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33 Abstract

34 Unoccupied aerial systems (UAS) were used to phenotype growth trajectories of inbred 

35 maize populations under field conditions. Three recombinant inbred line populations were 

36 surveyed on a weekly basis collecting RGB images across two irrigation regimens (irrigated and 

37 non-irrigated/rain fed). Plant height, estimated by the 95th percentile (P95) height from UAS 

38 generated 3D point clouds, exceeded 70% correlation to manual ground truth measurements and 

39 51% of experimental variance was explained by genetics. The Weibull sigmoidal function 

40 accurately modeled plant growth (R2: >99%; RMSE: < 4 cm) from P95 genetic means. The mean 

41 asymptote was strongly correlated (r2=0.66-0.77) with terminal plant height. Maximum absolute 

42 growth rates (mm d-1) were weakly correlated to height and flowering time. The average inflection 

43 point ranged from 57 to 60 days after sowing (DAS) and was correlated with flowering time 

44 (r2=0.45-0.68). Functional growth parameters (asymptote, inflection point, growth rate) alone 

45 identified 34 genetic loci, each explaining 3 to 15% of total genetic variation. Plant height was 

46 estimated at one-day intervals to 85 DAS, identifying 58 unique temporal quantitative trait loci 

47 (QTL) locations. Genomic hotspots on chromosome 1 and 3 indicated chromosomal regions 

48 associated with functional growth trajectories influencing flowering time, growth rate, and 

49 terminal growth. Temporal QTL demonstrated unique dynamic expression patterns not observable 

50 previously, no QTL were significantly expressed throughout the entire growing season. UAS 

51 technologies improved phenotypic selection accuracy and permitted monitoring traits on a 

52 temporal scale previously infeasible using manual measurements, furthering understanding of crop 

53 development and biological trajectories.

54
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55 Author summary

56 Unoccupied aerial systems (UAS) now can provide high throughput phenotyping to 

57 functionally model plant growth and explore genetic loci underlying temporal expression of 

58 dynamic phenotypes, specifically plant height. Efficient integration of temporal phenotyping via 

59 UAS, will improve the scientific understanding of dynamic, quantitative traits and developmental 

60 trajectories of important agronomic crops, leading to new understanding of plant biology. Here we 

61 present, for the first time, the dynamic nature of quantitative trait loci (QTL) over time under field 

62 conditions. To our knowledge, this is first empirical study to expand beyond selective 

63 developmental time points, evaluating functional and temporal QTL expression in maize (Zea 

64 mays L.) throughout a growing season within a field-based environment.

65 Introduction

66 Phenotypic characterization of agricultural plant populations has lagged in scale, density, 

67 and accuracy when compared with genomic data [1]. Due to resource demands of labor and time-

68 sensitive components in conventional phenotyping, most manually measured traits are acquired at 

69 only one time point in the growing season and constrained in the number of samples. This creates 

70 a limited scope of biological understanding when associating genomic information with the 

71 underlying traits of interest through plant development [2]. Advances in technologies including 

72 computer vision, robotics, remote sensing, and unoccupied vehicles have facilitated the 

73 development of high-throughput phenotyping (HTP) platforms which can minimize phenotypic 

74 bottlenecks [3, 4].

75 Implementation of HTP systems provides the ability to collect temporal phenotypic 

76 measurements on large representative populations within field settings, to understand how 
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77 individuals interact with their environments [3, 5, 6]. Unoccupied aerial systems (UAS) are 

78 especially useful to increase the size of populations and field studies investigated, collecting RGB 

79 images, and reconstructing three dimensional representations of field crop trials using structure 

80 from motion methodology [6-15]. UAS height estimates of maize have previously been validated 

81 using correlations to traditional manual measurements and evidence of equivalent or greater 

82 phenotypic variation partitioned to genetic factors [7, 9, 15, 16]. To our knowledge the majority 

83 of reported field based phenotyping of maize with HTP platforms has focused on hybrid trials [6-

84 9, 15, 17-19] but, limited reports have been published on the evaluation of inbred trials [20-22], 

85 specifically genetic mapping populations. Inbred lines in maize are substantially shorter and have 

86 less biomass than hybrids, lacking heterosis. 

87 Maize height is important as a physiological and a highly heritable agronomic trait [23-26] 

88 commonly collected due to its ease of measurement, agronomic importance, and correlation to 

89 hybrid grain yield in some environment and management scenarios [15, 27-32]. Manually 

90 measured plant height is commonly collected after reproductive maturity as the distance from the 

91 ground to the tip of the tassel, flag leaf, or peduncle. The genetic architecture of plant height in 

92 maize has been determined to fit an infinitesimal model (i.e. very large numbers of small additive 

93 effect loci) with some large effect loci likely fixed during domestication and early selection [23]. 

94 Functional genetic variation in terminal plant height has been shown to be controlled through 

95 hormones; mutations within the (i) gibberellin biosynthesis pathways [33] and crosstalk with other 

96 phytohormomes including: (ii) auxin [34] and (iii) brassinosteriods [35-38]. Hormones are well 

97 known to fluctuate throughout plant growth, responding to environmental and developmental 

98 stimuli [39-42]. Traditional QTL studies using phenotypic data at a single terminal (end of season) 

99 time point can only represent accumulated effects, ignoring the dynamic nature of many 
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100 agronomically important traits which, like hormones, change and can be identified as functions of 

101 time [43]. To our knowledge, Wang, Zhang (20) is the only reported field based temporal 

102 association study in maize using UAS. 

103 Plant height is an ideal phenotype to explore the temporal patterns of QTL expression in 

104 maize. Using UAS, we evaluated three recombinant inbred line (RIL) linkage mapping populations 

105 under field conditions and captured the dynamic growth patterns of plant height across these maize 

106 inbreds. The objectives of this study were to: (i) evaluate UAS procedures developed for hybrids 

107 to estimate heights within inbred maize populations; (ii) model and compare growth patterns across 

108 genetic populations; (iii) evaluate temporal patterns of QTL expression through the growing 

109 season, and (iv) evaluate the temporal expression patterns for previously reported QTL.

110 Results and Discussion

111 UAS surveys and image processing quality

112 A total of 18 and 11 flights were conducted over the bi-parental mapping populations using 

113 the DJI Phantom 3 Pro and Tuffwing UAV Mapper, respectively (S1 Table). Early season DJI 

114 Phantom 3 Pro data collection prior to 35 DAS resulted in limited to no plant structure 

115 reconstructed within the 3D point clouds, indicating that higher resolution imaging would be 

116 necessary to reconstruct early season plant structure. Out of 29 flights, 16 were observed to be of 

117 high quality  while only eight flight dates (35, 43, 57, 62, 65, 69, 100, and 117 DAS) conformed 

118 to statistical quality tests (S1 File) and were used for the remainder of this study (Fig 1; S2 Table). 

119
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120

121 Fig 1. UAS P95 height estimates summarized by flight date. Although the three populations 
122 were genetically diverse, the mean growth patterns behaved similarly. Little differentiation could 
123 be seen early in the season between genotypes, where the measurement error may have been 
124 smaller that genotypic differences, as the plants reached their peak height and flowered, height 
125 differences became much greater.
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126 Genetic variance decomposition

127 Variance component decomposition demonstrated total phenotypic variance increased 

128 throughout the growing season for all inbred populations (Fig 2, black circles), as has been found 

129 in hybrid trials [7, 15]. UAS phenotypic variance for height did not exceed manual, terminal 

130 plant height (PHTTRML, Fig 2 M bar). Genetic variance averaged 51% (excluding 35 DAS) over 

131 the season fluctuating from flight to flight, but generally increasing until reaching a terminal 

132 height plateau.  The proportion of variance attributed to genetics of 

133

134

135

136 Fig 2. Variance component decomposition of UAS P95 height estimates. The percent variation 
137 explained in the model of Eq. 1 for individual UAS surveys of three RIL populations showed that 
138 genetic and residual (error) variation, were the main drivers of variability observed.   Total variance 
139 (black circles) increased as the plants grew over later flight dates and was higher for manual (M) 
140 than UAS measurements. That the percent variance measures and heritability were similar for M 
141 and UAS suggests that UAS compressed all variance sources similarly
142

143
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144 plant height (PHTTRML), as measured from the ground to the tip of the tassel, were numerically 

145 greater (irrigated: 62 ± 3%; non-irrigated: 52 ± 3), but not statistically (α=0.05) different from 

146 across UAS genetic variance.

147 Sigmoidal modeling of UAS height estimates 

148 The Weibull function, a sigmoidal growth function, modeled maize inbred temporal growth 

149 (mean R2>0.99, RMSE ranging from 2.4 to 3.7 cm) across all populations and environment (Fig 

150 3). Significant differences in asymptote, the maximum height, were only found between 

151 Tx740xNC356 (1.10 m) and LH82xLAMA (1.08 m) with a 2 cm difference in means under 

152 irrigation. LH82 [44] is the earliest to flower and shortest of the inbred lines adaptable to these 

153 environments and had among the lowest asymptote and inflection point, but moderate growth rate. 

154 In comparison, PHTTMRL was significantly different across populations (1.66, 1.59, and 

155 1.57 m) under irrigated conditions for Tx740xNC356, Ki3xNC356, and LH82xLAMA, 

156 respectively. The reduced means of the asymptote demonstrate the inherent biases of UAS 

157 estimation of plant height compared with manual measurements [8, 12, 13, 15]; ~0.5 m 

158 underestimate of height has been documented in past studies of hybrid maize at flight altitudes of 

159 120 m [15]. The average difference in height estimates increased by ~5 and ~10 cm when 

160 compared to P99 and P100 point cloud estimates, indicating that the reduction was not caused 

161 solely by the lower percentile, P95. The combination of flight altitude and reduced plant canopy 

162 density of the inbreds likely biased the UAS towards shorter estimates. Biases aside, numerical 

163 rankings between asymptote and PHTTRML were correctly consistent in ranking Tx740xNC356, 

164 Ki3xNC356, and LH82xLAMA population means from tallest to shortest and Pearson correlations 

165 (r) (Irrigated: 0.77, 0.74, and 0.74; Non-Irrigated: 0.66, 0.72, and 0.74; S1-S3 Fig) 
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166

167 Fig 3. Nonlinear Weibull functional modeling of growth trajectories. Sigmoidal curves based off the Weibull function (Eq. [3]) 
168 effectively modeled the growth of each entry. For each population the female parent (red line) and the male parent (blue line) crossed 
169 over demonstrating that early season height was not predictable by standard manual terminal height measurements. 
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170 indicated highly significant (α=0.05), positive linear correlations between UAS asymptotes 

171 estimates and PHTTRML measurements.

172 The inflection point of the Weibull model is biologically important to identify the DAS in 

173 which maximum AGR is occurring; this point has been shown to be highly correlated to flowering 

174 time in hybrid trials [15]. Significant differences were found between each population’s mean for 

175 inflection point (58.6, 58.0, and 57.5 d for Tx740xNC356, Ki3xNC356, and LH82xLAMA) within 

176 the irrigated trial (Fig 4c). Abiotic stress related to water limitations in non-irrigated trials delayed 

177 the inflection point by two days on average across the populations. Inflection point had low 

178 positive correlations to PHTTRML (Irrigated: 0.30, 0.27, and 0.34; Non-Irrigated: 0.02, 0.22, and 

179 0.24; S1-S3 Fig) but high correlations to flowering time (DTA/DTS) (Irrigated: 0.60/0.45, 

180 0.59/0.58, and 0.64/0.59; Non-Irrigated: 0.61/0.56, 0.55/0.53, and 0.68/0.66; S1-S3 Fig). PHT P95 

181 estimates were negatively correlated (r= -0.74:-0.50) to inflection points during the early season 

182 but gradually progressed toward a positive correlation ~10 days after the mean inflection point 

183 (S1-S3 Fig). Later inflection points had extended vegetative growth periods leading to taller plants, 

184 indicating the possibility of pleiotropic QTL for both flowering time and growth rate across the 

185 functional curve parameters. Because correlation was high but imperfect, tall genotypes with 

186 earlier inflection points could indicate better fitness in stressful environments, as these plants reach 

187 their terminal height quickly without regard to environmental stresses. 

188 The growth rate parameter, influencing the steepness of the Weibull curve, significantly differed 

189 (α=0.05) in its means across the populations in both environments (Irrigated: 6.9, 7.6, and 8.2; 

190 Non-irrigated: 6.3, 6.5, and 6.8). The first derivative of the Weibull function (Eq. 4), the absolute 

191 growth rate (AGR), calculated at the inflection point (x=x0) equals the maximum AGR. The 

192 maximum AGR occurred ~50-60 DAS, which was shortly before flowering, in this period
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193

194
195

196 Fig 4. Distribution of Weibull functional parameters. Entry BLUPS of [a] manual terminal plant height, [b] Weibull asymptote, [c] 
197 Weibull inflection point, and [d] Weibull growth rate for each mapping population demonstrated variability both within and between 
198 these populations with substantial transgressive segregation in most cases. Letters above define significant differences in means at 
199 α=0.05.
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200 cells are both dividing and elongating within the internodes above the ear node [45-47]. Significant 

201 differences were found in the maximum AGR across populations within the irrigated trial (48, 52, 

202 and 56 mm d-1) and LH82xLAMA was 3 mm d-1 greater than the other populations in the non-

203 irrigated trial despite being the shortest population overall. A reduction in AGR was observed 

204 within the non-irrigated trial (4, 7, and 8 mm d-1 Tx740xNC356, Ki3xNC356, and LH82xLAMA, 

205 respectively) likely due to water stress during this period [48]. Overall this demonstrated that the 

206 AGR had heritable genetic diversity and was phenotypically plastic in response to different 

207 environmental conditions. 

208 QTL mapping

209 Manual terminal height associations. Nine QTL were identified for PHTTRML across the 

210 three populations and two environments (S3 Table) each explaining 5.1 to 9.4% of genetic 

211 variance. All PHTTRML associations had additive effects of ~3 cm (S3 Table). One region was 

212 identified across two populations q1_172 (LH82xLAMA; irrigated) and q1_176 (Tx740xNC356; 

213 non-irrigated), localizing to the 280 to 284 Mbs region of chromosome 1. We identified a single 

214 genomic region, 98 to 128 Mbs on chromosome 2 that co-localized within the same genetic 

215 background (Ki3xNC356) across different environmental treatments (q2_70 irrigated and q2_69 

216 non-irrigated). The limited co-localization of QTLs across bi-parental populations is part of the 

217 difficulty of identifying genomic regions that can be utilized in genetic backgrounds beyond 

218 those in which they were discovered [49, 50].  This also demonstrated the lack of statistical 

219 power in the smaller of the three populations Tx740xNC356 (n=110). It has been empirically 

220 shown that population size is the most critical factor in QTL linkage mapping [24].

221 Functional parameter associations. UAS estimates in modeling temporal growth of maize can 

222 identify dynamic QTL [51]. Analysis of QTLs using the three functional parameters of the 
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223 Weibull curve as phenotypes identified 13, 9, and 12 significant marker associations with the 

224 asymptote, growth rate, and inflection point, respectively (S5 Table). Asymptote QTLs explained 

225 genetic variation ranging from 3.4% to 14.3% with additive effects ranging from 2 to 5 cm, 

226 consistent with PHTTRML. High correlations between asymptote and PHTTRML indicated that 

227 similar QTL would likely be detected using both traits. Two PHTTRML QTLs, q1_172 

228 LH82xLAMA (irrigated) and q1_176 Tx740xNC356 (non-irrigated), co-localized with an 

229 asymptote QTL, q1_173 of LH82xLAMA (irrigated) (Fig 5; S3 Table). Additional co-

230 localizations were found between q6_67 Tx740xNC356 (irrigated) asymptote and q6_62 

231 Ki3xNC356 (irrigated) PHTTRML, as well as, q8_10 LH82xLAMA (non-irrigated) asymptote 

232 with q8_14 Ki3xNC356 (irrigated) PHTTRML and q8_12 Ki3xNC356 (non-irrigated) 

233 PHTTRML. 

234 The seven growth rate QTL each explained 5.6 to 15% of the genotypic variance with 

235 additive effects ranging from 0.2 to 0.3 DAS-1 (S5 Table). Inflection point QTL each explained 4.3 

236 to 13% of the genotypic variance with additive effects ranging from 0.2 to 0.5 d (S5 Table). 

237 Irrigated Ki3xNC356 trial q4_61 and irrigated LH82xLAMA q1_173/q1_176 were associated 

238 with inflection point and asymptote, while non-irrigated LH82xLAMA q10_20 was associated 

239 with inflection point and growth rate (S5 Table). The co-localization of QTL associated with 

240 multiple parameters of the sigmoidal growth function indicated these regions more than others 

241 may have an effect on defining the overall developmental trajectory of maize height. The limited 

242 number of co-localizations demonstrates these traits are both genetically variable and highly 

243 plastic with the environment. 
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244

245 Fig 5.  Col-localization of agronomic and functional growth QTL associations. Significant QTL co-localized across agronomic 
246 traits (PHT_TRML: Manual, terminal plant height; DTA: Days to anthesis; DTS: Days to silking), functional growth parameters 
247 (asymptote, inflection point, growth rate) and temporal height estimates from the Weibull curves. Temporal expression of all height 
248 QTL can be visualized in S4 Fig. 
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249 Multiple QTL were identified within the LH82xLAMA trials for PHTTRML, asymptote, 

250 inflection point, and flowering time (DTA/DTS; S4 Table) within the 273 to 287 Mbs region of 

251 chromosome 1 and the 140 to 176 Mbs region of chromosome 3 (Fig 5). The QTL region of 

252 chromosome 3 harbors ZmMADS69 (GRMZM2G171650; Chr3: 158979321..159007265), a 

253 regulator of flowering time with pleiotropic effects on plant height. ZmMADS69 has higher 

254 expression levels in temperate compared to tropical germplasm, leading to significant detection in 

255 temperate by tropical crosses [52], such as LH82xLAMA among others 

256 [23, 24, 53]. The identified region on chromosome 1 contained the viviparous8 (vp8; 

257 GRMZM2G010353; Chr1: 286390345..286398537) locus which exhibits dwarfism due to reduced 

258 cell proliferation [54].  Both loci may be deterministic QTL (dQTL) because the differential allelic 

259 variation affected the whole growth process [55] and was unaffected by environmental stimuli; 

260 ZmMADS69 effect was not influenced by day  length [52] and vp8 exhibited normal plant 

261 hormone response [54]. These results coupled with basic biological understanding indicated that 

262 allelic changes in loci can have a fundamental impacts on the functional growth trajectory of maize, 

263 in contrast to the small shift in phenotypic expression of a single trait It is therefore understandable 

264 that these two “major genes” have been previously identified and described in multiple studies, 

265 while the smaller and ephemeral effect loci are mostly unknown. 

266

267 Temporal QTL expression. In addition to detecting QTL for the three parameters of the 

268 Weibull function, 58 QTL were also detected using individuals’ daily heights from 20 to 85 DAS 

269 predicted using the Weibull function. Between 4 and 20 unique QTLs were identified, based on 

270 peak position (Fig 5; S6 Table).  Comparison of mean physical distance of the flanking markers 

271 for each the 58 unique QTLs demonstrated 23 QTLs were within 1 Mbp of a plant height 
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272 candidate gene and an additional 18 QTL were less than 5 Mbp from a candidate gene. Most of 

273 the 58 unique QTLs demonstrated a very dynamic nature of QTL affecting plant height 

274 throughout the growing season. For example, q5_119 in the irrigated Tx740xNC356 trial, was 

275 detected from 22 to 62 DAS explaining 21% of the genetic variation at 54 DAS (Fig 6a; S6 

276 Table). In comparison, q5_35 of irrigated Tx740xNC356 trial was detected from 66 to 74 DAS 

277 explaining 11% of the genetic variation at 67 DAS (Fig 6a). Temporal QTL expression was 

278 different for each population across environmental treatments (i.e. irrigation) demonstrating 

279 differential genomic localization while maintaining similarities in temporal expression. 

280 Specifically, within the Tx740xNC356 population, both irrigation regimens (i.e. environments) 

281 have a temporally broad QTL (q5_119 irrigated and q2_55 non- irrigated) prior to inflection 

282 point (~58 DAS), followed by QTLs detected at shorter temporal intervals after the inflection 

283 point and may relate to the elongation of specific internode groupings [45-47]. Additionally, 

284 trends in QTL temporal expression between populations exhibited unique temporal expression 

285 patterns. For example, Tx740xNC356 exhibited QTLs prior to the inflection point at early 

286 growth stages, whereas Ki3xNC356 exhibited no detectable QTLs until ~50 DAS. Low 

287 phenotypic variation could be the cause, as could, greater numbers of smaller effect loci, towards 

288 an infinitesimal model, that would also be hard to detect. 

289 Identified QTLs demonstrated dynamic trends in additive phenotypic effects (Fig 6, right 

290 side). In general, these results show that the additive effects found at the peak significance DAS 

291 of a temporal QTL is a result of the cumulative effect of a gradual increase in the effect size of 

292 each genomic region (Fig 6). QTLs with peak expression early within the season had 

293 significantly smaller additive effect estimates than at later points in the growing season; due to 

294 reduced overall variation across individuals in the population at early growth stages (e.g. Fig 6b

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


17

295

296

297 Fig 6.  Visualization of temporal trends in QTL expression. Temporal trends in QTL expression were observed in all QTL across 
298 populations and environments. Most QTL were under the significance threshold (left side) of LOD=2 (red dashed line) at some point 
299 during the growing season; however the smaller additive effects (right side) during these periods would not have been expected to be 
300 declared a QTL.
301
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302 q2_55).  Some QTL effects (Fig 6b q6_0) also appeared to lose their association throughout 

303 season, however it is likely due to their effects statistically being diluted by new QTL that 

304 become significant (Fig 6b q6_67).  While most individual QTL maintained their directional 

305 effect (Fig 6a; q5_119 and q6_75), some surprisingly switched effect directions within the 

306 growing season (q6_35). Understanding the biological basis of this switching phenomena would 

307 be both interesting and important for optimizing plant growth. Caution should be used to 

308 interpret all of these QTL as loci that functionally affect height and plant growth rather than 

309 height QTL per se; loci affecting rooting, plant health or photoperiod sensitivity all could impact 

310 plant measured height. 

311 Analysis across the entire linkage map demonstrated that directional changes in additive 

312 effect size were present during the growing season (S4 and S5 Fig).  Within marker assisted 

313 selection protocols, targeting consistent directional effects may result in greater gains than those 

314 of temporal bi-directional effects. Before additional work is conducted temporal effect size should 

315 first be validated through near isogenic lines across genetic backgrounds or in heterogeneous 

316 inbred families [56]. However, we speculate that the temporal trend of the effect size, like many 

317 QTL effects remains dependent on the genetic background, abiotic, and biotic interactions 

318 experienced in each environment, and this G x E interaction. If temporal shifts in directional effect 

319 are valid and not due to over inflations via false positives and limited population size; statistical 

320 models accounting for directional effect shifts will be necessary to incorporate temporal datasets 

321 of dynamic, quantitative traits within prediction modeling approaches to plant breeding, such as 

322 genomic selection.

323

324

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


19

325 Materials and methods

326 Germplasm material and experimental design

327 Three bi-parental mapping populations were developed from breeding lines segregating for 

328 loci discovered in an earlier genome wide association study [28, 57] of hybrids for height and grain 

329 yield. The recombinant inbred line (RIL) progeny were derived from the crosses of Tx740xNC356 

330 (tropical/tropical; 110 RILs), Ki3xNC356 (tropical/tropical; 239 RILs) and LH82xLAMA-YC 

331 (temperate/tropical; 178 RILs). Tx740 (LAMA2002-12-1-B-B-B) [58] is a parent in the “LAMA” 

332 inbred line (pedigree [((LAMA2002-12-1-B-B-B-B/LAMA2002-1-5-B-B-B-B)-3-2-B-1-B3-B]) and 

333 these two lines would be expected to share 50% of their genome. In 2018, the mapping populations 

334 were planted in a randomized complete block design (RCBD) with two replications across two 

335 environments (irrigated and non-irrigated) having dimensions of 0.76 m row spacing, and 3.81 m 

336 plot lengths. 

337

338 Unoccupied aerial system image collection

339  Two platforms were used, a rotary wing and a fixed wing UAV, to collect RGB data. For 

340 the rotary wing, a DJI Phantom 3 Professional with a 12-megapixel DJI FC300X camera was flown 

341 at an altitude of 25 m with to 80% forward and side image overlap. Fixed wing images were 

342 collected using a Tuffwing UAV Mapper (http://www.tuffwing.com) equipped with a 24-

343 megapixel Sony a6000 RGB camera. Fixed wing surveys were conducted at a 120 m altitude with 

344 80% image overlap. A total of 19 DJI Phantom 3 Professional flights were conducted throughout 

345 the growing season, while 11 Tuffwing UAV Mapper flights (starting 05/17/2018) were conducted 

346 after early season to mechanical setbacks of the Tuffwing (S2 Table). After QC/QA, a total of 16 

347 flights were used for height estimates based on quality of the processed orthomosaic images. 
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348 All of the Tuffwing flights were processed in Agisoft PhotoScan [59], while the majority 

349 of the DJI Phantom flights were processed in Pix4Dmapper [60], based on collaborators comfort 

350 and preference with the associated software. In general, these software packages are equivalent 

351 and used to identify common features (tie points) across images followed by triangulation and 

352 distortion adjustment optimization to generate densified 3D point clouds, DSM, and orthomosaic 

353 images. Height estimates were extracted from the three dimensional point clouds following the 

354 procedures of [15]. In short, the ground points were identified from the point cloud using the 

355 hierarchical robust interpolation algorithm within FUSION/LDV. Identified ground points were 

356 used to interpolate the digital elevation model, followed by subtracting the DEM from the original 

357 point cloud to produce the canopy surface model. The plot level polygon shapefiles were created 

358 using the R/UAStools::plotshpcreate [15] function in R and the 95th percentile height estimates 

359 were extracted for each experimental plot. 

360

361 Statistical Inference

362 Variance component estimates and heritability. From the extracted canopy height metrics 

363 (P95), we fit mixed linear models utilizing residual maximum likelihood (REML) in JMP 

364 version 14.0.0 [61] to define best linear unbiased predictors (BLUPs) of the inbreds by their 

365 entry number. Models were fit on a per flight date basis. The individual mapping populations 

366 were evaluated as a randomized complete block design (RCBD, Eq. 1) including spatial 

367 regression (range and row [furrow irrigation runs down rows], this is called row and column, 

368 respectively, where furrow irrigation is not used).

369

370 (1)𝑌 = µ + 𝜎2
𝐺 + 𝜎2

𝑟 + 𝜎2
𝑖 + 𝜎2

𝑗 + 𝜎2
𝜀
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371

372

373 with terms entry ( ), replicate ( ) range ( ), row ( ) and residual error ( ). 𝜎2
𝐺 𝜎2

𝑟 𝜎2
𝑖 𝜎2

𝑗 𝜎2
𝜀

374 Broad sense heritability (H2) estimates were calculated on an entry means basis (Eq.2). 

375

376  (2)𝐻2 =
𝜎2

𝐺 

𝜎2
𝐺 + 𝜎2

𝜀/r 

377

378 Within each environment, H2 estimates were calculated for each population separately while 

379 including replicates (r) for each of the UAS flight dates.

380

381 Nonlinear function. The three parameter Weibull sigmoid growth model (Eq. 3) was used to 

382 summarize the 

383

384 (3)𝑓(𝑥) = 𝐿(1 ‒ 𝑒
( ‒ (𝑥 𝑥0)𝑏))

385

386 height as a function of DAS (x) with the asymptote (L), inflection point (x0), and the growth rate 

387 (b) of the fitted curve. The asymptote (L; m) is maximum value of the curve which represents 

388 maximum/terminal plant height (PHTTRML). The inflection point (x0; DAS) indicates the DAS 

389 where the slope of the logarithmic phase is at its absolute maximum. The growth rate (b) is an 

390 empirical constant which defines the shape of the curve and relates to the absolute growth rate (Eq. 

391 4; m d-1) when x=x0. Sigmoidal curves were fit using the Fit Curve tool in JMP 14 and 
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392

393   (4)
𝛿𝑦
𝛿𝑥(𝐿(1 ‒ 𝑒

( ‒ (𝑥 𝑥0)𝑏))) =  
𝐿𝑏𝑒

( ‒ (𝑥 𝑥0)
𝑏)( 𝑥

𝑥0)𝑏

𝑥

394

395 parameters were estimated on an entry basis utilizing the extracted BLUPs or the individual 

396 environment REML models described above. Significance of the functional parameters were 

397 evaluated using the chi squared (X2) test (α = 0.05, df = 1) to identify logistical curves with poor 

398 fits to UAS height estimates, these were subsequently removed from future analysis. Using the 

399 associated Weibull functional parameters, height estimates were imputed on one day intervals (1 

400 to 85 DAS) for each inbred entry in their associated environments.

401 Genotyping and linkage map construction

402 The genotyping was described in Chen, Murray (62), and is paraphrased here. Genotype 

403 samples were collected from F3:4 seedlings grown under greenhouse conditions, where eight 

404 samples were bulked per genotype. The CTAB method [63] was used to extract DNA and samples 

405 were sent to AgReliant Genetics LLC, where they were genotyped by Infinium® assays for 17,444 

406 single nucleotide polymorphisms (SNPs). The linkage groups and physical locations were 

407 provided with the SNP chip of which 716 markers locations were unknown or withheld due to 

408 intellectual property rights, resulting in 17,019 SNPs with known reference locations (B73 

409 RefGEN_v3).

410  Individuals with >10% missing values and SNPs with >10% missing values were dropped 

411 from the data set resulting in 5316, 5628, and 6231 polymorphic SNPs for the Ki3/NC356, 

412 Tx740/NC356, and LH82/LAMA populations, respectively. Crosspoints were predicted using the 
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413 crosspoint subcommand of SNPbinner [64] to clean data set of double recombinants. The emission 

414 probability was set to 0.9 (-p 0.9), the continuous genotype region was set to 0.1% (-r 0.001) of 

415 the chromosome size, and the transition probability was calculated using a crosscount of 7,500,000 

416 (-c 7,500,000). The visualize subcommand was used to evaluate the efficiency of the calculated 

417 break points to the original SNP calls and identify satisfactory crosspoint parameters. The 

418 crosspoint output identified break point locations for each RIL and the prediction of genotypic 

419 homogeneity of each region between breakpoint and the SNP calls were adjusted accordingly. 

420 Marker datasets filtered by SNPbinner were constructed into linkage maps using the MAP function 

421 of QTL IciMapping version 4.1.0.0 (http://www.isbreeding.net/) software. Redundant markers 

422 were identified using the “BIN” functionality and redundant markers with greater missing data 

423 rate were excluded. Linkage groups were defined by “By Anchor Only” setting and the marker 

424 orders were defined by their physical locations using the “By Input” ordering algorithm. 

425 Recombination frequencies between markers were calculated based on F3 marker frequencies by 

426 denoting the “POP.ID” to eight.

427 The final genetic maps consisted of 1530, 2571, and 2324 SNPs after removal of redundant 

428 markers. The genetic map distances were calculated in QTL IcIMappering using the Kosambi 

429 mapping function, and the total map lengths were estimated to be 1315, 1207, and 1474 cM for 

430 the Tx740xNC356, Ki3xNC356, and LH82xLAMA populations, respectively. 

431 Linkage Mapping

432 The entries phenotyped in 2018 were advanced several generations following initial DNA 

433 extraction at F3:4 and were evaluated in the field at F6 generation or greater. For this reason, 

434 heterozygous calls (1) were set to missing (-1) and QTL analysis was performed assuming RIL 

435 genotype frequencies (“POP.ID” = 4). Analysis by other methods (e.g. treating as F3) were also 
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436 tested to ensure conclusions were similar, but detection power was much lower, likely due to the 

437 software trying to fit dominance effects expected to be rare or absent by the F6 generation. 

438 Inclusive Composite Interval Mapping [65] of Additive (ICIM-ADD) QTL was conducted in the 

439 QTL IciMapping v4.1 using the BIP (QTL mapping for bi-parental populations) function. The step 

440 parameter was set to 1.0 cM and the probability of inclusion in the stepwise regression (PIN) was 

441 set to 0.001. The focus of this study was on understanding the temporal shifts in the marker trait 

442 associations of plant height, rather than identifying regions of high confidence that could be used 

443 in later marker assisted selection. For these reasons, we defined QTL of interest liberally as those 

444 with LOD > 2.0 and percent variation explained ≥ 3% [66], however LOD and other metrics are 

445 provided to extract more conservative thresholds. Using the imputed heights from 1 to 85 DAS, 

446 ICIM-ADD was performed on each DAS, for each population in each environment separately to 

447 access the temporal shifts in allelic effects and marker–trait associations. 

448  A list of candidate genes was obtained from Wallace, Zhang (25). In short, candidate genes 

449 were identified from (i) literature, (ii) mining the MaizeGDB database for known height mutants, 

450 and (iii) searching the maize genome annotation on Phytozome genes annotated with “auxin”, 

451 “brassinosteroid” and/or “gibberellin”. Distance for the center of the QTL confidence interval to 

452 nearest candidate gene with the same chromosome were identified.

453 Data Availibility

454 All of the raw and processed data relevant to this study is publically available on Dryad 

455 Digital Repository (68). All raw and processed image output files from this study are publicly 

456 available and can be obtained by request to the authors.

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


25

457 Acknowledgements

458 The authors would like to acknowledge Misty Miles and all members of the Texas A&M UAS 

459 project. David Rooney, Jacob Pekar and Stephen Labar for their agronomic and technical support. 

460 Graduate students and undergraduate/high school employees for their hard work and effort 

461 maintaining fields and collecting phenotypic data. Special thank you to AgReliant Genetics, LLC. 

462 and Dr. Ivan D. Barrero Farfan for funding and conducting the genotyping for this research. This 

463 project was made possible by financial support from USDA-NIFA-AFRI Award No. 2017-67013-

464 26185 USDA-NIFA Hatch funds Texas A&M AgriLife Research the Texas Corn Producers Board 

465 the Iowa Corn Promotion Boardthe Eugene Butler Endowed Chair in Biotechnology and the Texas 

466 A&M College of Agriculture and Life Sciences Tom Slick Senior Graduate Fellowship.

467 Author contributions:

468 S.L.A. conceptualization, data curation, formal analysis, investigation, methodology, original 

469 draft, review and editing (lead), supervision, validation, visualization; S.C.M. conceptualization, 

470 funding acquisition, methodology, project administration, supervision, resources, review and 

471 editing (supporting); Y.C. data curation, methodology, review and editing (supporting);L.M. data 

472 curation, formal analysis, investigation, methodology, review and editing (supporting), software; 

473 S.P. conceptualization, funding acquisition, resources, review and editing (supporting), software, 

474 supervision; D.C.: conceptualization, funding acquisition, resources, review and editing 

475 (supporting), supervision; A.C. data curation, formal analysis, investigation, methodology, 

476 review and editing (supporting), software; J.J. data curation, formal analysis, investigation, 

477 methodology, resources, review and editing (supporting), software, supervision; I.D.B.F.: data 

478 curation, resources, funding acquisition, review and editing (supporting).

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


26

479

480 References

481 1. Pauli D, Chapman SC, Bart R, Topp CN, Lawrence-Dill CJ, Poland J, et al. The quest for 
482 understanding phenotypic variation via integrated approaches in the field environment. Plant 
483 Physiology. 2016;172(2):622-34.
484 2. Furbank RT, Tester M. Phenomics–technologies to relieve the phenotyping bottleneck. 
485 Trends in Plant Science. 2011;16(12):635-44.
486 3. Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding frontier. 
487 Trends in Plant Science. 2014;19(1):52-61.
488 4. Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE. Translating high-throughput 
489 phenotyping into genetic gain. Trends in Plant Science. 2018;23(5):451-66. doi: 
490 10.1016/j.tplants.2018.02.001.
491 5. Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, et al. 
492 Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A 
493 review. European Journal of Agronomy. 2015;70:112-23.
494 6. Shi Y, Thomasson JA, Murray SC, Pugh NA, Rooney WL, Shafian S, et al. Unmanned aerial 
495 vehicles for high-throughput phenotyping and agronomic research. PloS One. 
496 2016;11(7):e0159781.
497 7. Pugh N, Horne DW, Murray SC, Carvalho G, Malambo L, Jung J, et al. Temporal estimates 
498 of crop growth in sorghum and maize breeding enabled by unmanned aerial systems. The 
499 Plant Phenome Journal. 2018;1(1).
500 8. Malambo L, Popescu S, Murray S, Putman E, Pugh N, Horne D, et al. Multitemporal field-
501 based plant height estimation using 3D point clouds generated from small unmanned aerial 
502 systems high-resolution imagery. International Journal of Applied Earth Observation and 
503 Geoinformation. 2018;64:31-42.
504 9. Chu T, Starek MJ, Brewer MJ, Murray SC, Pruter LS. Characterizing canopy height with 
505 UAS structure-from-motion photogrammetry—results analysis of a maize field trial with 
506 respect to multiple factors. Remote Sensing Letters. 2018;9(8):753-62.
507 10. Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G. Estimating biomass of 
508 barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote 
509 Sensing. 2014;6(11):10395-412.
510 11. De Souza CHW, Lamparelli RAC, Rocha JV, Magalhães PSG. Height estimation of 
511 sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) 
512 point clouds. International Journal of Remote Sensing. 2017;38(8-10):2218-30.
513 12. Holman FH, Riche AB, Michalski A, Castle M, Wooster MJ, Hawkesford MJ. High 
514 throughput field phenotyping of wheat plant height and growth rate in field plot trials using 
515 UAV based remote sensing. Remote Sensing. 2016;8(12):1031.
516 13. Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M, et al. High-
517 throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its 
518 application to genomic prediction modeling. Frontiers in Plant Science. 2017;8.
519 14. Chang A, Jung J, Maeda MM, Landivar J. Crop height monitoring with digital imagery from 
520 unmanned aerial system (UAS). Computers and Electronics in Agriculture. 2017;141:232-7.

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


27

521 15. Anderson SL, Murray S, Malambo L, Ratcliff C, Popescu S, Cope D, et al. Prediction of 
522 maize grain yield before maturity using improved temporal height estimates of unmanned 
523 aerial systems. The Plant Phenome Journal. 2019;2. doi: 10.2135/tppj2019.02.0004.
524 16. Anthony D, Elbaum S, Lorenz A, Detweiler C, editors. On crop height estimation with 
525 UAVs. Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International 
526 Conference on; 2014: IEEE.
527 17. Li W, Niu Z, Chen H, Li D, Wu M, Zhao W. Remote estimation of canopy height and 
528 aboveground biomass of maize using high-resolution stereo images from a low-cost 
529 unmanned aerial vehicle system. Ecological Indicators. 2016;67:637-48.
530 18. Varela S, Assefa Y, Prasad PV, Peralta NR, Griffin TW, Sharda A, et al. Spatio-temporal 
531 evaluation of plant height in corn via unmanned aerial systems. Journal of Applied Remote 
532 Sensing. 2017;11(3):036013.
533 19. Geipel J, Link J, Claupein W. Combined spectral and spatial modeling of corn yield based 
534 on aerial images and crop surface models acquired with an unmanned aircraft system. 
535 Remote Sensing. 2014;6(11):10335-55.
536 20. Wang X, Zhang R, Song W, Han L, Liu X, Sun X, et al. Dynamic plant height QTL revealed 
537 in maize through remote sensing phenotyping using a high-throughput unmanned aerial 
538 vehicle (UAV). Scientific Reports. 2019;9(1):3458.
539 21. Han L, Yang G, Yang H, Xu B, Li Z, Yang X. Clustering field-based maize phenotyping of 
540 plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach. 
541 Frontiers in Plant Science. 2018;9:1638.
542 22. Han L, Yang G, Dai H, Xu B, Yang H, Feng H, et al. Modeling maize above-ground biomass 
543 based on machine learning approaches using UAV remote-sensing data. Plant Methods. 
544 2019;15(1):10.
545 23. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, et al. The genetic 
546 architecture of maize height. Genetics. 2014;196(4):1337-56.
547 24. Anderson SL, Mahan AL, Murray SC, Klein PE. Four parent maize (FPM) population: 
548 Effects of mating designs on linkage disequilibrium and mapping quantitative traits. The 
549 Plant Genome. 2018;11. doi: 10.3835/plantgenome2017.11.0102.
550 25. Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, et al. Genome-wide 
551 association for plant height and flowering time across 15 tropical maize populations under 
552 managed drought stress and well-watered conditions in Sub-Saharan Africa. Crop Science. 
553 2016;56(5):2365-78.
554 26. Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, et al. Combined linkage and association 
555 mapping reveals QTL and candidate genes for plant and ear height in maize. Frontiers in 
556 Plant Science. 2016;7:833.
557 27. Farfan IDB, Murray SC, Labar S, Pietsch D. A multi-environment trial analysis shows slight 
558 grain yield improvement in Texas commercial maize. Field Crops Research. 2013;149:167-
559 76.
560 28. Chen Y. High-density linkage map construction, mapping of agronomic traits in tropical 
561 maize (Zea Mays L.) and validating SNPs controlling maize grain yield and plant height in 
562 southern hybrid testcrosses. Doctoral dissertation.: Texas A&M University. Available 
563 electronically from http : / /hdl .handle .net /1969 .1 /158620.; 2016.
564 29. Katsvairo TW, Cox WJ, Van Es HM. Spatial growth and nitrogen uptake variability of corn 
565 at two nitrogen levels. Agronomy Journal. 2003;95(4):1000-11.

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


28

566 30. Machado S, Bynum E, Archer T, Lascano R, Wilson L, Bordovsky J, et al. Spatial and 
567 temporal variability of corn growth and grain yield. Crop Science. 2002;42(5):1564-76.
568 31. Mallarino A, Oyarzabal E, Hinz P. Interpreting within-field relationships between crop yields 
569 and soil and plant variables using factor analysis. Precision Agriculture. 1999;1(1):15-25.
570 32. Yin X, McClure MA, Jaja N, Tyler DD, Hayes RM. In-season prediction of corn yield using 
571 plant height under major production systems. Agronomy Journal. 2011;103(3):923-9.
572 33. Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT. Maize DELLA proteins dwarf plant8 and 
573 dwarf plant9 as modulators of plant development. Plant and Cell Physiology. 
574 2010;51(11):1854-68.
575 34. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. Loss of an 
576 MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science. 
577 2003;302(5642):81-4.
578 35. Hartwig T, Chuck GS, Fujioka S, Klempien A, Weizbauer R, Potluri DPV, et al. 
579 Brassinosteroid control of sex determination in maize. Proceedings of the National Academy 
580 of Sciences. 2011;108(49):19814-9.
581 36. Winkler RG, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated 
582 early step in Gibberellin biosynthesis. The Plant Cell. 1995;7(8):1307-17.
583 37. Makarevitch I, Thompson A, Muehlbauer GJ, Springer NM. Brd1 gene in maize encodes a 
584 brassinosteroid C-6 oxidase. PloS One. 2012;7(1):e30798.
585 38. Wang Y, Zhao J, Lu W, Deng D. Gibberellin in plant height control: old player, new story. 
586 Plant Cell Reports. 2017;36(3):1-8.
587 39. Ferreira FJ, Kieber JJ. Cytokinin signaling. Current opinion in plant biology. 2005;8(5):518-
588 25.
589 40. Finkelstein RR. Studies of abscisic acid perception finally flower. The Plant Cell. 
590 2006;18(4):786-91.
591 41. Huq E. Degradation of negative regulators: a common theme in hormone and light signaling 
592 networks? Trends in plant science. 2006;11(1):4-7.
593 42. Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. 
594 Current opinion in plant biology. 2005;8(5):532-40.
595 43. Wu R, Lin M. Functional mapping—how to map and study the genetic architecture of 
596 dynamic complex traits. Nature Reviews Genetics. 2006;7(3):229.
597 44. Holden's Foundation Seeds I, inventorCorn 'LH82' patent 008500037. 1985.
598 45. Fournier C, Andrieu B. Dynamics of the elongation of internodes in maize (Zea mays L.): 
599 analysis of phases of elongation and their relationships to phytomer development. Annals of 
600 Botany. 2000;86(3):551-63.
601 46. Morrison T, Kessler J, Buxton D. Maize internode elongation patterns. Crop Science. 
602 1994;34(4):1055-60.
603 47. Robertson M. Relationships between internode elongation, plant height and leaf appearance 
604 in maize. Field Crops Research. 1994;38(3):135-45.
605 48. Tardieu F, Reymond M, Muller B, Granier C, Simonneau T, Sadok W, et al. Linking 
606 physiological and genetic analyses of the control of leaf growth under changing 
607 environmental conditions. Australian Journal of Agricultural Research. 2005;56(9):937-46.
608 49. Beavis W. QTL analyses: power, precision, and accuracy,‖  in: Molecular analysis of 
609 complex traits.(Paterson, AH ed.). CRC Press, Cleveland, USA; 1998.
610 50. Jannink J-L, Bink MC, Jansen RC. Using complex plant pedigrees to map valuable genes. 
611 Trends in plant science. 2001;6(8):337-42.

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


29

612 51. Wu R, Lin M. Functional mapping—how to map and study the genetic architecture of 
613 dynamic complex traits. Nature Reviews Genetics. 2006;7(3):229-37.
614 52. Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, et al. Zm MADS 69 functions as a 
615 flowering activator through the ZmRap2. 7‐ZCN 8 regulatory module and contributes to 
616 maize flowering time adaptation. New Phytologist. 2019;221(4):2335-47.
617 53. Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, et al. Insights 
618 into the maize pan-genome and pan-transcriptome. The Plant Cell. 2014;26(1):121-35.
619 54. Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, et al. The maize d2003, a novel allele of VP8, 
620 is required for maize internode elongation. Plant Molecular Biology. 2014;84(3):243-57.
621 55. Wu R, Wang Z, Zhao W, Cheverud JM. A mechanistic model for genetic machinery of 
622 ontogenetic growth. Genetics. 2004;168(4):2383-94.
623 56. Tuinstra M, Ejeta G, Goldsbrough P. Heterogeneous inbred family (HIF) analysis: a method 
624 for developing near-isogenic lines that differ at quantitative trait loci. Theoretical and 
625 Applied Genetics. 1997;95(5-6):1005-11.
626 57. Farfan IDB, Gerald N, Murray SC, Isakeit T, Huang P-C, Warburton M, et al. Genome wide 
627 association study for drought, aflatoxin resistance, and important agronomic traits of maize 
628 hybrids in the sub-tropics. PloS One. 2015;10(2):e0117737.
629 58. Mayfield K, Betrán FJ, Isakeit T, Odvody G, Murray SC, Rooney WL, et al. Registration of 
630 maize germplasm lines Tx736, Tx739, and Tx740 for reducing preharvest aflatoxin 
631 accumulation. Journal of Plant Registrations. 2012;6(1):88-94.
632 59. AgiSoft PhotoScan Professional. (Version 1.2.6) (Software). Retrieved from 
633 http://wwwagisoftcom/downloads/installer/. 2016.
634 60. Pix4Dmapper. Pix4D SA. www.pix4d.com. 2018.
635 61. JMP®. Version 14.0.0. SAS Institute Inc, Cary, NC, 1989-2018. 2018.
636 62. Chen Y, Murray SC, Barrero ID, Kolomiets MV, Rooney WL, Wang F. Validating SNPs' 
637 effects on maize grain yield and plant height in Txxas testcross hybrids. Molecular Breeding. 
638 In Preparation.
639 63. Chen D-H, Ronald P. A rapid DNA minipreparation method suitable for AFLP and other 
640 PCR applications. Plant Molecular Biology Reporter. 1999;17(1):53-7.
641 64. Gonda I, Ashrafi H, Lyon DA, Strickler SR, Hulse-Kemp AM, Ma Q, et al. Sequencing-
642 based bin map construction of a tomato mapping population, facilitating high-resolution 
643 quantitative trait loci detection. The Plant Genome. 2018;12.
644 65. Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval 
645 mapping. Genetics. 2007;175(1):361-74.
646 66. Li H, Ribaut J-M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic 
647 epistasis of quantitative traits in biparental populations. Theoretical and Applied Genetics. 
648 2008;116(2):243-60.
649 67. Archontoulis SV, Miguez FE. Nonlinear regression models and applications in agricultural 
650 research. Agronomy Journal. 2015;107(2):786-98.
651 68.   Anderson SL, Murray  SC, Chen Y, Malambo M, Chang A, Popescu S, Cope D, Jung J. 
652 Unoccupied aerial system enabled functional modeling of maize (Zea mays L.) height 
653 reveals dynamic expression of loci associated to temporal growth. Dryad Digital Repository. 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted November 19, 2019. ; https://doi.org/10.1101/848531doi: bioRxiv preprint 

https://doi.org/10.1101/848531


30

654 Figures

655 Fig 1. UAS P95 height estimates summarized by flight date. Although the three populations 
656 were genetically diverse, the mean growth patterns behaved similarly. Little 
657 differentiation could be seen early in the season between genotypes, where the 
658 measurement error may have been smaller that genotypic differences, as the plants 
659 reached their peak height and flowered, height differences became much greater.

660 Fig 2. Variance component decomposition of UAS P95 height estimates. The percent 
661 variation explained in the model of Eq. 1 for individual UAS surveys of three RIL 
662 populations showed that genetic and residual (error) variation, were the main drivers 
663 of variability observed.   Total variance (black circles) increased as the plants grew 
664 over later flight dates and was higher for manual (M) than UAS measurements. That 
665 the percent variance measures and heritability were similar for M and UAS suggests 
666 that UAS compressed all variance sources similarly

667 Fig 3. Nonlinear Weibull functional modeling of growth trajectories. Sigmoidal curves 
668 based off the Weibull function (Eq. [3]) effectively modeled the growth of each entry. 
669 For each population the female parent (red line) and the male parent (blue line) 
670 crossed over demonstrating that early season height was not predictable by standard 
671 manual terminal height measurements.

672 Fig 4. Distribution of Weibull functional parameters. Entry BLUPS of [a] manual terminal 
673 plant height, [b] Weibull asymptote, [c] Weibull inflection point, and [d] Weibull 
674 growth rate for each mapping population demonstrated variability both within and 
675 between these populations with substantial transgressive segregation in most cases. 
676 Letters above define significant differences in means at α=0.05.

677 Fig 5.  Col-localization of agronomic and functional growth QTL associations. Significant 
678 QTL co-localized across agronomic traits (PHT_TRML: Manual, terminal plant 
679 height; DTA: Days to anthesis; DTS: Days to silking), functional growth parameters 
680 (asymptote, inflection point, growth rate) and temporal height estimates from the 
681 Weibull curves. Temporal expression of all height QTL can be visualized in S4 Fig.

682 Fig 6.  Visualization of temporal trends in QTL expression. Temporal trends in QTL 
683 expression were observed in all QTL across populations and environments. Most 
684 QTL were under the significance threshold (left side) of LOD=2 (red dashed line) at 
685 some point during the growing season; however the smaller additive effects (right 
686 side) during these periods would not have been expected to be declared a QTL.

687
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688 Supporting information

689 S1 Fig. Tx740xNC356 correlation heatmaps. Heat map comparing correlations between manual 
690 terminal plant height (PHT), flowering time (DTA/DTS), functional parameters (asymptote, 
691 growth rate, inflection point), and UAS P95 estimates by flight date for the Tx740xNC356 
692 population under [a] irrigated and [b] non-irrigated watering regimens. Growth rate is an empirical 
693 constant of the Weibull function which defines the maximum absolute growth rate (m d-1).
694
695 S2 Fig. Ki3xNC356 correlation heatmaps.  Heat map comparing correlations between manual 
696 terminal plant height (PHT), flowering time (DTA/DTS), functional parameters (asymptote, 
697 growth rate, inflection point), and UAS P95 estimates by flight date for the Ki3xNC356 population 
698 under [a] irrigated and [b] non-irrigated watering regimens. Growth rate is an empirical constant 
699 of the Weibull function which defines the maximum absolute growth rate (m d-1).
700
701 S3 Fig. LH82xLAMA correlation heatmaps.    Heat map comparing correlations between 
702 manual terminal plant height (PHT), flowering time (DTA/DTS), functional parameters 
703 (asymptote, growth rate, inflection point), and UAS P95 estimates by flight date for the 
704 LH82xLAMA population under [a] irrigated and [b] non-irrigated watering regimens. Growth rate 
705 is an empirical constant of the Weibull function which defines the maximum absolute growth rate 
706 (m d-1).
707
708 S4 Fig. Visual representation of temporal QTL. Significant temporal height QTL. Red indicates 
709 positive allelic effect estimates, blue indicates negative allelic effect estimates, and black indicate 
710 non-significant (NS) genomic regions. Lines represent each of 5316, 5628, and 6231 polymorphic 
711 SNPs for the Ki3/NC356, Tx740/NC356, and LH82/LAMA populations, respectively, across the 
712 genome (X-axis).
713
714 S5 Fig. Visual representation of temporal allele effect estimate. Visual representation of 
715 temporal single marker analysis of the Weibull imputed height estimates. Lines represent each of 
716 5316, 5628, and 6231 polymorphic SNPs for the Ki3/NC356, Tx740/NC356, and LH82/LAMA 
717 populations, respectively, across the genome (X-axis).
718
719 S1 Table. Summary of 2018 UAS flight dates. Summary of 2018 UAS flight dates of the fields 
720 containing the Tx740xNC356, Ki3xNC356, and LH82xLAMA populations, including: days after 
721 sowing (DAS), the number of images captured, the number of calibrated images, spatial resolution 
722 of the mosaic image and mean errors of the GCP geo-referencing.
723
724 S2 Table. Descriptive statistics of UAS flight dates by population. Summary statistics of the 
725 entries for each population (Tx740xNC356, Ki3xNC356, and LH82xLAMA) across the six 
726 identified flight dates with high quality point clouds for the irrigated and non-irrigated trials.
727
728 S3 Table. Manual plant height QTL. Summary of QTL identified using manual terminal plant 
729 height as the associated phenotype. Physical locations (bp) based on B73 RefGen_3, AGPv3.
730
731 S4 Table. Flowering time QTL Summary of significant QTL for flowering time. Physical 
732 locations (bp) based on B73 RefGen_3, AGPv3.
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733
734 S5 Table. Function growth parameter QTL. Summary of significant QTL for functional 
735 parameters of the Weibull sigmoid function. Physical locations (bp) based on B73 RefGen_3, 
736 AGPv3. Growth rate (GR) is an empirical constant of the Weibull function which defines the 
737 maximum absolute growth rate (m d-1).
738
739 S6 Table. Temporal height QTL.  Summary of significant temporal QTL for height estimates 
740 imputed from Weibull sigmoid curve at discrete time points (i.e. DAS where significant 
741 associations were identified.). Physical locations (bp) based on B73 RefGen_3, AGPv3.
742
743 S1 File. Statistical methods to identify flight to remove from temporal dataset.
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