the dimensionality of the fitting prob-
lem from the number of all parameters to the number of those
unconstrained by optimizing the utility function. Systemati-
cally assessing the interaction between fitting and optimiza-
tion within our framework is an interesting topic for future
research.
Our framework provides a new approach to handle scenarios
where the optimization theory formulates degenerate, non-
unique predictions. A frequent solution is to postulate fur-
ther constraints within the theory itself, which disambiguate

the predictions (15). Our proposed mechanism for breaking
the degeneracy of normative theories is different, yet comple-
mentary: using a small amount of data to localize the theoret-
ical predictions to the relevant optimum, against which fur-
ther statistical tests can be carried out. A possible extension
would be to formally incorporate into the prior the knowl-
edge that the data is, for example, drawn from at most one
local optimum (whose identity is, however, unknown) of the
normative theory.
Another advantage provided by the maximum-entropy
framework is an explicit, parametric form of the distribution
of system parameters with a specific average utility. Having
access to this distribution enables rigorous predictions about
high-order statistical properties of optimal parameters. Tra-
ditional approaches to biologial optimality focused on prop-
erties of individual optima in the parameter space are not able
to make such predictions.
We foresee additional applications of the proposed frame-
work which are beyond the scope of this paper. For example,
it is often difficult to determine which optimality criterion
is plausibly implemented by the biological system of inter-
est (17, 59, 60). Because we leverage the well-understood
machinery of Bayesian inference, our framework could be
used to perform model selection for the utility function that
best explains the data. Such an approach could be used, for
example, to rigorously verify whether entire neural popula-
tions in the visual cortex are jointly optimized for sparsity or
slowness. Such analysis would be analogous to the one we
performed at a single-neuron level.

Outlook. Theories of biological function are currently less
structured than physical theories of nonliving matter. This is
partially due to the inherent properties of biological systems
such as intrinsic complexity and lack of clear symmetries.
It is also partially due to the lack of theoretical approaches
to systematically coarse-grain across scales and identify rel-
evant parameters. We hope that our approach which synthe-
sizes statistical physics, inference, and optimality theories,
can provide novel ways in tackling these fundamental issues.

Materials and Methods
Model neuron and mutual information utility function. A
model neuron elicits a spike at time t (rt = 1) with a proba-
bility:

P (rt = 1|xt) = 1
1 + exp[−k(xt−x0)] ; (3)

the stimuli xt were distributed according to a Gaussian Mix-
ture Model, P (xt) =

∑3
i=1wiN (µi,σ2

i ), where wi = 1/3
are weights of the mixture components, µ1,2,3 =−2,0,2 are
the means, and σi = 0.2 are standard deviations.
To estimate mutual information between class labels and neu-
ral responses, we generated 5 ·104 stimulus samples xt from
the stimulus distribution. Each sample was associated with
a class label ct ∈ {1,2,3}, corresponding to a mixture com-
ponent. We created a discrete grid of logistic-nonlinearity
parameters by uniformly discretizing ranges of slope k ∈
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[−10,10] and position x0 ∈ [−3,3] into 128 values each. For
each pair of parameters on the grid, we simulated responses
of the model neuron to the stimulus dataset and estimated
the mutual information directly from a joint histogram of re-
sponses rt and class labels ct.

Likelihood ratio test of optimality. The proposed test uses the
likelihood ratio statistic,

λ= 2log
maxβ>0P (D|β)
P (D|β = 0) . (4)

The null hypothesis is rejected for high values of λ. The
marginal likelihood of β, L̃(β) = P (D|β), depends on the
overlap of parameter likelihood and the normative prior,
P (D|β) =

∫
ΘP (D|θ)P (θ|β)dθ, where Θ is the region of

biophysically feasible parameter combinations.
The null distribution of λ is obtained by sampling in three
steps: (i) sample a parameter combination θ from a uniform
distribution on θ, i.e. P (θ|β = 0); (ii) sample a data set D
according to the likelihood P (D|θ); (iii) compute the test
statistic λ according to Eq. (4). This computationally expen-
sive process simplifies in two situations described below.
Data-rich-regime simplification. In the data-rich regime,
when the parameter likelihood P (D|θ) is concentrated at a
sharp peak positioned at θ̂ML, likelihood ratio depends only
on the value of utility at θ̂ML:

λ= 2log
maxβ>0

∫
ΘP (D|θ)P (θ|β)dθ∫

ΘP (D|θ)P (θ|β = 0)dθ
(5)

= 2log
maxβ>0P (θ̂ML|β)
P (θ̂ML|β = 0)

(6)

= 2log
(
Z(0)max

β>0

eβU(θ̂ML)

Z(β)

)
, (7)

which is a non-decreasing function of the utility U(θ̂ML).
Thus, this test is equivalent to a test that uses the utility esti-
mate itself, U(θ̂ML), as the test statistic, making it possible
to avoid the costly integration over Θ. The null distribution
can then be obtained by computing U(θ) at uniformly sam-
pled θ.
Multiple system instances simplification. If multiple in-
stances of the system are available and we can assume that
their parameters θ1,θ2, . . . ,θN are i.i.d. samples from the
same distribution P (θ|β), then the datasets D1,D2, . . . ,DN
are also i.i.d., P (D1,D2, . . . ,DN |β) =

∏N
n=1P (Dn|β). We

test the hypotheses β = 0 vs. β > 0 with the likelihood ratio
statistic

λ= 2log
maxβ>0

∏N
n=1P (Dn|β)∏N

n=1P (Dn|β = 0)
. (8)

By Wilks’ theorem, for large N the null distribution of λ ap-
proaches the χ2

1 distribution (with a point mass of weight 1/2
at λ= 0, because we only consider β ≥ 0). This removes the
need for sampling in order to obtain the null distribution.

Hierarchical inference of population optimality. Assuming
that experimental datasets D1,D2, . . . ,DN are i.i.d., the pos-
terior over population optimality parameter β takes the form:

P (β|D1, . . . ,DN )∝ P (β)
N∏
n=1

∫
θn

P (Dn|θn)P (θn|β)dθn,

(9)
where θ = (kn,x0,n) is a vector of neural parameters (slope
and position), and P (β) is a prior over β. We approximated
integrals numerically via the method of squares. Neural pa-
rameter values were sampled from ground-truth distributions
via rejection sampling.

Inference of receptive fields with optimality priors. We ran-
domly sampled 16 × 16 pixel image patches from the van
Hateren natural image database (52) and standardized them
to zero mean and unit standard deviation. Neural responses
were simulated using a Linear-Nonlinear Poisson (LNP)
model:

P (rt|xt,φ,k,x0) = λrt
t e
−λt

rt!
, (10)

where λt is the rate parameter equal to:

λt = L

1 + exp
[
−φTxt

] , (11)

where L= 20 was the maximal firing rate.
Given a linear filter φ, we quantified sparsity of its responses
to natural images using the following function:

Us(φ) =−
〈

1 + log(φTxt)2)
〉
. (12)

Filter sparsity was averaged across the natural image dataset
consisting of 5 · 104 standardized image patches randomly
drawn from the van Hateren image database. The mean and
standard deviation of filters φ was set to be 0 and 1 respec-
tively.
We generated a model population of 64 neurons. We learned
64 linear filters using the logistic Independent Component
Analysis (38). We sorted learned filters according to their
sparse utility. We then retained 24 least sparse filters. The
remaining 40 filters in the population were obtained by max-
imizing the sparse utility Us, starting from different random
conditions. Prior to learning, we reduced the dimensional-
ity of stimuli to 64 dimensions using Principal Component
Analysis.
To infer the receptive fields from simulated neural responses
using our framework, we assumed the following optimization
prior over receptive fields derived from the sparsity utility in
Eq (16):

P (φn|β)∝ exp
[
β(Us(z(φn)))

]
, (13)

where z(φn) denotes normalization of the receptive field to
zero mean and unit variance. The sparse utility was evaluated
over 104 randomly sampled image patches. The resulting
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log-posterior took the following form:

E(φn|D,S,β)∝− 1
σ2

T∑
t=1

(
φTnst− rt,n

)2
−βUs(z(φn)).

(14)
MAP inference was performed via gradient ascent on the log-
posterior. Receptive fields were inferred with different priors
corresponding to following values of the β parameter: 0, 1,
10, 100, 1000. Receptive fields were estimated after reduc-
ing the dimensionality of stimuli with Principal Component
Analysis to 64 dimensions. Estimation via gradient ascent on
the log-posterior was performed in the PCA domain.

Analysis of V1 receptive fields. Receptive fields of 250 neu-
rons in the Macaque V1 were published and analyzed in (50).
All receptive fields were downsampled to 32×32 pixels size
and normalized to have zero mean and unit variance.
To test individual RFs for optimality, we generated the null
distribution of utility values by bootstrapping 106 random fil-
ters as follows: (i) draw a random integer K between 1 and
128; (ii) superimpose K randomly selected principal com-
ponents of natural image patches; each component is multi-
plied by a random coefficient v ∼ N (0,1); (iii) generate a
2D Gaussian spatial mask centered at a random position on
the image patch; lengths of horizontal and vertical axes of
the Gaussian ellipse were drawn independently; (iv) multiply
the random filter and the Gaussian mask. This procedure en-
sures that a range of filters of different sparsity and slowness
will be randomly generated. Filters were standarized to zero
mean and unit standard deviation.
To establish a measure of optimality at a population level,
we needed to simplify the integration over all receptive
field parameters, which was intractable due to their high-
dimensionality. Computation of posteriors over β in Eq (9)
was therefore approximated as follows:

P (β|D1, . . . ,DN )≈ P (β)
N∏
n=1

1
Z(β)P (θ̂n|β). (15)

where θ̂ are receptive fields estimates computed in (50).
We approximated P (θ̂n|β) via rejection sampling, noting
that P (θ̂n|β) = P (U(θ̂n)|β), i.e., the probability of a high
dimensional receptive field is determined solely by a one-
dimensional utility function.
For each β we randomly sampled 106 filters from the pro-
posal distribution, as described above, and retained only
those consistent withP (Us(θ)|β) orP (Ul(θ)|β) via rejection
sampling. Obtained utility values were fitted with a Gaussian
distribution, used to evaluate posteriors over β, with point es-
timates being posterior maxima; the prior over β was uniform
over the range displayed in the figures. For sparse utility,
we discretized β values into 20 values equally spaced on the
[−5,5] interval. For slow utility we used 64 β values equally
spaced on the [−32,32] interval.
Filters accepted for each β value were used to compute the
average spatial autocorrelation.

Given a linear filter φ, we quantified slowness of its responses
to a set of natural image sequences using the following func-
tion:

Ul(φ) =−
〈 1
T −1

T∑
t=2

(φTxt,n−φTxt−1,n)2
〉
n
. (16)

where n is an index over image sequences, and t is a time
index over images within a sequence
Filter slowness was averaged across a 5 ·104 artificially gen-
erated natural image sequences of length T = 2. Each se-
quence was generated by moving an image patch by a ran-
dom distance nx ∈ [−8,8] pixels in a horizontal direction and
ny ∈ [−8,8] pixels in vertical direction, and rotating it by a
random angle α ∈ [−90◦,90◦]. The mean and standard devi-
ation of filters φ and image patches xt,n was set to be 0 and
1 respectively.
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31. Gašper Tkačik, Jason S Prentice, Vijay Balasubramanian, and Elad Schneidman. Opti-
mal population coding by noisy spiking neurons. Proceedings of the National Academy of
Sciences, 107(32):14419–14424, 2010.

32. Julijana Gjorgjieva, Haim Sompolinsky, and Markus Meister. Benefits of pathway splitting in
sensory coding. Journal of Neuroscience, 34(36):12127–12144, 2014.

33. Horace B Barlow et al. Possible principles underlying the transformation of sensory mes-
sages. Sensory communication, 1:217–234, 1961.

34. Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607, 1996.

35. Evan C Smith and Michael S Lewicki. Efficient auditory coding. Nature, 439(7079):978,
2006.

36. Matthew Chalk, Olivier Marre, and Gašper Tkačik. Toward a unified theory of efficient,
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