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Abstract

Learning of complex auditory sequences such as language and music can be thought of
as the continuous optimisation of internal predictive representations of sound-pattern
regularities, driven by prediction errors. In predictive coding (PC), this occurs through
changes in the intrinsic and extrinsic connectivity of the relevant cortical networks,
whereby minimization of precision-weighted prediction error signals improves the
accuracy of future predictions. Here, we employed Dynamic Causal Modelling (DCM) on
functional magnetic resonance (fMRI) data acquired during the presentation of complex
auditory patterns. In an oddball paradigm, we presented 52 volunteers (non-musicians)
with isochronous 5-tone melodic patterns (standards), randomly interleaved with rare
novel patterns comprising contour or pitch interval changes (deviants). Here, listeners
must update their standard melodic models whenever they encounter unexpected
deviant stimuli. Contour deviants induced an increased BOLD response, as compared to
standards, in primary (Heschl’s gyrus, HG) and secondary auditory cortices (planum
temporale, PT). Within this network, we found a left-lateralized increase in feedforward
connectivity from HG to PT for deviant responses and a concomitant disinhibition
within left HG. Consistent with PC, our results suggest that model updating in auditory
pattern perception and learning is associated with specific changes in the excitatory
feedforward connections encoding prediction errors and in the intrinsic connections

that encode the precision of these errors and modulate their gain.
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Significance statement

The learning of complex auditory stimuli such as music and speech can be thought of as
the continuous optimisation of brain predictive models driven by prediction errors.
Using dynamic causal modelling on fMRI data acquired during a melodic oddball
paradigm, we here show that brain responses to unexpected sounds were best explained
by an increase in excitation within Heschl's gyrus and an increase in forward
connections from Heschl's gyrus to planum temporale. Our results are consistent with a
predictive coding account of sensory learning, whereby prediction error responses to
new sounds drive model adjustments via feedforward connections and intrinsic

connections encode the confidence of these prediction errors.
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Introduction

Predictive coding (PC) is a unifying theory of brain function that formally links human
learning and neuroplasticity (Friston, 2002). The key notion in PC is that the brain
embodies an internal model of the environment, which constantly generates predictions
on the future sensory input. When predictions fail, the brain generates ‘prediction error
signals’ that are weighted by their precision and passed from lower to higher levels of
the brain’s hierarchy via changes in feedforward connections, thereby revising the
model’s predictions (Dietz et al., 2014). Learning can thus be thought of as a process of
recurrent model updating through prediction error signaling. Specifically, this entails a
release of the excitatory pyramidal cells that encode prediction error from top-down
expectations, accompanied by an increase in their synaptic gain or sensitivity to
ascending prediction errors (Koelsch et al., 2019). This hypothesis, however, lacks
experimental evidence regarding the rich and complex stimulation that occurs in natural

sound environments, such as speech and music (McDermott et al., 2013).

Melodic learning is an excellent model to address this issue. Within PC, melodic
learning reflects the update of internalized probabilities acquired through statistical
learning and relates to melodic continuations (Hansen and Pearce, 2014) at two
pitch-processing levels: (1) ‘contour’ — the rise and fall of pitch changes— and (2)
‘interval’ — the distance between adjacent tones (Schmuckler, 2016). The maintenance
and updating of melodic predictive models have been studied using auditory oddball

paradigms, whereby magnetoencephalographic and/or electrophysiological (M/EEG)
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brain activity is recorded while participants listen to streams of repeated short melodies
typically based on tones from the 12-tone-equal-tempered scale, omnipresent in
Western tonal music (e.g., Tervaniemi et al., 1994; Hsu et al., 2015; Lappe et al., 2016).
The mismatch negativity (MMN) elicited by occasional contour or interval deviations in
these patterns is evidence that a melodic predictive model has been formed during the
auditory stimulation and thought to represent the message passing of
precision-weighted prediction errors in the cortical auditory hierarchy (Vuust et al.,
2009, 2014, 2018; Dietz et al.,, 2014; Auksztulewicz and Friston, 2015). Previous
functional magnetic resonance imaging (fMRI) work has found core regions of the
superior temporal gyrus (STG), including primary auditory cortex (A1) and planum
temporale (PT), as the main cortical generators of melodic MMN (Habermeyer et al.,
2009). However, how auditory cortical regions interact to form and revise melodic

representations remains an unsettled issue.

Here, we used dynamic causal modelling (DCM) of effective connectivity in auditory
fMRI data acquired while 52 human volunteers (non-musicians) were presented with an
unfamiliar musical tuning system, the Bohlen Pierce (BP) scale (Mathews et al., 1988)
(Fig. 1A). This artificial scale has the advantage of preserving intervallic properties from
the 12-tone equal-tempered scale without being contaminated by prior knowledge about
pitch categories and intervals. This ensures a more controlled setting to test hypotheses
about the generation and revision of an internal predictive model. First, we identified
an MMN auditory network using a melodic oddball paradigm (Lumaca and Baggio,

2016). In a single run, participants were scanned while listening to streams of five-tone
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BP melodic patterns (Fig. 1B). Occasionally, the fourth tone was pitch-shifted to violate
the contour (‘contour’ deviant; 10%) or the interval structure (‘interval’ deviant; 10%) of
the ‘standard’ sequence. Second, we used a two-state DCM (Marreiros et al., 2008) to
model the effective connectivity within and between bilateral primary and secondary
auditory cortices during deviant stimuli, relative to standard stimuli (Fig. 2). Using
Bayesian model reduction (BMR) and parametric empirical Bayes (Friston et al., 2016),
we then compared, at the group level, a series of alternative hypotheses (Fig. 3) to
examine the specific changes in extrinsic and intrinsic effective connectivity that occur

in the localized temporal network during auditory pattern learning.

Materials and Methods

Participants. A total of 52 participants (33 females, mean age 24.5 years, range 20-34)
with normal hearing took part in the fMRI experiment. Participants were all
non-musicians (i.e., none of them had three or more years of formal musical training)
and all gave informed consent before the experiment. The neuroimaging data used in
this work were acquired a part of another project approved by the local ethics committee

of the Central Denmark Region (nr. 1083).

MRI Procedure

Bohlen-Pierce scale. The auditory stimulation used in our fMRI oddball paradigm was
adopted from an EEG paradigm by Lumaca and Baggio (2016). Tone sequences were

constructed using tones from the equal-tempered version of the Bohlen-Pierce (BP)
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scale (Mathews et al., 1988; Loui et al.,, 2009), a microtonal tuning system with 13
logarithmic even divisions of a tritave (corresponding to a 3:1 frequency ratio). In the

equal-tempered version of the scale, frequencies (F) are defined by the following:

F = kX3 (n/13)

where n is the number of steps along the scale, and k is a constant that correspond to the
fundamental frequency. Based on this equation, we defined n = 0, 2, 3, 4 or 6 and k =

440 Hz (Fig. 1A).

Stimuli. The pattern deviance paradigm and stimuli were adapted from an EEG
paradigm by Lumaca and Baggio (2016), and has been shown to produce a MMN evoked
potential (Naatdnen et al., 1978). Stimuli were 5-tone melodic patterns presented in a
single block, consisting of collections of five 50 ms sinusoidal tones (5 ms rise and fall;
50 ms inter-tone intervals) with the frequencies 440, 521, 567, 617, 730.6 Hz
(henceforth referred to as ABCDE in the context of the low register) (Fig. 1B). During
stimulation, sequences were randomly transposed to three different baseline
frequencies (henceforth referred as ‘A’), corresponding to three different registers of the
BP scale (baseline tones: 440, 478, 567 Hz). The patterns were presented with an
‘inter-stimulus interval’ of 750 ms. Standard patterns (80%) were randomly
interspersed with ‘contour’ (10%) and ‘interval’ (10%) deviant sequences for a total of
1260 stimuli. In abstract terms, the standard pattern followed the sequence EBCAD. In
contour deviant stimuli, the fourth tone changed the surface structure (‘ups’ and

‘downs’) of the standard stimuli without changing the interval (i.e. EBCED); viceversa
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for the interval deviants (i.e. EBCBD). Deviant stimuli were pseudo-randomized in order
to present deviant tones of the same type in close temporal succession (jittering
stimulus-onset asynchrony, SOA, range 2400-4800 ms) and to induce an increase of the
BOLD response by superposition. The use of multiple deviants in close succession can

be found in other fMRI oddball studies (Cacciaglia et al., 2015).

Image acquisition. The fMRI data were acquired on a 3T MRI scanner (Siemens
Prisma). The subjects’ head was fixated with cushions to minimize movement during the
experiment. During MRI acquisition, participants were instructed to be still and to
watch a subtitled silent movie projected on a MRI-compatible screen located at the rear
of the scanner. In the meanwhile, auditory stimulation was delivered by MR-compatible

headphones using Presentation software (www.neurobs.com). A total of 1535 volumes

were acquired over 25 minutes using a fast T2*-weighted echo-planar imaging (EPI)
multiband sequence (TR, 1000 ms; TE, 29.6 ms; voxel size, 2.5 mm?3). A Ti-high
resolution image was also acquired using an MP2RAGE sequence (TR, 5000 ms;

TE=2.87 ms; voxel size, 0.9 mm3).

Preprocessing and analyses. Image time-series were preprocessed and analyzed using
SPMi12 (r7487), implemented in Matlab R2016b (Mathworks). EPI images were first
spatially realigned to the first EPI volume. Then, individual high-resolution T1-images
were coregistered to the mean EPI image and segmented using the standard tissue
probability maps of SPM12. All functional EPI images were then normalized to a
standard Montreal Neurological Institute (MNI) reference brain using the resulting

deformation fields, resliced to 2 x 2 x 2 mm3 and smoothed with an isotropic 6 mm
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Gaussian kernel. Low frequency noise was removed through the use of a high-pass filter
(cutoff 1/128 Hz), and time-series were corrected for serial autocorrelations using a

first-order autoregressive (AR(1)) model.

First-level analysis consisted of a general linear model (GLM) with standard (STD;
implicitly modelled), deviant contour (C-deviant), and deviant interval (I-deviant)
regressors convolved with a canonical HRF, plus realignment parameters to account for
head motion. At the second level, we used a whole-brain random-effects analysis using
t-test contrasts C-deviant>STD and I-deviant>STD at p<0.001 familywise error (FWE)

corrected at voxel- level.

Volume-of-interest (VOI) extraction. We summarised the BOLD signal in each
participant using the first eigenvariate (principal component) of voxels within a sphere
of 8 mm radius centred on each participant’s local maximum. This subject-specific local
maximum was identified within a sphere of 20 mm radius centred on the peak of the

group effect.

Dynamic causal modelling of effective connectivity. We used a two-state dynamic
causal model (DCM) for fMRI (DCM1i2, revision 7487) to estimate the effective
connectivity between Heschl’s gyrus (HG) and Planum Temporale (PT) within each
hemisphere as well as the intrinsic connectivity within each of these regions, given
observed haemodynamic measurements (Friston et al., 2003). In two-state DCM, each

region comprises one excitatory and one inhibitory population of neurons. This allows
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us to model the intrinsic connectivity within each cortical area as an increase or

decrease in cortical inhibition (Marreiros et al., 2008).

Although fMRI is an indirect measure of neuronal activity based on the observed blood
oxygenation level dependent (BOLD) signal, the biophysical model employed in DCM is
equipped with a detailed haemodynamic forward model that describes how neuronal
activity translates into changes in regional blood flow (Friston et al., 2000), blood
volume and deoxyhemoglobin concentration (Buxton et al., 1998) that combine
non-linearly to produce the BOLD signal (Stephan et al., 2007). This means that the
neuronal model comprised of excitatory and inhibitory populations can be used to make
inferences about both long-range excitatory connectivity between brain regions as well
as local connectivity within a region that reflects changes in the ratio of excitatory and

inhibitory activity (Logothetis, 2008).

Hemodynamic responses to all auditory stimuli (standard stimuli and contour deviants)
were modelled as a driving input to HG in both hemispheres. Using parametric
modulation of the regressor encoding all stimuli, responses to contour deviants
compared to standard stimuli were then modelled as a modulatory input to the network
under four alternative hypotheses about how connection strengths change during
auditory contour deviancy: The first DCM comprised a full network, where changes in
both feedforward and feedback connections between HG and STG, as well as their
intrinsic (inhibitory) connections, encode the differences between deviant and standard
conditions. Within predictive coding, this hypothesis represents the belief that both

forward prediction errors and backward predictions mediate the statistical learning of
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melodic regularities and that the intrinsic connectivity may encode the precision with
which prediction error are broadcasted during belief updating. The second DCM was
formulated as a reduced model where only feedforward and feedback connections
between HG and STG encode the differences between deviant and standard conditions.
This hypothesis represents the belief that both prediction errors and predictions
mediate the statistical learning of melodic regularities, in the absence of notable changes
in the intrinsic connectivity encoding the precision. The third hypothesis was
formulated as another reduced model where only the forward connections from HG to
STG encodes the differences between deviant and standard conditions. This hypothesis
represents the belief that only forward prediction errors mediate the statistical learning
of melodic regularities, in the absence of notable changes in feedback and intrinsic
connections. The fourth hypothesis was a null model, encoding the belief that no cortical
connections change during statistical learning of melodic regularities (see Figure 3A for
a schematic of alternative hypotheses). We then inverted the full model using
Variational Laplace (Friston et al., 2007). This provides the posterior probability of
connection strengths and the free-energy approximation to the Bayesian model
evidence. The reduced models and the null model were then estimated using Bayesian

model reduction (Friston et al., 2016).

Parametric Empirical Bayesian (PEB) analysis of group effects. We then used
parametric empirical Bayes (PEB) (Friston et al., 2016; Zeidman et al., 2019) to identify
increases or decreases in extrinsic (excitatory) connections between HG and STG and

intrinsic (inhibitory) connections within each region at the group level. PEB is a
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hierarchical Bayesian model in which empirical priors on the connection strengths at
the first (single-subject) level are estimated empirically from the data themselves using
a Bayesian general linear model (GLM) at the group level. In this way, PEB provides
both the posterior probability of connection strengths and the Bayesian model evidence
for Bayesian inference and model comparison at the group level. The model evidence of
the PEB model is given by the sum of DCM accuracies for all participants, minus the
complexity of both the first-level DCMs and the second-level Bayesian GLM. During
PEB estimation, we used the updated DCM parameters where the connection strengths
had been re-evaluated using the group means as priors to obtain the most robust
estimates (Zeidman et al.,, 2019). An advantage of PEB, as opposed to classical
random-effects (RFX) analysis, is that PEB takes not only the mean, but also the
uncertainty of individual connection strengths into account. This means that
participants with more uncertain parameter estimates will be down-weighted, while
participants with more precise estimates receive greater influence (Zeidman et al.,

2019).

Results

Auditory-cortex functional localizer

Contour deviant stimuli produced significantly greater activation than standard stimuli

in bilateral STG (Table 1). Specifically, the contrast C-deviant > STD revealed four
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clusters of activation (pyy; < 0.001): two localized in the left and right Heschl’s Gyrus
(HG; cytoarchitectonic areas Te 1 and Te 1.2) and two more posterior localized in the
planum temporale (PT; cytoarchitectonic area Te 3) (Morosan et al., 2005) (Fig. 2).
Conversely, the contrast between interval deviant stimuli and standard stimuli

(I-deviant > STD) did not produce any significant activation (py; > 0.05).

Dynamic causal modelling of effective connectivity in the auditory system

The coordinates of the four peak activations observed for the contrast C-deviant > STD
were used to define volumes of interest (VOIs) in the DCM analysis (Fig. 3B). Bayesian
model comparison (Fig. 3A) showed high evidence for a full DCM, where the intrinsic
(inhibitory) coupling within regions and the extrinsic (excitatory) coupling between
regions were modulated during deviant stimuli, relative to frequent standard stimuli
(Model posterior probability > 0.99). Within this bilateral network, we observed a
left-hemispheric increase in (excitatory) feedforward connectivity from HG to STG
(Posterior probability > 0.99) and a concomitant decrease in the intrinsic (inhibitory)
connectivity within left HG (Posterior probability > 0.99) during deviant melodic
stimuli (Fig. 4). See Figure 5 for a schematic of the two-state dynamic causal model used

in this study.
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Discussion

Comparing different DCM models in fMRI oddball data, we found BOLD responses for
deviant sounds in melodies to be best explained by a fully connected bilateral auditory
network, with a decrease in inhibitory connectivity within left HG and an increase in
feedforward connectivity from left HG to PT. This is consistent with a hypothesis of PC
regarding sensory learning, whereby prediction errors to regularity violations are
produced by an increase in synaptic gain in neuronal error units and passed forward to
higher hierarchical levels. Our findings provide evidence for a generalized neuronal
mechanism underlying unexpected or surprising stimuli during melodic pattern

encoding.

These findings can be interpreted in the light of predictive coding (PC), which is a
framework for understanding the computational mechanisms of perception and
learning in the brain. The key notion in PC is that the brain creates a hierarchical
generative model of its environment. Here, higher levels provide predictions or
expectations about the hidden causes of sensory inputs. These causes are hidden in the
sense that they are not directly observed, but can only be inferred from sensory data,
given a generative model of how they were caused. When a sensory input does not
conform to prior expectations, the ensuing prediction errors generated at lower levels
serve to update beliefs at higher levels to optimize predictions (Friston and Kiebel,

2009).
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Crucially, the relative influence of prior expectations and prediction errors on
perceptual inference is controlled by their relative precision or confidence (i.e., inverse
variance). This means the brain has a first-order system for expectations and prediction
errors that encodes hidden causes in terms of their first-order statistics, and a
second-order system that encodes the precision of first-order expectations and
prediction errors in terms of their expected precision and ensuing prediction errors on
the precision. Biologically, the hierarchical architecture of predictive processing is likely
implemented in the brain via feedback and feedforward connections that mediate

prediction and prediction errors (Bastos et al., 2012) (Fig. 5).

Our DCM results can be mapped onto the above-mentioned predictive coding scheme.
Bayesian model selection shows that melodic deviance processing occurs throughout a
hierarchy of bilateral superior temporal regions, with a left-hemispheric lateralization in
the modulation of connection strengths during melodic deviance processing.
Specifically, we provide strong evidence that mismatch responses were generated by a
decrease in intrinsic (inhibitory) connectivity within left HG and an increase in
feedforward (excitatory) connectivity from left HG to PT. From a predictive coding
perspective, an increase in feedforward connectivity corresponds to the passing of
prediction error from lower to higher areas of the hierarchical processing network, so
that it can effectively update the internal generative model (Wacongne et al., 2012;
Lieder et al., 2013). Similarly, the decrease in intrinsic (inhibitory) connectivity in HG
can be interpreted as a precision-related increase in the gain of the superficial pyramidal

cells encoding prediction error (Kiebel et al., 2007; Feldman and Friston, 2010) (Fig. 5).
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In two-state DCM, this gain modulation arises from the excitation/inhibition balance of
excitatory pyramidal cells and inhibitory interneurons. This interpretation entails that,
besides generating prediction error signals, melodic deviants are afforded a higher
precision than standards, which is consistent with the role of salient stimuli in the
orientation of attention (Polich and Criado, 2006; Hannon and Trainor, 2007; Parr and
Friston, 2017). Thus, unexpected sounds would point to the sources in the auditory
scene that are most informative and relevant and need to be prioritized for processing
through gain mechanisms. This interpretation is also in agreement with studies showing
an attentional enhancement of auditory prediction error responses (Garrido et al.,
2018), which has been associated with an intrinsic gain modulation in superficial
pyramidal cells, mediated by a decrease in the input of inhibitory interneurons

(Auksztulewicz and Friston, 2015).

Earlier DCM work on the auditory MMN using M/EEG data (e.g., Garrido et al., 2007,
2009; Kiebel et al., 2007; Dietz et al., 2014) found that temporal (HG and PT) and
frontal sources (inferior frontal gyrus, IFG) in the DCM models, with forward, backward
and intrinsic modulations, were the best to explain MMN evoked responses to frequency
deviants. Our work is generally consistent with these findings. However, unlike previous
studies, we did not find a modulation of backward connections, which may be due to a
number of reasons. First, we have taken advantage of the recently developed parametric
empirical Bayes (PEB) approach (Friston et al.,, 2016; Zeidman et al., 2019), which
allows more precise inferences at the single parameter level, informed by empirical

priors taken from group-level estimates, as compared to classical random-fixed effect
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modelling. Second, the stimulation used in past studies is inherently different from
ours. In past DCM studies, participants were presented with ‘classical’ oddball
stimulation, whereby trains of standard tones were randomly interleaved with frequency
deviants. The more complex stimulation of the present study might have affected the
connectivity of the auditory temporal network differently. Relatedly, while typical
oddball stimulation has been useful to assess expectations for individual pitches, it is
not adequate to investigate statistical learning of complex stimuli such as music. To our
knowledge, our study is the first to look at the neural dynamics underlying the violation

of complex regularities during listening to melodic patterns.

Another reason for the discrepancies might be that the neural 'architecture’ employed in
past DCM models included approximate locations of the MMN generators, which may
have reduced their construct validity (Friston, 2003). At present, there has been a lack
of anatomical accuracy in the characterization of cortical networks recruited during
deviance detection. In most DCM studies, cortical sources are defined a priori, based on
previous fMRI studies using different experimental setups and stimuli (e.g., see Garrido
et al., 2007, 2009; Kiebel et al., 2007). This may have led to the inclusion of sources,
such as the right inferior frontal gyrus, that fit the measured MMN waveform but that
were not actual generators for the sample at hand. In some M/EEG studies, this issue
was addressed with source reconstruction (Auksztulewicz and Friston, 2015; Fardo et
al., 2017). However, the lower spatial resolution and inherent spatial inverse problem of
M/EEG techniques, relative to fMRI, make it harder to resolve MMN cortical generators

from neighboring neural populations, thus producing coarser maps at which these


https://paperpile.com/c/Lq0InK/Mflk
https://paperpile.com/c/Lq0InK/Yh6J+xfHg+kDb1
https://paperpile.com/c/Lq0InK/Yh6J+xfHg+kDb1
https://paperpile.com/c/Lq0InK/jLTT+WV7S
https://paperpile.com/c/Lq0InK/jLTT+WV7S
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/848416; this version posted November 20, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

computational units operate. To our knowledge, this study is the first to use DCM on
auditory networks functionally defined within the same fMRI sample in an event-related

design.

The fMRI oddball localizer in the present study indicates that melodic contour
mismatch responses are encoded in two core regions of the bilateral superior temporal
plane: Heschl’s gyrus (HG) and planum temporale (PT). No significant modulation of
brain activity was observed for interval changes. Contour processing is more
fundamental and basic than interval processing. It is critical in the perception of music
as well as speech (Patel et al., 1998), develops earlier in the ontogeny of individuals
(Lamont, 2016), and changes in its content are more easily detected than interval
changes (Edworthy, 1985). Conversely, encoding of interval information requires more
intensive training and long retention intervals (Dowling and Bartlett, 1981). In the
current experiment, the use of the Bohlen-Pierce scale ensures that there is no
contamination of prior knowledge from earlier music life exposure (Ross and Hansen,
2016). The fact that a tonal hierarchy is not readily available to the participants may
have hindered the detection of interval changes. It is thus not surprising that the
modulation of responses to interval changes was not strong enough to produce

detectable effects.

The auditory network identified in the current experiment is consistent with previous
fMRI studies addressing the location of MMN generators for pitch deviants, whether
using continuous oddball stimulation (e.g., Opitz et al., 2002; Liebenthal et al., 2003;

Molholm et al., 2005; Schonwiesner et al., 2007) or more complex auditory patterns
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(Habermeyer et al., 2009). All of them reported a major activity at bilateral locations of
the STG to pitch deviants, including primary and secondary auditory cortices, while only
a minority reported activation of frontal areas (Deouell, 2007; Alho et al., 2014). In line
with these results, we did not observe modulation of frontal lobe activity. This may be
related to a putative lower signal-to-noise ratio in frontal sources compared to temporal
sources, coupled with the low temporal resolution of fMRI techniques (Deouell, 2007).
An alternative account is the virtual absence in our paradigm of top-down ‘schematic’
expectations, which are thought to be related to frontal areas (Koelsch, 2002; Garza

Villarreal et al., 2011).

In conclusion, consistent with PC, our results show that learning of complex auditory
patterns is associated with changes in excitatory feedforward connections for encoding
prediction errors and changes in intrinsic connectivity for encoding the precision of
prediction errors within the auditory system. Contrary to previous literature, our
findings support an interpretation whereby intrinsic and extrinsic neuronal circuitry in
the superior temporal gyrus ‘alone’ may establish models of short-term statistical
regularities, generate predictions and update the internal model when predictions are

not fulfilled.
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Tables

Table 1. MNI coordinates of brain regions activated in the C-deviant > STD

contrast (Height threshold: T = 6.76, p;; <0.001; Extent threshold: k = o

voxels).
T statistic MNI coordinate |Anatomical Probabilistic
region atlas’

8.83 [54 2 -4] Right Superior Area TE (1.2) 28%
Temporal Gyrus OP4 (PV) 17%

8.54 [66 -16 4] Right Superior Area TE (3) 57%
Temporal Gyrus

7.93 [-52 -14 4] Left Superior Area TE (1) 46%
Temporal Gyrus Area TE (1.2) 13%

7.88 [-66 -22 6] Left Superior Area TE (3) 73%
Temporal Gyrus

Notes: Negative coordinates indicate brain regions in the left hemisphere. C-deviant =
contour deviant; r = right hemisphere; 1 = left hemisphere. *Anatomical classification

using the SPM anatomy toolbox (Eickhoff et al., 2005).
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Fig. 1 Musical scale and auditory patterns used in the current study. (A) Illustration of

pitch frequencies along the Western equal-tempered 12-tone scale (in grey) and the
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Bohlen Pierce scale (in black). Red arrows point to the BP frequencies used to build
melodic material (k = 440 Hz; n=0, 2, 3, 4, or 6). (B) Schematic illustration of the
melodic patterns presented to participants during the auditory oddball paradigm
(adapted from (Lumaca et al., 2019)). Participants were scanned while listening to these
melodic patterns. Each pattern was 450-ms long, and consisted of five 50-ms sinusoidal
tones separated by 50-ms silent intervals. Melodic patterns were presented with 750-ms
of interstimulus interval (ISI) randomly at three frequency levels (lowest frequency:
440, 478, 567 Hz) belonging to the Bohlen Pierce musical scale. Standard patterns
(80%) followed the abstract rule EBCAD. In deviant patterns, the fourth tone was
changed in frequency compared to its standard position, either producing a change in

the melodic interval (I-deviants; 10%) or in the melodic contour (C-deviant; 10%).
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Fig. 2 Cortical areas responding to contour deviants in melodic patterns. Shown in the

figure are the cortical loci where event-related activity was greater for contour deviant
events (C-deviants) compared to the standard events occurring in the same position of

the pattern (i.e., the 4th tone) (P < 0.001, FWE corrected). Activated areas are shown
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projected onto an MNI standard template, and include bilateral Heschl’s Gyrus (HG)

and planum temporale (PT).
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Fig 3. Alternative hypotheses about effective connectivity (A) The dynamic causal
models comprise a bilateral ‘input’, four ‘sources’ and ipsilateral ‘connections’ among
(extrinsic connections) and within (intrinsic connections) these sources. A1, primary
auditory cortex; STG, superior temporal gyrus. The four models tested had the same
anatomical architecture but differed in terms of the embedding connections: intrinsic
and extrinsic (forward and backward) in the full model (FM), only forward and

backward in the reduced model 1 (RM1), only forward in the reduced model 2 (RM2),

and no connections in the null model (NM). (B) Sources (red squares) were defined by
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using peak activations of the auditory oddball localiser, and are here projected onto an

anatomical MNI standard template.
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Fig 4. (A) Bayesian model selection of alternative hypotheses revealed that the full
model with extrinsic and intrinsic connections outperforms the other models, both at
the first- and the second levels of model inference. (B) Posterior probabilities of the
excitatory feedforward connection strength from left HG to PT and the intrinsic
inhibitory connection strength within left HG. This shows the posterior distribution of
the increase in feedforward connection strength (red probability density) and the
posterior distribution of the decrease in self-inhibition (blue density) as they moved

away from their prior distribution (black density) after model inversion.
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Figure 5. (A) Representation of the two-state DCM with one excitatory (E) and one
inhibitory (I) population of neurons. In this cortical network, Heschl’s Gyrus (HG)
receives input from the medial geniculate nucleus (MGN) of the thalamus and is

connected to the planum temporale (PT) through (excitatory) forward and backward
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connections. (B) Message passing scheme proposed by predictive coding. Prediction
units (in black) encode expectations (1) about hidden causes (v) and hidden states (x).
The gain of prediction error (&) units (in blue) is modulated by their expected precision
(IT). Superindices indicate the level of processing in the hierarchy. Time-dependent

sensory input (s(t)) is indicated in grey.
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