
Statistical inference of mechanistic models from qualitative

data using an efficient optimal scaling approach

Leonard Schmiester1,2, Daniel Weindl1, and Jan Hasenauer1,2,3,*

1Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for

Environmental Health, 85764 Neuherberg, Germany
2Center for Mathematics, Technische Universität München, 85748 Garching, Germany

3Faculty of Mathematics and Natural Sciences, University of Bonn, 53113 Bonn, Germany
*To whom correspondence should be addressed.

Abstract

Quantitative dynamical models facilitate the understanding of biological processes and the

prediction of their dynamics. These models usually comprise unknown parameters, which

have to be inferred from experimental data. For quantitative experimental data, there are

several methods and software tools available. However, for qualitative data the available ap-

proaches are limited and computationally demanding.

Here, we consider the optimal scaling method which has been developed in statistics for cat-

egorical data and has been applied to dynamical systems. This approach turns qualitative

variables into quantitative ones, accounting for constraints on their relation. We derive a

reduced formulation for the optimization problem defining the optimal scaling. The reduced

formulation possesses the same optimal points as the established formulation but requires less

degrees of freedom. Parameter estimation for dynamical models of cellular pathways revealed

that the reduced formulation improves the robustness and convergence of optimizers. This

resulted in substantially reduced computation times.

We implemented the proposed approach in the open-source Python Parameter EStimation

TOolbox (pyPESTO) to facilitate reuse and extension. The proposed approach enables effi-

cient parameterization of quantitative dynamical models using qualitative data.

1 Introduction

In systems and computational biology, quantitative dynamical models based on ordinary differ-

ential equations (ODEs) are widely used to study cellular processes (Klipp et al., 2005; Aldridge

et al., 2006; Schöberl et al., 2009; Bachmann et al., 2011). Unknown parameters of these ODE

models are often inferred from experimental data (Banga, 2008; Raue et al., 2013a). This is done
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by minimizing the distance between measured data and model simulation, e.g. the mean squared

error, the mean absolute error or the maximum likelihood (Raue et al., 2013a). However, not all

experimental techniques and setups provide quantitative data that allow for a direct comparison

of measured and simulated data.

In many experimental setups, the measured values only provide information about the qualitative

behaviour, e.g. that some quantity decreases or increases. Frequently encountered reasons are

(i) unknown nonlinear dependencies of the measured signal on the internal state of the system,

e.g. for Förster resonance energy transfer (FRET) (Birtwistle et al., 2011) and (ii) detection

thresholds and saturation effects, e.g. for Western blotting (if not properly designed) (Butler

et al., 2019). For these techniques a specific fold change in the measured signal does not imply the

same fold change in the measured species. Yet, there is a monotonic relation between measured

species and signal, meaning that – if the measurement noise is neglected – the ordering is still

preserved.

The use of qualitative data is not supported by established parameter estimation toolboxes such

as AMIGO (Balsa-Canto & Banga, 2011), COPASI (Hoops et al., 2006), Data2Dynamics (Raue

et al., 2015), and PESTO (Stapor et al., 2018) (along with its Python reimplementation pyPESTO

(Schälte et al., 2019)). However, two methods have been proposed which facilitate the use of qual-

itative data in dynamical systems: (1) Mitra et al. (2018) used an ad hoc approach based on

the formulation of qualitative data as inequality constraints. The degree to which the inequal-

ity constraints were violated was used as objective function. The parameters were estimated by

minimizing this penalized objective function. This approach was implemented in the toolbox py-

BioNetFit (Mitra et al., 2019) and recently extended using a probabilistic distance measure (Mitra

& Hlavacek, 2019). (2) Pargett & Umulis (2013) and Pargett et al. (2014) used the concept of op-

timal scaling established in statistics (Shepard, 1962). Instead of imposing inequality constraints,

the optimal scaling method determines the best quantitative representation of the qualitative data.

This quantitative representation is referred to as surrogate data. The parameters are estimated by

splitting the optimization of the parameters in an outer and an inner problem (Figure 1A). In the

outer problem the model parameters of the dynamical model are optimized given the parameter-

dependent optimal surrogate data computed in the inner problem by minimizing the difference

between surrogate data and model simulation. In the inner optimization, the optimal surrogate

data for a given model simulation are determined, such that inconsistencies of the model simula-

tion with the qualitative measurement data are penalized. While the optimal scaling approach is

deeply grounded in statistical theory, it is computationally demanding.

Here, we build upon the optimal scaling method developed by Pargett & Umulis (2013) and

Pargett et al. (2014) for dynamical systems. To accelerate the solution of the inner optimization,

we first propose a reduced formulation which conserves the optimal points. Next, the reduced

formulation is reparameterized to an unconstrained optimization problem, which can be solved

more robustly as we demonstrate on three application examples. The approach is implemented in

the Python Parameter EStimation TOolbox pyPESTO (Schälte et al., 2019) and can be used with

the parameter estimation data format PEtab (Weindl et al., 2019) making it easily reusable.
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2 Methods

2.1 Modeling of biochemical processes

We consider biochemical processes described by ordinary differential equations (ODEs) of the form:

ẋ(t, θ) = f(x(t, θ), θ), x(t0, θ) = x0(θ), (1)

in which x(t, θ) ∈ Rnx denotes the concentrations of biochemical species at time t and f : Rnx ×
Rnθ 7→ Rnx the vector field describing their temporal evolution. The vector field is assumed to be

Lipschitz continuous in x to ensure existence and uniqueness of the solutions. The vector θ ∈ Rnθ

comprises the unknown time-invariant parameters of the ODE (1). The function x0 : Rnθ 7→ Rnx

provides the parameter-dependent initial condition at initial time t0, thereby allowing for steady

state constraints (Rosenblatt et al., 2016; Fiedler et al., 2016).

2.2 Measurement process

We consider quantitative and qualitative measurement data. To allow for partial observations of

the state x(t, θ), we define the observation function h : Rnx×Rnθ 7→ R. The observable y(t, θ) ∈ R
is given by

y(t, θ) = h(x(t, θ), θ). (2)

Examples for the observation function are h(x, θ) = x1 (absolute measurements of state variable

x1), h(x, θ) = x1 + x2 (absolute measurements of the sum of state variables x1 and x2), and

h(x, θ) = θ1x1 (relative measurements of state variable x1). Also saturation effects and more

complex dependencies can be considered.

For ease of notation we consider in the main manuscript the case of a single observable and a single

time-lapse experiment. The extension to multiple observables and multiple experiments (e.g. a

dose-response curve) is straight forward.

Quantitative data are noise-corrupted observations of y(t, θ),

ȳi = y(ti, θ) + εi, (3)

with time index i = 1, . . . , N . Here, we assume additive and normally distributed measurement

noise εi ∼ N (0, σ2
i ) with standard deviation σi. Alternatives are provided by Laplace and t-

distributed measurement noise (Maier et al., 2017).

Qualitative data are information about a readout z(θ, t) which is related to the observable y(θ, t).

Yet, the mapping from the observable y(θ, t) to the measured quantity is not precisely known. For

several experimental techniques only monotonicity of the mapping from z(θ, t) to y(θ, t) can be

assumed. This means that an increase of the readout z(θ, t) implies an increase of the observable
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y(θ, t), but that y(θ, t) might increase without changing z(θ, t). This happens for instance if the

readout is discrete or if there is a detection limit or detector saturation.

The measured (qualitative) readouts are potentially noise corrupted

z̄i = z(θ, ti) + νi (4)

with measurement noise νi and are either indistinguishable, i.e. z̄i ≈ z̄j, or ordered, z̄i > z̄j or

z̄i < z̄j, i 6= j. We follow the formulation by (Pargett & Umulis, 2013) and introduce categories Ck,
k = 1, . . . , K, which are without loss of generality assumed to be ordered as C1 ≺ C2 · · · ≺ CK . The

categories contain observations, which are indistinguishable from each other, i.e. z̄i, z̄j ∈ Ck ⇒ z̄i ≈
z̄j. Observations from different categories can be distinguished by the ordering of the categories.

The index of the category to which observation z̃i belongs is denoted by k(i). An illustration of

qualitative data is shown in Figure 1B.

2.3 Parameter estimation

The unknown parameters θ of the ODE model (1) have to be inferred from the available quanti-

tative and qualitative data.

For quantitative data, parameter estimates are usually computed by minimizing the difference

between the data and the model simulation. The difference is commonly formulated in terms of the

negative log-likelihood or the negative log-posterior functions (Raue et al., 2013b). Here, we con-

sidered normally distributed measurement noise with known standard deviation. In this case the

negative log-likelihood function is a weighted least squares objective function. The corresponding

optimization problem is

θ̂ = arg min
θ

N∑
i=1

wi(ȳi − y(ti, θ))
2, (5)

with quantitative data ȳi, model simulation y(ti, θ) and weights wi = 1/σ2
i . Multi-start local opti-

mization has been shown to be a competitive method for solving these types of ODE-constrained

optimization problems (Raue et al., 2013a; Villaverde et al., 2018).

For qualitative data, parameter estimates can be computed using the optimal scaling approach

(Pargett et al., 2014) (Figure 1A-C). This approach addresses the problem that the mapping from

quantitative simulation to qualitative data is unknown by introducing quantitative surrogate data

ỹi, i = 1, . . . , N . These surrogate data provide the best agreement with the model simulation

within the constraints provided by the qualitative data (Figure 1B), i.e. the information about the

category of a data point and its (qualitative) relation to other data points. For a given parameter

θ and corresponding model simulation y(t, θ), the surrogate data are obtained by solving the

4

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848648doi: bioRxiv preprint 

https://doi.org/10.1101/848648
http://creativecommons.org/licenses/by/4.0/


optimization problem

(ỹ(θ), l(θ), u(θ)) = arg min
ỹ,l,u

N∑
i=1

wi (ỹi − y(ti, θ))
2

s.t. lk(i) ≤ ỹi ≤ uk(i), i = 1, . . . , N

uk ≤ lk+1, k = 1, . . . , K − 1.

(6)

The qualitative information is enforced by restricting the surrogate data for observations in cat-

egory Ck to the interval [lk, uk], with lower bound lk ∈ R and upper bound uk ∈ R. To ensure

that categories are distinguishable, the upper bound of category Ck has to be lower than the lower

bound of category Ck+1, uk ≤ lk+1. The category for the i-th observation is encoded in the index

mapping k(i). The weights in the objective function are set to

wi =
1

1
2

∑N
j=1 |y(tj, θ)|+

∑N
j=2 |y(tj, θ)− y(tj−1, θ)|+ γ

with γ = 10−10 (7)

which is similar to the choice by Pargett et al. (2014). This choice of the weight ensures that the

values of the observable do not tend to zero, thereby improving numerical stability compared to

a choice which is independent of the simulation. The second summand penalizes flat simulations

and γ is chosen such that w is still evaluable for simulations equal to zero.

To estimate the parameters θ, the distance between model simulation and optimal surrogate data

(Figure 1C) is minimized

θ̂ = arg min
θ

N∑
i=1

wi(ỹi(θ)− y(ti, θ))
2. (8)

As the surrogate data possess for all θ the correct qualitative characteristics, the minimization of

the objective function
∑N

i=1wi(ỹi(θ) − y(ti, θ))
2 yields a sequence of points which approaches the

measured qualitative dynamics. If the model simulations show the correct qualitative behaviour,

the objective function becomes zero.

The surrogate data depend on the parameter-dependent model simulation y(ti, θ). Therefore, the

optimization of the surrogate data is nested in the optimization of the parameters θ and has to be

performed in each optimization step. To accelerate this process, Pargett et al. (2014) employed

that the optimal surrogate data can be computed from the optimal category bounds u(θ) and l(θ):

(Case 1) If the model simulation y(ti, θ) is smaller than the lower bound lk(i)(θ), the surrogate

data are set to the smallest feasible value to minimize the difference, i.e. ỹi(θ) = lk(i)(θ).

(Case 2) If the model simulation y(ti, θ) is larger than the upper bound uk(i)(θ), the surrogate data

are set to the largest feasible value to minimize the difference, i.e. ỹi(θ) = uk(i)(θ).

(Case 3) If the model simulation y(ti, θ) is in the interval [lk(i)(θ), uk(i)(θ)], then the surrogate data

are set to ỹi(θ) = y(ti, θ). In this case the error is zero.
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These analytical results provide a construction rule for the surrogate data:

ỹi(θ) =


lk(i)(θ) if y(ti, θ) < lk(i)(θ)

uk(i)(θ) if uk(i)(θ) < y(ti, θ)

y(ti, θ) otherwise.

(9)

Using this construction rule, the category bounds can be computed using the optimization problem:

(l(θ), u(θ)) = arg min
l,u

N∑
i=1

wi

(
max

{
0, lk(i) − y(ti, θ)

}2
+ max

{
0, y(ti, θ)− uk(i)

}2)
s.t. lk ≤ uk, k = 1, . . . , K

uk ≤ lk+1, k = 1, . . . , K − 1.

(10)

In the considered objective function, the term max{0, lk(i)−y(ti, θ)}2 vanishes in Case 2 and 3 while

the term max{0, y(ti, θ) − uk(i)}2 vanishes in Case 1 and 3. Accordingly, the objective function

uses the analytical results for the optimal surrogate data and its minimizer provides the optimal

lower and upper bounds for the categories. Hence, in the optimal scaling approach (Figure 1A),

solving (6) can be replaced by solving (10) and evaluating the optimal surrogate data using (9).

In the optimization problems (6) and (10), the qualitative data provide only limited information

about the lower bound l1 of category C1 and the upper bound uK of category CK . The lower

bound l1 may be set to any value smaller or equal to the minimum of y(ti, θ), l1 ≤ mini y(ti, θ),

and the upper bound uK may be set to any value greater or equal to the maximum of y(ti, θ),

uK ≥ maxi y(ti, θ).

2.4 Acceleration of surrogate data calculation

The surrogate data calculation proposed by Pargett et al. (2014) reduces the number of optimiza-

tion variables from N + 2(K − 1) to 2(K − 1). Yet, the calculation of the surrogate data is for

many application problems still the most time-consuming process within the parameter estimation.

Here, we propose two reformulations to accelerate the surrogate data calculation.

The first reformulation is based on our empirical observation that the gaps between lower and

upper bounds of adjacent categories are often estimated as small as possible. Our analysis of the

phenomenon revealed:

Lemma 1. The optimization problem (10) possesses an optimal solution (l∗, u∗) with u∗k = l∗k+1

for k = 1, . . . , K − 1.

Proof. Assume there is an optimal solution (l′, u′) with a non-zero gap between adjacent lower and

upper bounds. Without loss of generality, we assume that u′k′ < l′k′+1.

For all observations i ∈ {1, . . . , N} with k(i) = k′ it has to hold that y(ti, θ)−u′k(i) = y(ti, θ)−u′k′ <
0. Otherwise, the objective function could be decreased by setting u′k(i) = l′k(i)+1 as the objective
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Figure 1: Illustration of the optimal scaling approach. (A) Individual steps of an optimization run.

(B) Schematic of surrogate data calculation for a given simulation results y(t, θ) and set of qualitative

data (with three categories). The interval between the optimized lower and upper bounds of the categories

are indicated by grey areas. (C) Schematic of residuals used in the objective function for the parameter

optimization.

function summand max{0, y(ti, θ) − u′k(i)}2 = max{0, y(ti, θ) − u′k′}2 > max{0, y(ti, θ) − l′k(i)+1}2
would decrease. This would imply that (l′, u′) is not an optimal solution.

As y(ti, θ) − u′k′ < 0 the corresponding objective function summands are zero, max{0, y(ti, θ) −
u′k′}2 = 0. This does not change if u′k′ is increased to l′k′+1.

This proof also holds for other weighting functions wi(y, l
′, u′) as well as constant weights wi.

Lemma 1 implies that among the optimal solutions of (10), there is at least one for which the

lower and upper bounds of adjacent categories are identical (see also Figure 2). Accordingly, an

optimal solution of (10) can be computed by solving a reduced problem:

Theorem 2. An optimal solution of the optimization problem (10) is obtained by solving

u(θ) = arg min
u

N∑
i=1

wi

(
max

{
0, uk(i)−1 − y(ti, θ)

}2
+ max

{
0, y(ti, θ)− uk(i)

}2)
s.t. uk ≤ uk+1, k = 0, . . . , K − 1,

(11)
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Figure 2: Schematic representation of the reduction of the inner optimization problem. (A) Example

of qualitative data with two categories and three observations. (B & C) Simulated data with category

bounds shown in gray for two different category bounds. (D) Objective function landscape for upper

bound of C1 and lower bound of C2, showing that the objective function decreases (or stays constant),

when decreasing the gap between the two category intervals. By setting l2 = u1 the minimal objective

function is achieved.

for u0 = mini y(ti, θ) and uK = maxi y(ti, θ), and setting lk+1(θ) = uk(θ) for k = 1, . . . , K − 1.

Proof. Optimization problem (11) is obtained by substituting lk+1 with uk in optimization problem

(10) and removing trivially fulfilled constraints. The reduced optimization problem obtained by

the substitution effectively solves (10) on the subspace lk+1 = uk, which contains one of the optimal

solutions (Lemma 1).

We note that u0 is an auxiliary variable used to simplify the notation, not the bound of an additional

category.

The reduced optimization problem (11) possesses K−1 optimization variables. Hence, the number

of optimization variables is reduced by a factor of two compared to the available formulation (11).

This should accelerate the optimization. Yet, as the objective function is nonlinear and as we have

linear inequality constraints, the availability of optimization methods is limited.

The second reformulation is based on our empirical finding that available solvers for nonlinear

optimization problems with box constrained optimization variables are often computationally more
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efficient than those for general linear inequality constraints. To this end, we introduce the vector of

differences between the upper bounds of adjacent categories, dk := uk−uk−1. Using this difference,

the category bounds can be written as uk = u0 +
∑k

k′=1 dk. The auxiliary variable u0 can be set

to some value lower or equal to the minimum of y(θ, ti), e.g. u0 = mini y(θ, ti). The reformulation

of the reduced optimization problem using the differences yields

u(θ) = arg min
u

N∑
i=1

wi

max

0, u0 +

k(i)−1∑
k′=1

dk′ − y(ti, θ)


2

+ max

0, y(ti, θ)− u0 −
k(i)∑
k′=1

dk′


2

s.t. dk ≥ 0, k = 1, . . . , K − 1.
(12)

This optimization problem contains only positivity constraints for the optimization variables.

Hence, a broader spectrum of nonlinear optimization algorithms can be employed.

To select appropriate numerical optimization algorithms, we analyzed the properties of the opti-

mization problems. We found that:

Theorem 3. The optimization problems (10), (11), and (12) are convex.

Proof. The objective functions of the respective optimization problems are sums of convex func-

tions of the lower bounds l, the upper bounds u and/or the differences d. As the sum of convex

functions is itself convex (Boyd & Vandenberghe, 2004, Section 3.2), the overall objective function

is convex. In combination with linear inequality constraints, this implies that the optimization

problem is convex.

Convex optimization problems only possess one optimum. Hence, local optimization methods

should – in theory – converge to the optimal solution.

2.5 Category and gap sizes

To ensure that qualitatively different readouts are related to non-negligible quantitative differences,

Pargett et al. (2014) enforced a minimal size s ∈ R+ for each category and a minimal gap g ∈ R+

between categories. Therefore, the constraints were modified, yielding the optimization problem

(l(θ), u(θ)) = arg min
l,u

N∑
i=1

wi

(
max

{
0, lk(i) − y(ti, θ)

}2
+ max

{
0, y(ti, θ)− uk(i)

}2)
s.t. lk + s ≤ uk, k = 1, . . . , K

uk + g ≤ lk+1, k = 1, . . . , K − 1.

(13)

For this optimization problem it can be shown that the optimal values for lower and upper bounds

are in the interval [mini y(ti, θ) −K(g + s),maxi y(ti, θ) + K(g + s)]. Outside of the interval the

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848648doi: bioRxiv preprint 

https://doi.org/10.1101/848648
http://creativecommons.org/licenses/by/4.0/


objective function is – independent of the specific simulation results – increasing. Accordingly, one

can set l1 = mini y(ti, θ)−K(g + s) and uK = maxi y(ti, θ) +K(g + s).

For optimization problem (13) it can be shown that there exists an optimal solution with lk+1 =

uk + g. This is a straight extension of Lemma 1 and provides the basis for reformulation of (13)

similar to results presented in Section 2.4:

Theorem 4. An optimal solution of the optimization problem (13) is obtained by solving

u(θ) = arg min
u

N∑
i=1

wi

(
max

{
0, uk(i)−1 + g − y(ti, θ)

}2
+ max

{
0, y(ti, θ)− uk(i)

}2)
s.t. uk + g + s ≤ uk+1, k = 0, . . . , K − 1,

(14)

for u0 = mini y(ti, θ)−K(g+ s) and uK = maxi y(ti, θ) +K(g+ s), and setting lk+1(θ) = uk(θ) + g

for k = 1, . . . , K − 1.

The proof of Theorem 4 is analogue to the proof of Theorem 2, which is a special case of this result

for s = g = 0.

The reduced optimization problem (14) can be again reformulated to replace the linear inequality

constraints with positivity constraints. Here, we use the difference between uk and its minimal

value given uk−1 and the required gaps, dk := uk − (uk−1 + g + s), as new optimization variables.

This yields

d(θ) = arg min
d

N∑
i=1

wi

max

0, u0 +

k(i)−1∑
k′=1

(dk′ + g + s)− y(ti, θ)


2

+ max

0, y(ti, θ)− u0 +

k(i)∑
k′=1

(dk′ + g + s)


2

s.t. dk ≥ 0, k = 1, . . . , K − 1,

(15)

with some u0 ≤ mini y(ti, θ)−K(g + s).

The optimization problems (13), (14) and (15) with constraints on category and gap sizes are also

convex. To show this the proof of Theorem 3 can be reused.

Remark 5. In Section 2.3-2.5, we use the structure of the optimization problems to provide con-

servative bounds for u0, uK and l1. In practice, these bounds might be tightened using additional

information, e.g., that the data are non-negative.

3 Application

To evaluate the optimal scaling approach with the reformulated surrogate data calculation, we

implemented the approach and compared accuracy and computation time to those of available
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methods.

3.1 Implementation

We implemented the optimal scaling approach for parameter estimation with qualitative data in

pyPESTO (Schälte et al., 2019). Our implementation allows to choose between surrogate data

calculation using

• the standard optimization problem (13),

• the reduced optimization problem (14), and

• the reparameterized reduced optimization problem (15)

for the calculation of the category bounds.

For the surrogate data calculation we employed two optimization algorithms: For the standard

and the reduced optimization problems with linear inequality constraints we used the Sequential

Least Squares Programming (SLSQP) algorithm. For the reparameterized reduced optimization

problem with box constraints we used the L-BFGS-B algorithm. These optimization algorithms

are implemented in the Python package SciPy (Jones et al., 2001). We allowed for a maximum

of 2000 iterations and set the function tolerance to 10−10. For the selection of the minimal gaps

between categories and minimal category sizes we follow the recommendation of Pargett et al.

(2014) but additionally enforce a minimum of ε = 10−16:

s = max

{
maxi y(ti, θ)

2K + 1
, ε

}
and g = max

{
maxi y(ti, θ)

4(K − 1) + 1
, ε

}
. (16)

The minimum value ε facilitates the mitigation of numerical integration errors for the ODE model.

Initial guesses of the bounds are placed between 0 and maxi y(ti, θ) + s, and reparameterized to

obtain the starting points for the reparameterized reduced formulation. If the calculation of the

category bounds fails, the objective function value of the outer loop is set to NaN.

For the calculation of the parameters θ using the optimization problem (8), we employed the Nelder-

Mead and Powell algorithm. These gradient-free algorithms are interfaced through pyPESTO and

turned out the be more reliable than the available gradient-based methods. The reason was

probably that for the specific problem structure, finite difference approximations of the gradient

were inaccurate and sensitivity-based gradient calculation is not implemented. As stopping criteria

for the outer optimization, we used an absolute function tolerance of 10−10 and a maximum of 500

number of iterations and function evaluations. The optimization was performed in log-space.

For the numerical simulation of the ODE models we used the Advanced Multilanguage Interface

to CVODES and IDAS (AMICI) (Fröhlich et al., 2017), which internally exploits the Sundials
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Table 1: Overview over the considered models and their properties, as well as the corresponding datasets.

Model
RAF STAT5 IL13-induced

inhibition dimerization signaling

number of state variables, nx 5 8 14

number of parameters, nθ 2 6 18

number of observables 1 3 8

number of data points, N 9 48 205

number of categories, K 2–9 3 × 16 6–38

Reference
Mitra et al.

(2018)

Boehm et al.

(2014)

Raia et al.

(2011)

solver package (Hindmarsh et al., 2005). We set the absolute tolerance to 10−16 and the relative

tolerance to 10−8.

The source code of all performed analysis will be made available upon final publication. The

implementation of the optimal scaling approaches is available at https://github.com/ICB-DCM/

pyPESTO/tree/feature_ordinal.

3.2 Test problems

For the evaluation of the proposed methods, we considered three published models. These models

possess 5 to 14 state variables, 2 to 18 unknown parameters, and 1 to 8 observables. An overview

about the model properties is provided in Table 1.

The model of RAF inhibition used by Mitra et al. (2018) is used as an illustration example. It

comprises two unknown parameters and we consider 9 simulated data points, discretized in 2 to 9

categories.

The STAT5 dimerization model by Boehm et al. (2014) is considered as a small application

problem. This model describes the homo- and heterodimerization of the transcription factor iso-

forms STAT5A and STAT5B using 6 unknown parameters. It has 3 observables for each of which

16 quantitative measurements are available. For the evaluation of the proposed optimal scaling

approach we consider as qualitative data the ordering of the measured values. As the values of dif-

ferent observables is not necessarily comparable, separate orderings are used for the observables,

yielding 3 × 16 categories, and the surrogate data calculation is performed separately for each

observable.

The model of IL13-induced signaling by Raia et al. (2011) is considered as a larger application

example. This model describes IL13-induced signaling in Hodgkin and Primary Mediastinal B-Cell

Lymphoma. It comprises 18 unknown parameters and 7 observables, for which 6–38 quantitative

measurements are available. As qualitative data we consider again the ordering of the measured
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values.

In this study, we considered application examples for which quantitative measurements are avail-

able and which are included in a collection of benchmark problems for parameter estimation, which

facilitates easy reusability (Hass et al., 2019). This enables a comparison of parameter estimation

using quantitative and qualitative data. For more details on the models we refer to the original

publications.

3.3 Convexity, optimality and scalability

To verify the theoretical finding that optimization problems for the calculation of the category

bounds are convex, we performed multi-start local optimization for the model of RAF inhibition

(Figure 3A). The waterfall plot reveals that for this model all starts converged to the same objective

function value (Figure 3B). This is in line with our our theoretical findings.

To confirm that the reduced formulations provide optimal surrogate data, we evaluated the objec-

tive function using the standard and the reduced optimization problems. Since this model has only

two unknown parameters, we studied the complete objective function landscape for the dataset

with 3 and 9 categories (Figure 3C,D). The numerical results confirm that the objective function

values obtained with the different approaches are identical.

Despite the convexity of the optimization problems, the computational complexity substantially

increases with the number of categories (Figure 3E). While the absolute computation time of

reduced and reparameterized reduced formulation is lower than for the standard formulation,

the scaling behaviour is comparable. The computation time depends linearly on the number of

categories.

3.4 Information content

Qualitative data are often assumed to provide a limited amount of information. To assess this

hypothesis, we studied the objective function for the model of RAF inhibition for qualitative data

with different numbers of categories (Figure 3C,D) as well as quantitative data (Figure 3F). In-

terestingly, the objective function landscape for qualitative data hardly depends on the number

of categories and closely resembles the objective function landscape for quantitative data. This

implies that qualitative data can be almost as informative as quantitative data. This is corrobo-

rated by the objective function profiles we computed (Figure 4), which can be used for uncertainty

analysis (Raue et al., 2009).
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Figure 3: Comparison of standard and reduced formulations for the calculation of the sur-

rogate data for the model of RAF inhibition. (A) Illustration of the model. (B) Waterfall plot

of multi-start local optimization results for surrogate data calculation with 3 categories for the reduced

formulation. The objective function was evaluated at the model parameters K3 = 4000 and K5 = 0.1.

(C,D) Objective function landscape for qualitative data with (C) 3 categories and (D) 9 categories.

(E) Computation time for the calculation of the surrogate data. (F) Objective function landscape for

quantitative data.
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Figure 4: Objective function profiles for the model of RAF inhibition. (A & B) Profiles for

qualitative data with 3, 6 and 9 categories and quantitative data for Parameter K3 (A) and K5 (B).

3.5 Robustness and efficiency

The reduced formulations for the surrogate data calculation possess only half as many optimization

variables as the standard formulation, and the reparameterized reduced formulation possesses

only positivity constraints. To evaluate the practical impact of these reformulations, we solved

the respective optimization problems for the models of STAT5 dimerization and IL13-induced

signaling. For each model, 150 parameter vectors were sampled and the corresponding category

bounds were computed.

Although the considered inner optimization problems are convex, the considered optimization al-

gorithms provided different results for the different formulations (Figure 5A). To our surprise, nu-

merical optimization often failed to provide appropriate category bounds when using the standard

formulation (Figure 5B). For the model of IL13-induced signaling, only 37% of the optimizations

with the standard and 36% with the reduced formulation were successful. For the remaining ones,

the optimizer failed for different reasons. This problem was not observed for the reparameterized

reduced formulation, probably because the optimization algorithm we can employ for this problem

is more reliable.

For the sampled parameter vectors for which numerical optimization for all formulations was

successful, the computation time for the reduced and the reparameterized reduced formulation is

substantially lower than for the standard formulation (Figure 5C). We observed median and mean

speedups of 11.5 and 18.9 respectively for the model of STAT dimerization and 4.2 and 7.4 for

the model of IL13-induced signaling for the reparameterized reduced formulation compared to the

standard formulation. Hence, the proposed formulations allow for more robust and more efficient

calculation of the surrogate data.
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Figure 5: Computation time and robustness of standard and reduced formulations for the

calculation of the surrogate data. (A) Scatter plot with final objective function values obtained using

standard and reparameterized reduced formulation for 150 randomly sampled parameter values. Black

dots correspond to starting points for optimization for which standard and reparameterized reduced

formulation was successful, while red crosses indicate that the corresponding optimization failed. (B)

Percentage of successful calculations of the surrogate data. (C) Computation times for standard, reduced

and reparameterized reduced formulation. Only computation times for successful evaluations are shown.

3.6 Overall performance

The calculation of the category bounds and the surrogate data is only one step in the parameter

estimation loop (Figure 1). To assess the overall performance of parameter optimization using

standard and reduced formulations, we performed a multi-start local optimization using gradient-

free optimizers Nelder-Mead and Powell.

The results of the multi-start local optimization reveal that standard and reduced formulations

yield similar final objective function values (Figure 6A). In all cases except for the model of STAT5

dimerization with Nelder-Mead algorithm, the reparameterized formulation achieved slightly better

objective function values. This might be due to the improved robustness of the evaluation of the

inner problem demonstrated in Section 3.5.

As the calculation of the surrogate data requires a substantial amount of the overall computation

time, the improved efficiency of the reduced formulations demonstrated in Section 3.5 decreases the

computation time (Figure 6B). On average we observe a 5–10-fold reduction of the computation

16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848648doi: bioRxiv preprint 

https://doi.org/10.1101/848648
http://creativecommons.org/licenses/by/4.0/


0 20 40

0.06

0.08

0.10
Ob

je
ct
iv
e 
fu
nc
tio

n

A
ST
AT

5 
di
m
er
iza

tio
n

Nelder-Mead

0 20 40

0.06

0.08

0.10

Powell

102

103

CP
U 
tim

e 
[s
]

B

100

101

Sp
ee
du
p 
[-]

C

0 20 40
Sorted start index

0.15

0.20

0.25

0.30

0.35

Ob
je
ct
iv
e 
fu
nc
tio

n

IL
13

-in
du
ce
d 
sig

na
lin
g

Standard
Reduced
Reparameterized

0 20 40
Sorted start index

0.15

0.20

0.25

0.30

0.35

Nelder-Mead Powell

103

104

CP
U 
tim

e 
[s
]

Nelder-Mead Powell

100

101

Sp
ee
du
p 
[-]

Figure 6: Parameter optimization for the models of STAT5 dimerization and IL13-induced

signaling. (A) Waterfall plots for different combinations of model, optimization algorithm and formu-

lation of the surrogate data calculations. The best 50 starts out of total of about 100 runs are shown.

(B) Computation times for the different combinations. (C) Speedups achieved using the reduced formu-

lations. Above the dashed line the use of the reformulation was computationally more efficient and below

the use of the standard formulation.

times for a local optimization (Figure 6C).

4 Discussion

Measurements that provide qualitative information are common in biology. Yet, only few ap-

proaches exist to incorporate qualitative measurements in the development of dynamic models (Mi-

tra et al., 2018; Pargett et al., 2014) and these approaches are computationally demanding. Here,

we built upon the optimal scaling approach introduced in Pargett et al. (2014) and show that this

approach can be reformulated to a problem with a reduced number of optimization variables.

We evaluated the proposed reparameterized formulation of the optimal scaling approach using

three application examples and observed a 3- to 10-fold speedup. The speedup increased with the

size of the dataset per observable. Even more important than the speedup could be the finding that

proposed optimal scaling approach is more robust and yields often better final objective function

values. These benefits were independent of the optimization algorithm.

Open questions for the proposed approach include the choice of the weighting factors wi, the

minimal gap between categories g and the minimal size of categories s. We observed that for the

latter to the suggestions found in the literature are often not ideal. Furthermore, in this study,

we only used gradient-free optimization algorithms, although optimization algorithms exploiting
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gradient information often proved to be more efficient and reliable (Raue et al., 2013a; Villaverde

et al., 2018; Schälte et al., 2018). To further improve the parameter estimation, the gradient

of the objective function could be employed, which requires the sensitivity of the parameter-

dependent surrogate data. As the surrogate data are the solution to the optimization problem (6),

their sensitivity is the sensitivity of this optimal solution with respect to the parameters. This

sensitivity can be determined by differentiating the Karush-Kuhn-Tucker condition for (6) with

respect to the parameters and solving it for the gradients. The respective equations are provided

in Appendix A.1, but an evaluation needs to be performed.

As qualitative data provide less information about the dynamical system than quantitative mea-

surements, identifiability is a key concern. Unfortunately, established methods and tools for struc-

tural identifiability analysis (Chis et al., 2011; Ligon et al., 2018) are not applicable to the problem

class. Furthermore, while the optimal scaling approach can be easily used for profile calcula-

tion (Raue et al., 2009) (see our results for the model of the RAF inhibition), the statistical

interpretation of objective function differences is unclear. A first Bayesian formulation has been

proposed (Mitra et al., 2019), but the statistical interpretation is not completely clear. A proper

statistical formulation would also benefit the integration of qualitative and quantitative data (Mitra

et al., 2018), and might improve parameter identifiability.

We conclude that the ability to use qualitative information is very important, but that there are

many open problems. We provide an improved optimal scaling approach for dynamical systems and

a corresponding open-source implementation. We expect that this will contribute to the further

development of methods for the analysis of qualitative data.

A Appendix

A.1 Gradient of optimal surrogate data

To facilitate the use of gradient-based optimization algorithms for the parameter optimization

problem with qualitative data (8), the gradient of the surrogate data with respect to the parameter

vector θ is required. This is the gradient of the optimal solution of the optimization problem (6),

which can be written as:

min
ỹ,l,u

(ỹ − y)Tdiag(w)(ỹ − y)

s.t. lk(i) ≤ ỹi ≤ uk(i), i = 1, . . . , N

uk ≤ lk+1, k = 1, . . . , K − 1.

(17)

or more generally as
min
ξ
||A(θ)ξ − b(θ)||22

s.t. Cξ ≤ 0,
(18)

with ξ = (ỹ, l, u).
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The Lagrange function for (18) is

L(ξ, µ) = ||A(θ)ξ − b(θ)||22 + µTCξ, (19)

with the Lagrangian multiplier µ ≥ 0. This yields the first order optimality condition

2(A(θ)ξ − b(θ))TA(θ) + µTC ≥ 0

Cξ ≤ 0

µ ≥ 0

µTCξ = 0.

(20)

This system of equations describes the dependence of the optimal surrogate data and category

bound (collected in ξ) as well as the Lagrange multiplier on θ. Therefore, we use the notation

ξ := ξ(θ) and µ := µ(θ). The differentiation of (20) with respect to θ yields the derivative of the

optimal surrogate data:(
∂A

∂θj
ξ + A

dξ

dθj
− ∂b

∂θj

)T
A(θ) + (A(θ)ξ − b(θ))T ∂A

∂θj
+

(
dµ

dθj

)T
C ≥ 0

C
dξ

dθj
≤ 0

dµ

dθj
≥ 0(

dµ

dθj

)T
Cξ + µTC

dξ

dθj
= 0.

(21)

As ξ and µ are available, the system can be solved for dξ
dθj

and dµ
dθj

for j = 1, . . . , nθ to obtain the

derivatives. As the system is linear, efficient numerical methods are available.
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Fröhlich, F., Kaltenbacher, B., Theis, F. J., & Hasenauer, J. (2017). Scalable parameter estimation

for genome-scale biochemical reaction networks. PLoS Comput. Biol., 13 (1), e1005331.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., &

Woodward, C. S. (2005). SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation

Solvers. ACM T. Math. Software., 31 (3), 363–396.

Boehm, M. E., Adlung, L., Schilling, M., Roth, S., Klingmüller, U., & Lehmann, W. D. (2014).

Identification of isoform-specific dynamics in phosphorylation-dependent STAT5 dimerization

21

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848648doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.2630875
http://www.scipy.org/
https://doi.org/10.1101/848648
http://creativecommons.org/licenses/by/4.0/


by quantitative mass spectrometry and mathematical modeling. Journal of proteome research,

13 (12), 5685–5694.
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