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Abstract 

Learning of complex auditory sequences such as language and music can be thought of              

as the continuous optimisation of internal predictive representations of sound-pattern          

regularities, driven by prediction errors. In predictive coding (PC), this occurs through            

changes in the intrinsic and extrinsic connectivity of the relevant cortical networks,            

whereby minimization of precision-weighted prediction error signals improves the         

accuracy of future predictions. Here, we employed Dynamic Causal Modelling (DCM) on            

functional magnetic resonance (fMRI) data acquired during the presentation of complex           

auditory patterns. In an oddball paradigm, we presented 52 volunteers (non-musicians)           

with isochronous 5-tone melodic patterns (standards), randomly interleaved with rare          

novel patterns comprising contour or pitch interval changes (deviants). Here, listeners           

must update their standard melodic models whenever they encounter unexpected          

deviant stimuli. Contour deviants induced an increased BOLD response, as compared to            

standards, in primary (Heschl’s gyrus, HG) and secondary auditory cortices (planum           

temporale, PT). Within this network, we found a left-lateralized increase in feedforward            

connectivity from HG to PT for deviant responses and a concomitant disinhibition            

within left HG. Consistent with PC, our results suggest that model updating in auditory              

pattern perception and learning is associated with specific changes in the excitatory            

feedforward connections encoding prediction errors and in the intrinsic connections          

that encode the precision of these errors and modulate their gain. 
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Significance statement  

The learning of complex auditory stimuli such as music and speech can be thought of as                

the continuous optimisation of brain predictive models driven by prediction errors.           

Using dynamic causal modelling on fMRI data acquired during a melodic oddball            

paradigm, we here show that brain responses to unexpected sounds were best explained             

by an increase in excitation within Heschl's gyrus and an increase in forward             

connections from Heschl's gyrus to planum temporale. Our results are consistent with a             

predictive coding account of sensory learning, whereby prediction error responses to           

new sounds drive model adjustments via feedforward connections and intrinsic          

connections encode the confidence of these prediction errors. 
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Introduction 

Predictive coding (PC) is a unifying theory of brain function that formally links human              

learning and neuroplasticity (Friston, 2002) . The key notion in PC is that the brain              

embodies an internal model of the environment, which constantly generates predictions           

on the future sensory input. When predictions fail, the brain generates ‘prediction error             

signals’ that are weighted by their precision and passed from lower to higher levels of               

the brain’s hierarchy via changes in feedforward connections, thereby revising the           

model’s predictions (Dietz et al., 2014). Learning can thus be thought of as a process of                

recurrent model updating through prediction error signaling. Specifically, this entails a           

release of the excitatory pyramidal cells that encode prediction error from top-down            

expectations, accompanied by an increase in their synaptic gain or sensitivity to            

ascending prediction errors (Koelsch et al., 2019). This hypothesis, however, lacks           

experimental evidence regarding the rich and complex stimulation that occurs in natural            

sound environments, such as speech and music (McDermott et al., 2013). 

Melodic learning is an excellent model to address this issue. Within PC, melodic             

learning reflects the update of internalized probabilities acquired through statistical          

learning and relates to melodic continuations (Hansen and Pearce, 2014) at two            

pitch-processing levels: (1) ‘contour’ − the rise and fall of pitch changes− and (2)              

‘interval’ − the distance between adjacent tones (Schmuckler, 2016) . The maintenance           

and updating of melodic predictive models have been studied using auditory oddball            

paradigms, whereby magnetoencephalographic and/or electrophysiological (M/EEG)      
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brain activity is recorded while participants listen to streams of repeated short melodies             

typically based on tones from the 12-tone-equal-tempered scale, omnipresent in          

Western tonal music (e.g., Tervaniemi et al., 1994; Hsu et al., 2015; Lappe et al., 2016) .                

The mismatch negativity (MMN) elicited by occasional contour or interval deviations in            

these patterns is evidence that a melodic predictive model has been formed during the              

auditory stimulation and thought to represent the message passing of          

precision-weighted prediction errors in the cortical auditory hierarchy (Vuust et al.,           

2009, 2014, 2018; Dietz et al., 2014; Auksztulewicz and Friston, 2015) . Previous            

functional magnetic resonance imaging (fMRI) work has found core regions of the            

superior temporal gyrus (STG), including primary auditory cortex (A1) and planum           

temporale (PT), as the main cortical generators of melodic MMN (Habermeyer et al.,             

2009). However, how auditory cortical regions interact to form and revise melodic            

representations remains an unsettled issue. 

Here, we used dynamic causal modelling (DCM) of effective connectivity in auditory            

fMRI data acquired while 52 human volunteers (non-musicians) were presented with an            

unfamiliar musical tuning system, the Bohlen Pierce (BP) scale (Mathews et al., 1988)             

(Fig. 1A). This artificial scale has the advantage of preserving intervallic properties from             

the 12-tone equal-tempered scale without being contaminated by prior knowledge about           

pitch categories and intervals. This ensures a more controlled setting to test hypotheses             

about the generation and revision of an internal predictive model. First, we identified             

an MMN auditory network using a melodic oddball paradigm (Lumaca and Baggio,            

2016). In a single run, participants were scanned while listening to streams of five-tone              
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BP melodic patterns (Fig. 1B). Occasionally, the fourth tone was pitch-shifted to violate             

the contour (‘contour’ deviant; 10%) or the interval structure (‘interval’ deviant; 10%) of             

the ‘standard’ sequence. Second, we used a two-state DCM (Marreiros et al., 2008) to              

model the effective connectivity within and between bilateral primary and secondary           

auditory cortices during deviant stimuli, relative to standard stimuli (Fig. 2). Using            

Bayesian model reduction (BMR) and parametric empirical Bayes (Friston et al., 2016) ,            

we then compared, at the group level, a series of alternative hypotheses (Fig. 3) to               

examine the specific changes in extrinsic and intrinsic effective connectivity that occur            

in the localized temporal network during auditory pattern learning. 

 

Materials and Methods 

Participants. A total of 52 participants (33 females, mean age 24.5 years, range 20-34)              

with normal hearing took part in the fMRI experiment. Participants were all            

non-musicians (i.e., none of them had three or more years of formal musical training)              

and all gave informed consent before the experiment. The neuroimaging data used in             

this work were acquired a part of another project approved by the local ethics committee               

of the Central Denmark Region (nr. 1083). 

MRI Procedure  

Bohlen-Pierce scale. The auditory stimulation used in our fMRI oddball paradigm was            

adopted from an EEG paradigm by Lumaca and Baggio (2016). Tone sequences were             

constructed using tones from the equal-tempered version of the Bohlen-Pierce (BP)           
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scale (Mathews et al., 1988; Loui et al., 2009) , a microtonal tuning system with 13               

logarithmic even divisions of a tritave (corresponding to a 3:1 frequency ratio). In the              

equal-tempered version of the scale, frequencies (F) are defined by the following: 

F = k  x 3 (n/13) 

where n is the number of steps along the scale, and k is a constant that correspond to the                   

fundamental frequency. Based on this equation, we defined n = 0, 2, 3, 4 or 6 and k =                   

440 Hz (Fig. 1A). 

Stimuli. The pattern deviance paradigm and stimuli were adapted from an EEG            

paradigm by Lumaca and Baggio (2016) , and has been shown to produce a MMN evoked               

potential (Näätänen et al., 1978) . Stimuli were 5-tone melodic patterns presented in a             

single block, consisting of collections of five 50 ms sinusoidal tones (5 ms rise and fall;                

50 ms inter-tone intervals) with the frequencies 440, 521, 567, 617, 730.6 Hz             

(henceforth referred to as ABCDE in the context of the low register) (Fig. 1B). During               

stimulation, sequences were randomly transposed to three different baseline         

frequencies (henceforth referred as ‘A’), corresponding to three different registers of the            

BP scale (baseline tones: 440, 478, 567 Hz). The patterns were presented with an              

‘inter-stimulus interval’ of 750 ms. Standard patterns (80%) were randomly          

interspersed with ‘contour’ (10%) and ‘interval’ (10%) deviant sequences for a total of             

1260 stimuli. In abstract terms, the standard pattern followed the sequence EBCAD. In             

contour deviant stimuli, the fourth tone changed the surface structure (‘ups’ and            

‘downs’) of the standard stimuli without changing the interval (i.e. EBCED); viceversa            
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for the interval deviants (i.e. EBCBD). Deviant stimuli were pseudo-randomized in order            

to present deviant tones of the same type in close temporal succession (jittering             

stimulus-onset asynchrony, SOA, range 2400-4800 ms) and to induce an increase of the             

BOLD response by superposition. The use of multiple deviants in close succession can             

be found in other fMRI oddball studies (Cacciaglia et al., 2015) . 

Image acquisition. The fMRI data were acquired on a 3T MRI scanner (Siemens             

Prisma). The subjects’ head was fixated with cushions to minimize movement during the             

experiment. During MRI acquisition, participants were instructed to be still and to            

watch a subtitled silent movie projected on a MRI-compatible screen located at the rear              

of the scanner. In the meanwhile, auditory stimulation was delivered by MR-compatible            

headphones using Presentation software (www.neurobs.com ). A total of 1535 volumes          

were acquired over 25 minutes using a fast T2*-weighted echo-planar imaging (EPI)            

multiband sequence (TR, 1000 ms; TE, 29.6 ms; voxel size, 2.5 mm3). A T1-high              

resolution image was also acquired using an MP2RAGE sequence (TR, 5000 ms;            

TE=2.87 ms; voxel size, 0.9 mm3). 

Preprocessing and analyses. Image time-series were preprocessed and analyzed using          

SPM12 (r7487), implemented in Matlab R2016b (Mathworks). EPI images were first           

spatially realigned to the first EPI volume. Then, individual high-resolution T1-images           

were coregistered to the mean EPI image and segmented using the standard tissue             

probability maps of SPM12. All functional EPI images were then normalized to a             

standard Montreal Neurological Institute (MNI) reference brain using the resulting          

deformation fields, resliced to 2 x 2 x 2 mm3 and smoothed with an isotropic 6 mm                 
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Gaussian kernel. Low frequency noise was removed through the use of a high-pass filter              

(cutoff 1/128 Hz), and time-series were corrected for serial autocorrelations using a            

first-order autoregressive (AR(1)) model. 

First-level analysis consisted of a general linear model (GLM) with standard (STD;            

implicitly modelled), deviant contour (C-deviant), and deviant interval (I-deviant)         

regressors convolved with a canonical HRF, plus realignment parameters to account for            

head motion. At the second level, we used a whole-brain random-effects analysis using             

t-test contrasts C-deviant>STD and I-deviant>STD at p<0.001 familywise error (FWE)          

corrected at voxel- level. 

Volume-of-interest (VOI) extraction. We summarised the BOLD signal in each          

participant using the first eigenvariate (principal component) of voxels within a sphere            

of 8 mm radius centred on each participant’s local maximum. This subject-specific local             

maximum was identified within a sphere of 20 mm radius centred on the peak of the                

group effect. 

Dynamic causal modelling of effective connectivity. We used a two-state dynamic           

causal model (DCM) for fMRI (DCM12, revision 7487) to estimate the effective            

connectivity between Heschl’s gyrus (HG) and Planum Temporale (PT) within each           

hemisphere as well as the intrinsic connectivity within each of these regions, given             

observed haemodynamic measurements (Friston et al., 2003) . In two-state DCM, each           

region comprises one excitatory and one inhibitory population of neurons. This allows            
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us to model the intrinsic connectivity within each cortical area as an increase or              

decrease in cortical inhibition (Marreiros et al., 2008).  

Although fMRI is an indirect measure of neuronal activity based on the observed blood              

oxygenation level dependent (BOLD) signal, the biophysical model employed in DCM is            

equipped with a detailed haemodynamic forward model that describes how neuronal           

activity translates into changes in regional blood flow (Friston et al., 2000) , blood             

volume and deoxyhemoglobin concentration (Buxton et al., 1998) that combine          

non-linearly to produce the BOLD signal (Stephan et al., 2007). This means that the              

neuronal model comprised of excitatory and inhibitory populations can be used to make             

inferences about both long-range excitatory connectivity between brain regions as well           

as local connectivity within a region that reflects changes in the ratio of excitatory and               

inhibitory activity (Logothetis, 2008). 

Hemodynamic responses to all auditory stimuli (standard stimuli and contour deviants)           

were modelled as a driving input to HG in both hemispheres. Using parametric             

modulation of the regressor encoding all stimuli, responses to contour deviants           

compared to standard stimuli were then modelled as a modulatory input to the network              

under four alternative hypotheses about how connection strengths change during          

auditory contour deviancy: The first DCM comprised a full network, where changes in             

both feedforward and feedback connections between HG and STG, as well as their             

intrinsic (inhibitory) connections, encode the differences between deviant and standard          

conditions. Within predictive coding, this hypothesis represents the belief that both           

forward prediction errors and backward predictions mediate the statistical learning of           
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melodic regularities and that the intrinsic connectivity may encode the precision with            

which prediction error are broadcasted during belief updating. The second DCM was            

formulated as a reduced model where only feedforward and feedback connections           

between HG and STG encode the differences between deviant and standard conditions.            

This hypothesis represents the belief that both prediction errors and predictions           

mediate the statistical learning of melodic regularities, in the absence of notable changes             

in the intrinsic connectivity encoding the precision. The third hypothesis was           

formulated as another reduced model where only the forward connections from HG to             

STG encodes the differences between deviant and standard conditions. This hypothesis           

represents the belief that only forward prediction errors mediate the statistical learning            

of melodic regularities, in the absence of notable changes in feedback and intrinsic             

connections. The fourth hypothesis was a null model, encoding the belief that no cortical              

connections change during statistical learning of melodic regularities (see Figure 3A for            

a schematic of alternative hypotheses). We then inverted the full model using            

Variational Laplace (Friston et al., 2007). This provides the posterior probability of            

connection strengths and the free-energy approximation to the Bayesian model          

evidence. The reduced models and the null model were then estimated using Bayesian             

model reduction (Friston et al., 2016). 

Parametric Empirical Bayesian (PEB) analysis of group effects. We then used           

parametric empirical Bayes (PEB) (Friston et al., 2016; Zeidman et al., 2019) to identify              

increases or decreases in extrinsic (excitatory) connections between HG and STG and            

intrinsic (inhibitory) connections within each region at the group level. PEB is a             
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hierarchical Bayesian model in which empirical priors on the connection strengths at            

the first (single-subject) level are estimated empirically from the data themselves using            

a Bayesian general linear model (GLM) at the group level. In this way, PEB provides               

both the posterior probability of connection strengths and the Bayesian model evidence            

for Bayesian inference and model comparison at the group level. The model evidence of              

the PEB model is given by the sum of DCM accuracies for all participants, minus the                

complexity of both the first-level DCMs and the second-level Bayesian GLM. During            

PEB estimation, we used the updated DCM parameters where the connection strengths            

had been re-evaluated using the group means as priors to obtain the most robust              

estimates (Zeidman et al., 2019) . An advantage of PEB, as opposed to classical             

random-effects (RFX) analysis, is that PEB takes not only the mean, but also the              

uncertainty of individual connection strengths into account. This means that          

participants with more uncertain parameter estimates will be down-weighted, while          

participants with more precise estimates receive greater influence (Zeidman et al.,           

2019).  

 

Results 

Auditory-cortex functional localizer 

Contour deviant stimuli produced significantly greater activation than standard stimuli          

in bilateral STG (Table 1). Specifically, the contrast C-deviant > STD revealed four             
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clusters of activation (p
FWE < 0.001): two localized in the left and right Heschl’s Gyrus   

 
           

(HG; cytoarchitectonic areas Te 1 and Te 1.2) and two more posterior localized in the               

planum temporale (PT; cytoarchitectonic area Te 3) (Morosan et al., 2005) (Fig. 2).             

Conversely, the contrast between interval deviant stimuli and standard stimuli          

(I-deviant > STD) did not produce any significant activation (p
FWE > 0.05).  

Dynamic causal modelling of effective connectivity in the auditory system  

The coordinates of the four peak activations observed for the contrast C-deviant > STD              

were used to define volumes of interest (VOIs) in the DCM analysis (Fig. 3B). Bayesian               

model comparison (Fig. 3A) showed high evidence for a full DCM, where the intrinsic              

(inhibitory) coupling within regions and the extrinsic (excitatory) coupling between          

regions were modulated during deviant stimuli, relative to frequent standard stimuli           

(Model posterior probability > 0.99). Within this bilateral network, we observed a            

left-hemispheric increase in (excitatory) feedforward connectivity from HG to STG          

(Posterior probability > 0.99) and a concomitant decrease in the intrinsic (inhibitory)            

connectivity within left HG (Posterior probability > 0.99) during deviant melodic           

stimuli (Fig. 4). See Figure 5 for a schematic of the two-state dynamic causal model used                

in this study. 

  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

https://paperpile.com/c/Lq0InK/P9OiC
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion 

Comparing different DCM models in fMRI oddball data, we found BOLD responses for             

deviant sounds in melodies to be best explained by a fully connected bilateral auditory              

network, with a decrease in inhibitory connectivity within left HG and an increase in              

feedforward connectivity from left HG to PT. This is consistent with a hypothesis of PC               

regarding sensory learning, whereby prediction errors to regularity violations are          

produced by an increase in synaptic gain in neuronal error units and passed forward to               

higher hierarchical levels. Our findings provide evidence for a generalized neuronal           

mechanism underlying unexpected or surprising stimuli during melodic pattern         

encoding. 

These findings can be interpreted in the light of predictive coding (PC), which is a               

framework for understanding the computational mechanisms of perception and         

learning in the brain. The key notion in PC is that the brain creates a hierarchical                

generative model of its environment. Here, higher levels provide predictions or           

expectations about the hidden causes of sensory inputs. These causes are hidden in the              

sense that they are not directly observed, but can only be inferred from sensory data,               

given a generative model of how they were caused. When a sensory input does not               

conform to prior expectations, the ensuing prediction errors generated at lower levels            

serve to update beliefs at higher levels to optimize predictions (Friston and Kiebel,             

2009).  
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Crucially, the relative influence of prior expectations and prediction errors on           

perceptual inference is controlled by their relative precision or confidence (i.e., inverse            

variance). This means the brain has a first-order system for expectations and prediction             

errors that encodes hidden causes in terms of their first-order statistics, and a             

second-order system that encodes the precision of first-order expectations and          

prediction errors in terms of their expected precision and ensuing prediction errors on             

the precision. Biologically, the hierarchical architecture of predictive processing is likely           

implemented in the brain via feedback and feedforward connections that mediate           

prediction and prediction errors (Bastos et al., 2012) (Fig. 5).  

Our DCM results can be mapped onto the above-mentioned predictive coding scheme.            

Bayesian model selection shows that melodic deviance processing occurs throughout a           

hierarchy of bilateral superior temporal regions, with a left-hemispheric lateralization in           

the modulation of connection strengths during melodic deviance processing.         

Specifically, we provide strong evidence that mismatch responses were generated by a            

decrease in intrinsic (inhibitory) connectivity within left HG and an increase in            

feedforward (excitatory) connectivity from left HG to PT. From a predictive coding            

perspective, an increase in feedforward connectivity corresponds to the passing of           

prediction error from lower to higher areas of the hierarchical processing network, so             

that it can effectively update the internal generative model (Wacongne et al., 2012;             

Lieder et al., 2013) . Similarly, the decrease in intrinsic (inhibitory) connectivity in HG             

can be interpreted as a precision-related increase in the gain of the superficial pyramidal              

cells encoding prediction error (Kiebel et al., 2007; Feldman and Friston, 2010)  (Fig. 5).  
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In two-state DCM, this gain modulation arises from the excitation/inhibition balance of            

excitatory pyramidal cells and inhibitory interneurons. This interpretation entails that,          

besides generating prediction error signals, melodic deviants are afforded a higher           

precision than standards, which is consistent with the role of salient stimuli in the              

orientation of attention (Polich and Criado, 2006; Hannon and Trainor, 2007; Parr and             

Friston, 2017) . Thus, unexpected sounds would point to the sources in the auditory             

scene that are most informative and relevant and need to be prioritized for processing              

through gain mechanisms. This interpretation is also in agreement with studies showing            

an attentional enhancement of auditory prediction error responses (Garrido et al.,           

2018), which has been associated with an intrinsic gain modulation in superficial            

pyramidal cells, mediated by a decrease in the input of inhibitory interneurons            

(Auksztulewicz and Friston, 2015) . 

Earlier DCM work on the auditory MMN using M/EEG data (e.g., Garrido et al., 2007,               

2009; Kiebel et al., 2007; Dietz et al., 2014) found that temporal (HG and PT) and                

frontal sources (inferior frontal gyrus, IFG) in the DCM models, with forward, backward             

and intrinsic modulations, were the best to explain MMN evoked responses to frequency             

deviants. Our work is generally consistent with these findings. However, unlike previous            

studies, we did not find a modulation of backward connections, which may be due to a                

number of reasons. First, we have taken advantage of the recently developed parametric             

empirical Bayes (PEB) approach (Friston et al., 2016; Zeidman et al., 2019) , which             

allows more precise inferences at the single parameter level, informed by empirical            

priors taken from group-level estimates, as compared to classical random-fixed effect           

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

https://paperpile.com/c/Lq0InK/W9ln+mbDt+yrTn
https://paperpile.com/c/Lq0InK/W9ln+mbDt+yrTn
https://paperpile.com/c/Lq0InK/SIjf
https://paperpile.com/c/Lq0InK/SIjf
https://paperpile.com/c/Lq0InK/jLTT
https://paperpile.com/c/Lq0InK/Yh6J+vK1I+xfHg+kDb1
https://paperpile.com/c/Lq0InK/Yh6J+vK1I+xfHg+kDb1
https://paperpile.com/c/Lq0InK/DmML+TfJN
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

modelling. Second, the stimulation used in past studies is inherently different from            

ours. In past DCM studies, participants were presented with ‘classical’ oddball           

stimulation, whereby trains of standard tones were randomly interleaved with frequency           

deviants. The more complex stimulation of the present study might have affected the             

connectivity of the auditory temporal network differently. Relatedly, while typical          

oddball stimulation has been useful to assess expectations for individual pitches, it is             

not adequate to investigate statistical learning of complex stimuli such as music. To our              

knowledge, our study is the first to look at the neural dynamics underlying the violation               

of complex regularities during listening to melodic patterns.  

Another reason for the discrepancies might be that the neural 'architecture’ employed in             

past DCM models included approximate locations of the MMN generators, which may            

have reduced their construct validity (Friston, 2003) . At present, there has been a lack              

of anatomical accuracy in the characterization of cortical networks recruited during           

deviance detection. In most DCM studies, cortical sources are defined a priori , based on              

previous fMRI studies using different experimental setups and stimuli (e.g., see Garrido            

et al., 2007, 2009; Kiebel et al., 2007). This may have led to the inclusion of sources,                 

such as the right inferior frontal gyrus, that fit the measured MMN waveform but that               

were not actual generators for the sample at hand. In some M/EEG studies, this issue               

was addressed with source reconstruction (Auksztulewicz and Friston, 2015; Fardo et           

al., 2017) . However, the lower spatial resolution and inherent spatial inverse problem of             

M/EEG techniques, relative to fMRI, make it harder to resolve MMN cortical generators             

from neighboring neural populations, thus producing coarser maps at which these           
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computational units operate. To our knowledge, this study is the first to use DCM on               

auditory networks functionally defined within the same fMRI sample in an event-related            

design. 

The fMRI oddball localizer in the present study indicates that melodic contour            

mismatch responses are encoded in two core regions of the bilateral superior temporal             

plane: Heschl’s gyrus (HG) and planum temporale (PT). No significant modulation of            

brain activity was observed for interval changes. Contour processing is more           

fundamental and basic than interval processing. It is critical in the perception of music              

as well as speech (Patel et al., 1998), develops earlier in the ontogeny of individuals               

(Lamont, 2016) , and changes in its content are more easily detected than interval             

changes (Edworthy, 1985) . Conversely, encoding of interval information requires more          

intensive training and long retention intervals (Dowling and Bartlett, 1981). In the            

current experiment, the use of the Bohlen-Pierce scale ensures that there is no             

contamination of prior knowledge from earlier music life exposure (Ross and Hansen,            

2016). The fact that a tonal hierarchy is not readily available to the participants may               

have hindered the detection of interval changes. It is thus not surprising that the              

modulation of responses to interval changes was not strong enough to produce            

detectable effects.  

The auditory network identified in the current experiment is consistent with previous            

fMRI studies addressing the location of MMN generators for pitch deviants, whether            

using continuous oddball stimulation (e.g., Opitz et al., 2002; Liebenthal et al., 2003;             

Molholm et al., 2005; Schönwiesner et al., 2007) or more complex auditory patterns             
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(Habermeyer et al., 2009). All of them reported a major activity at bilateral locations of               

the STG to pitch deviants, including primary and secondary auditory cortices, while only             

a minority reported activation of frontal areas (Deouell, 2007; Alho et al., 2014) . In line               

with these results, we did not observe modulation of frontal lobe activity. This may be               

related to a putative lower signal-to-noise ratio in frontal sources compared to temporal             

sources, coupled with the low temporal resolution of fMRI techniques (Deouell, 2007).            

An alternative account is the virtual absence in our paradigm of top-down ‘schematic’             

expectations, which are thought to be related to frontal areas (Koelsch, 2002; Garza             

Villarreal et al., 2011). 

In conclusion, consistent with PC, our results show that learning of complex auditory             

patterns is associated with changes in excitatory feedforward connections for encoding           

prediction errors and changes in intrinsic connectivity for encoding the precision of            

prediction errors within the auditory system. Contrary to previous literature, our           

findings support an interpretation whereby intrinsic and extrinsic neuronal circuitry in           

the superior temporal gyrus ‘alone’ may establish models of short-term statistical           

regularities, generate predictions and update the internal model when predictions are           

not fulfilled.  

 

  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

https://paperpile.com/c/Lq0InK/nwCd
https://paperpile.com/c/Lq0InK/AajF+KFRb
https://paperpile.com/c/Lq0InK/KFRb
https://paperpile.com/c/Lq0InK/fTCa+XQ3G
https://paperpile.com/c/Lq0InK/fTCa+XQ3G
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References  

Alho K, Rinne T, Herron TJ, Woods DL (2014) Stimulus-dependent activations and 

attention-related modulations in the auditory cortex: a meta-analysis of fMRI 

studies. Hear Res 307:29–41. 

Auksztulewicz R, Friston K (2015) Attentional Enhancement of Auditory Mismatch 

Responses: a DCM/MEG Study. Cereb Cortex 25:4273–4283. 

Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical 

microcircuits for predictive coding. Neuron 76:695–711. 

Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation 

changes during brain activation: the balloon model. Magn Reson Med 39:855–864. 

Cacciaglia R, Escera C, Slabu L, Grimm S, Sanjuán A, Ventura-Campos N, Ávila C (2015) 

Involvement of the human midbrain and thalamus in auditory deviance detection. 

Neuropsychologia 68:51–58. 

Deouell LY (2007) The Frontal Generator of the Mismatch Negativity Revisited. J 

Psychophysiol 21:188–203. 

Dietz MJ, Friston KJ, Mattingley JB, Roepstorff A, Garrido MI (2014) Effective 

connectivity reveals right-hemisphere dominance in audiospatial perception: 

implications for models of spatial neglect. J Neurosci 34:5003–5011. 

Dowling WJ, Bartlett JC (1981) The importance of interval information in long-term 

memory for melodies. Psychomusicology 1:30-49. 

Edworthy J (1985) Interval and contour in melody processing. Music Percept. 

2:375–388. 

Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

http://paperpile.com/b/Lq0InK/AajF
http://paperpile.com/b/Lq0InK/AajF
http://paperpile.com/b/Lq0InK/AajF
http://paperpile.com/b/Lq0InK/jLTT
http://paperpile.com/b/Lq0InK/jLTT
http://paperpile.com/b/Lq0InK/6sWk
http://paperpile.com/b/Lq0InK/6sWk
http://paperpile.com/b/Lq0InK/d5P8
http://paperpile.com/b/Lq0InK/d5P8
http://paperpile.com/b/Lq0InK/8q5s
http://paperpile.com/b/Lq0InK/8q5s
http://paperpile.com/b/Lq0InK/8q5s
http://paperpile.com/b/Lq0InK/KFRb
http://paperpile.com/b/Lq0InK/KFRb
http://paperpile.com/b/Lq0InK/vK1I
http://paperpile.com/b/Lq0InK/vK1I
http://paperpile.com/b/Lq0InK/vK1I
http://paperpile.com/b/Lq0InK/AuKL
http://paperpile.com/b/Lq0InK/AuKL
http://paperpile.com/b/Lq0InK/6GtX
http://paperpile.com/b/Lq0InK/6GtX
http://paperpile.com/b/Lq0InK/5Rhr
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

new SPM toolbox for combining probabilistic cytoarchitectonic maps and 

functional imaging data. NeuroImage 25:1325–1335. 

Fardo F, Auksztulewicz R, Allen M, Dietz MJ, Roepstorff A, Friston KJ (2017) 

Expectation violation and attention to pain jointly modulate neural gain in 

somatosensory cortex. NeuroImage 153:109–121. 

Feldman H, Friston KJ (2010) Attention, uncertainty, and free-energy. Front Hum 

Neurosci 4:215. 

Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed 

circuitry? Annu Rev Neurosci 25:221–250. 

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325–1352. 

Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 

19:1273–1302. 

Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk BCM, Ziegler G, Zeidman P 

(2016) Bayesian model reduction and empirical Bayes for group (DCM) studies. 

NeuroImage 128:413–431. 

Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the 

Balloon model, Volterra kernels, and other hemodynamics. NeuroImage 

12:466–477. 

Friston K, Kiebel S (2009) Predictive coding under the free-energy principle. Philos 

Trans R Soc Lond B Biol Sci 364:1211–1221. 

Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free 

energy and the Laplace approximation. NeuroImage 34:220–234. 

Garrido MI, Kilner JM, Kiebel SJ, Friston KJ (2009) Dynamic causal modeling of the 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

http://paperpile.com/b/Lq0InK/5Rhr
http://paperpile.com/b/Lq0InK/5Rhr
http://paperpile.com/b/Lq0InK/WV7S
http://paperpile.com/b/Lq0InK/WV7S
http://paperpile.com/b/Lq0InK/WV7S
http://paperpile.com/b/Lq0InK/jsGr
http://paperpile.com/b/Lq0InK/jsGr
http://paperpile.com/b/Lq0InK/7H9m
http://paperpile.com/b/Lq0InK/7H9m
http://paperpile.com/b/Lq0InK/Mflk
http://paperpile.com/b/Lq0InK/32Hx
http://paperpile.com/b/Lq0InK/32Hx
http://paperpile.com/b/Lq0InK/DmML
http://paperpile.com/b/Lq0InK/DmML
http://paperpile.com/b/Lq0InK/DmML
http://paperpile.com/b/Lq0InK/vFB1
http://paperpile.com/b/Lq0InK/vFB1
http://paperpile.com/b/Lq0InK/vFB1
http://paperpile.com/b/Lq0InK/WeB6
http://paperpile.com/b/Lq0InK/WeB6
http://paperpile.com/b/Lq0InK/KKA6
http://paperpile.com/b/Lq0InK/KKA6
http://paperpile.com/b/Lq0InK/Yh6J
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

response to frequency deviants. J Neurophysiol 101:2620–2631. 

Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal 

modelling of evoked potentials: A reproducibility study. NeuroImage 36:571–580. 

Garrido MI, Rowe EG, Halász V, Mattingley JB (2018) Bayesian Mapping Reveals That 

Attention Boosts Neural Responses to Predicted and Unpredicted Stimuli. Cereb 

Cortex 28:1771–1782. 

Garza Villarreal EA, Brattico E, Leino S, Ostergaard L, Vuust P (2011) Distinct neural 

responses to chord violations: a multiple source analysis study. Brain Res 

1389:103–114. 

Habermeyer B, Herdener M, Esposito F, Hilti CC, Klarhöfer M, di Salle F, Wetzel S, 

Scheffler K, Cattapan-Ludewig K, Seifritz E (2009) Neural correlates of 

pre-attentive processing of pattern deviance in professional musicians. Hum Brain 

Mapp 30:3736–3747. 

Hannon EE, Trainor LJ (2007) Music acquisition: effects of enculturation and formal 

training on development. Trends Cogn Sci 11:466–472. 

Hansen NC, Pearce MT (2014) Predictive uncertainty in auditory sequence processing. 

Front Psychol 5:1052. 

Hsu Y-F, Le Bars S, Hämäläinen JA, Waszak F (2015) Distinctive Representation of 

Mispredicted and Unpredicted Prediction Errors in Human 

Electroencephalography. J Neurosci 35:14653–14660. 

Kiebel SJ, Garrido MI, Friston KJ (2007) Dynamic causal modelling of evoked 

responses: The role of intrinsic connections. NeuroImage 36:332–345. 

Koelsch S (2002) Bach Speaks: A Cortical “Language-Network” Serves the Processing of 

Music. NeuroImage 17:956–966. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

http://paperpile.com/b/Lq0InK/Yh6J
http://paperpile.com/b/Lq0InK/xfHg
http://paperpile.com/b/Lq0InK/xfHg
http://paperpile.com/b/Lq0InK/SIjf
http://paperpile.com/b/Lq0InK/SIjf
http://paperpile.com/b/Lq0InK/SIjf
http://paperpile.com/b/Lq0InK/XQ3G
http://paperpile.com/b/Lq0InK/XQ3G
http://paperpile.com/b/Lq0InK/XQ3G
http://paperpile.com/b/Lq0InK/nwCd
http://paperpile.com/b/Lq0InK/nwCd
http://paperpile.com/b/Lq0InK/nwCd
http://paperpile.com/b/Lq0InK/nwCd
http://paperpile.com/b/Lq0InK/W9ln
http://paperpile.com/b/Lq0InK/W9ln
http://paperpile.com/b/Lq0InK/JD7w
http://paperpile.com/b/Lq0InK/JD7w
http://paperpile.com/b/Lq0InK/PKNv
http://paperpile.com/b/Lq0InK/PKNv
http://paperpile.com/b/Lq0InK/PKNv
http://paperpile.com/b/Lq0InK/kDb1
http://paperpile.com/b/Lq0InK/kDb1
http://paperpile.com/b/Lq0InK/fTCa
http://paperpile.com/b/Lq0InK/fTCa
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Koelsch S, Vuust P, Friston K (2019) Predictive Processes and the Peculiar Case of 

Music. Trends Cogn Sci 23:63–77. 

Lamont A (2016) Musical development from the early years onwards. In: The Oxford 

handbook of music psychology (Hallam S, Cross I, & Thaut M, eds), pp399-414. 

Oxford, UK: Oxford University Press. 

Lappe C, Lappe M, Pantev C (2016) Differential processing of melodic, rhythmic and 

simple tone deviations in musicians -an MEG study. NeuroImage 124:898–905. 

Liebenthal E, Ellingson ML, Spanaki MV, Prieto TE, Ropella KM, Binder JR (2003) 

Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. 

NeuroImage 19:1395–1404. 

Lieder F, Daunizeau J, Garrido MI, Friston KJ, Stephan KE (2013) Modelling 

trial-by-trial changes in the mismatch negativity. PLoS Comput Biol 9:e1002911. 

Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 

453:869–878. 

Loui P, Wu EH, Wessel DL, Knight RT (2009) A generalized mechanism for perception 

of pitch patterns. J Neurosci 29:454–459. 

Lumaca M, Baggio G (2016) Brain potentials predict learning, transmission and 

modification of an artificial symbolic system. Soc Cogn Affect Neurosci 11: 

1970-1979. 

Lumaca M, Kleber B, Brattico E, Vuust P, Baggio G (2019) Functional connectivity in 

human auditory networks and the origins of variation in the transmission of 

musical systems. Elife 8. 

Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a 

two-state model. NeuroImage 39:269–278. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

http://paperpile.com/b/Lq0InK/n3vr
http://paperpile.com/b/Lq0InK/n3vr
http://paperpile.com/b/Lq0InK/C5bZ
http://paperpile.com/b/Lq0InK/C5bZ
http://paperpile.com/b/Lq0InK/C5bZ
http://paperpile.com/b/Lq0InK/Wmhs
http://paperpile.com/b/Lq0InK/Wmhs
http://paperpile.com/b/Lq0InK/TbnG
http://paperpile.com/b/Lq0InK/TbnG
http://paperpile.com/b/Lq0InK/TbnG
http://paperpile.com/b/Lq0InK/9VI4
http://paperpile.com/b/Lq0InK/9VI4
http://paperpile.com/b/Lq0InK/WUrw
http://paperpile.com/b/Lq0InK/WUrw
http://paperpile.com/b/Lq0InK/5tDX
http://paperpile.com/b/Lq0InK/5tDX
http://paperpile.com/b/Lq0InK/Hu4h
http://paperpile.com/b/Lq0InK/Hu4h
http://paperpile.com/b/Lq0InK/Hu4h
http://paperpile.com/b/Lq0InK/GbQd
http://paperpile.com/b/Lq0InK/GbQd
http://paperpile.com/b/Lq0InK/GbQd
http://paperpile.com/b/Lq0InK/mO6u
http://paperpile.com/b/Lq0InK/mO6u
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Mathews MV, Pierce JR, Reeves A, Roberts LA (1988) Theoretical and experimental 

explorations of the Bohlen–Pierce scale. J Acoust Soc Am 84:1214–1222. 

McDermott JH, Schemitsch M, Simoncelli EP (2013) Summary statistics in auditory 

perception. Nat Neurosci 16:493–498. 

Molholm S, Martinez A, Ritter W, Javitt DC, Foxe JJ (2005) The Neural Circuitry of 

Pre-attentive Auditory Change-detection: An fMRI Study of Pitch and Duration 

Mismatch Negativity generators. Cerebral Cortex 15:545–551. 

Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping 

of human superior temporal gyrus. Anat Embryol 210:401–406. 

Näätänen R, Gaillard AW, Mäntysalo S (1978) Early selective-attention effect on evoked 

potential reinterpreted. Acta Psychol 42:313–329. 

Opitz B, Rinne T, Mecklinger A, von Cramon DY, Schröger E (2002) Differential 

contribution of frontal and temporal cortices to auditory change detection: fMRI 

and ERP results. NeuroImage 15:167–174. 

Parr T, Friston KJ (2017) Uncertainty, epistemics and active inference. J R Soc Interface 

14. 

Patel AD, Peretz I, Tramo M, Labreque R (1998) Processing prosodic and musical 

patterns: a neuropsychological investigation. Brain Lang 61:123–144. 

Polich J, Criado JR (2006) Neuropsychology and neuropharmacology of P3a and P3b. 

Int J Psychophysiol 60:172–185. 

Ross S, Hansen NC (2016) Dissociating Prediction Failure: Considerations from Music 

Perception. J Neurosci 36:3103–3105. 

Schmuckler MA (2016) Tonality and Contour in Melodic Processing. In: The Oxford 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

http://paperpile.com/b/Lq0InK/Ddrv
http://paperpile.com/b/Lq0InK/Ddrv
http://paperpile.com/b/Lq0InK/84b0
http://paperpile.com/b/Lq0InK/84b0
http://paperpile.com/b/Lq0InK/H9UO
http://paperpile.com/b/Lq0InK/H9UO
http://paperpile.com/b/Lq0InK/H9UO
http://paperpile.com/b/Lq0InK/P9OiC
http://paperpile.com/b/Lq0InK/P9OiC
http://paperpile.com/b/Lq0InK/V11r
http://paperpile.com/b/Lq0InK/V11r
http://paperpile.com/b/Lq0InK/2Du2
http://paperpile.com/b/Lq0InK/2Du2
http://paperpile.com/b/Lq0InK/2Du2
http://paperpile.com/b/Lq0InK/mbDt
http://paperpile.com/b/Lq0InK/mbDt
http://paperpile.com/b/Lq0InK/upI9
http://paperpile.com/b/Lq0InK/upI9
http://paperpile.com/b/Lq0InK/yrTn
http://paperpile.com/b/Lq0InK/yrTn
http://paperpile.com/b/Lq0InK/lLsO
http://paperpile.com/b/Lq0InK/lLsO
http://paperpile.com/b/Lq0InK/fzcr
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Handbook of Music Psychology (Hallam S, Cross I, & Thaut M, eds), pp143– 

166. Oxford, UK: Oxford University Press. 

Schönwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Näätänen R (2007) 

Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal 

cortex have different roles in the detection of acoustic changes. J Neurophysiol 

97:2075–2082. 

Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing 

hemodynamic models with DCM. NeuroImage 38:387–401. 

Tervaniemi M, Maury S, Näätänen R (1994) Neural representations of abstract stimulus 

features in the human brain as reflected by the mismatch negativity. Neuroreport 

5:844–846. 

Vuust P, Dietz MJ, Witek M, Kringelbach ML (2018) Now you hear it: a predictive 

coding model for understanding rhythmic incongruity. Ann N Y Acad Sci. 1423: 

19-29. 

Vuust P, Gebauer LK, Witek MAG (2014) Neural underpinnings of music: the 

polyrhythmic brain. Adv Exp Med Biol 829:339–356. 

Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A (2009) Predictive coding of 

music – Brain responses to rhythmic incongruity. Cortex 45:80–92. 

Wacongne C, Changeux J-P, Dehaene S (2012) A neuronal model of predictive coding 

accounting for the mismatch negativity. J Neurosci 32:3665–3678. 

Zeidman P, Jafarian A, Corbin N, Seghier ML, Razi A, Price CJ, Friston KJ (2019) A 

guide to group effective connectivity analysis, part 1: First level analysis with DCM 

for fMRI. NeuroImage 200:174–190. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

http://paperpile.com/b/Lq0InK/B1nd
http://paperpile.com/b/Lq0InK/B1nd
http://paperpile.com/b/Lq0InK/B1nd
http://paperpile.com/b/Lq0InK/B1nd
http://paperpile.com/b/Lq0InK/hEp7
http://paperpile.com/b/Lq0InK/hEp7
http://paperpile.com/b/Lq0InK/Hb1K
http://paperpile.com/b/Lq0InK/Hb1K
http://paperpile.com/b/Lq0InK/Hb1K
http://paperpile.com/b/Lq0InK/eInZ
http://paperpile.com/b/Lq0InK/eInZ
http://paperpile.com/b/Lq0InK/2O1l
http://paperpile.com/b/Lq0InK/2O1l
http://paperpile.com/b/Lq0InK/edWS
http://paperpile.com/b/Lq0InK/edWS
http://paperpile.com/b/Lq0InK/L99e
http://paperpile.com/b/Lq0InK/L99e
http://paperpile.com/b/Lq0InK/TfJN
http://paperpile.com/b/Lq0InK/TfJN
http://paperpile.com/b/Lq0InK/TfJN
https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Author contributions 

ML conceived and designed the experiment. ML acquired the fMRI data. ML            

preprocessed and analysed the fMRI data. MJD performed DCM analysis and Bayesian            

analysis. ML, MJD, and DQ prepared the figures. ML, MJD, NCH, and DQ wrote the               

paper. ML, MJD, NCH, DQ and PV revised and approved the final version of the               

manuscript. 

 

Conflict of interest 

ML, MJD, NCH, DQ, and PV declare no competing financial interests. 

 

Acknowledgments 

The authors thank Hella Kastbjerg for proofreading the manuscript, and Claudia Iorio            

and Ulrika Varankaite for assistance in data acquisition. Center for Music in the Brain is               

funded by the Danish National Research Foundation (DNRF117). MJD is funded by            

VELUX FONDEN (00013930). NCH is funded by Carlsberg Foundation (CF18-0668)          

and Lundbeck Foundation (R266-2017-3339).  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

   

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848416doi: bioRxiv preprint 

https://doi.org/10.1101/848416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Tables 

Table 1. MNI coordinates of brain regions activated in the C-deviant > STD             

contrast (Height threshold: T = 6.76, p 
FWE

<0.001; Extent threshold: k = 0             

voxels).
 

T statistic MNI coordinate Anatomical 

region 

Probabilistic 

atlas1 

8.83 [54 2 -4] Right Superior 

Temporal Gyrus 

Area TE (1.2) 28% 

OP4 (PV) 17% 

8.54 [66 -16 4] Right Superior 

Temporal Gyrus 

Area TE (3) 57% 

7.93 [-52 -14 4] Left Superior 

Temporal Gyrus 

Area TE (1) 46% 

Area TE (1.2) 13% 

7.88 [-66 -22 6] Left Superior 

Temporal Gyrus 

Area TE (3) 73% 

Notes: Negative coordinates indicate brain regions in the left hemisphere. C-deviant =            

contour deviant; r = right hemisphere; l = left hemisphere. 1Anatomical classification            

using the SPM anatomy toolbox (Eickhoff et al., 2005) .  
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Figures 

 

Fig. 1 Musical scale and auditory patterns used in the current study. (A) Illustration of               

pitch frequencies along the Western equal-tempered 12-tone scale (in grey) and the            
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Bohlen Pierce scale (in black). Red arrows point to the BP frequencies used to build               

melodic material (k = 440 Hz; n=0, 2, 3, 4, or 6). (B) Schematic illustration of the                 

melodic patterns presented to participants during the auditory oddball paradigm          

(adapted from (Lumaca et al., 2019) ). Participants were scanned while listening to these             

melodic patterns. Each pattern was 450-ms long, and consisted of five 50-ms sinusoidal             

tones separated by 50-ms silent intervals. Melodic patterns were presented with 750-ms            

of interstimulus interval (ISI) randomly at three frequency levels (lowest frequency:           

440, 478, 567 Hz) belonging to the Bohlen Pierce musical scale. Standard patterns             

(80%) followed the abstract rule EBCAD. In deviant patterns, the fourth tone was             

changed in frequency compared to its standard position, either producing a change in             

the melodic interval (I-deviants; 10%) or in the melodic contour (C-deviant; 10%). 
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Fig. 2 Cortical areas responding to contour deviants in melodic patterns. Shown in the              

figure are the cortical loci where event-related activity was greater for contour deviant             

events (C-deviants) compared to the standard events occurring in the same position of             

the pattern (i.e., the 4th tone) (P < 0.001, FWE corrected). Activated areas are shown               
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projected onto an MNI standard template, and include bilateral Heschl’s Gyrus (HG)            

and planum temporale (PT). 

 

 

Fig 3. Alternative hypotheses about effective connectivity (A) The dynamic causal           

models comprise a bilateral ‘input’, four ‘sources’ and ipsilateral ‘connections’ among           

(extrinsic connections) and within (intrinsic connections) these sources. A1, primary          

auditory cortex; STG, superior temporal gyrus. The four models tested had the same             

anatomical architecture but differed in terms of the embedding connections: intrinsic           

and extrinsic (forward and backward) in the full model (FM), only forward and             

backward in the reduced model 1 (RM1), only forward in the reduced model 2 (RM2),               

and no connections in the null model (NM). (B) Sources (red squares) were defined by               
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using peak activations of the auditory oddball localiser, and are here projected onto an              

anatomical MNI standard template. 
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Fig 4. (A) Bayesian model selection of alternative hypotheses revealed that the full             

model with extrinsic and intrinsic connections outperforms the other models, both at            

the first- and the second levels of model inference. (B) Posterior probabilities of the              

excitatory feedforward connection strength from left HG to PT and the intrinsic            

inhibitory connection strength within left HG. This shows the posterior distribution of            

the increase in feedforward connection strength (red probability density) and the           

posterior distribution of the decrease in self-inhibition (blue density) as they moved            

away from their prior distribution (black density) after model inversion. 
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Figure 5. (A) Representation of the two-state DCM with one excitatory (E) and one              

inhibitory (I) population of neurons. In this cortical network, Heschl’s Gyrus (HG)            

receives input from the medial geniculate nucleus (MGN) of the thalamus and is             

connected to the planum temporale (PT) through (excitatory) forward and backward           
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connections. (B) Message passing scheme proposed by predictive coding. Prediction          

units (in black) encode expectations ( ) about hidden causes (v) and hidden states (x).     μ          

The gain of prediction error ( ) units (in blue) is modulated by their expected precision     ξ           

( ). Superindices indicate the level of processing in the hierarchy. Time-dependentΠ            

sensory input (s(t)) is indicated in grey. 
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