
TITLE PAGE 1 

 2 

Title: Combining single- and repeated-visit occupancy models to make the best of 3 

monitoring surveys 4 

 5 

Authors  6 

Valentin Lauret1, Hélène Labach1,2, Matthieu Authier3,4, Olivier Gimenez1 7 

 8 

(1) CEFE, CNRS, Université Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, 9 

1919 route de Mende 34090 Montpellier, France 10 

(2) GIS3M, Groupement d’Intérêt Scientifique pour les Mammifères marins de Méditerranée, 11 

1 avenue Clément Monnier 13960 Sausset-les-Pins, France 12 

(3) ADERA, 162 avenue Albert Schweitzer, 33608 Pessac Cedex 13 

(4) Observatoire PELAGIS, UMS 3462 CNRS-La Rochelle Université, 5 allée de l’Océan, 14 

17000 La Rochelle 15 

 16 

 17 

 18 

Corresponding author: Valentin Lauret, valentin.lauret@cefe.cnrs.fr, CEFE 1919 Route de 19 
Mende, 34090 Montpellier, France. 20 
 21 
  22 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848663doi: bioRxiv preprint 

https://doi.org/10.1101/848663
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

Abstract 24 

 1. A major challenge in applied ecology consists in integrating knowledge from 25 

different datasets to produce robust ecological indicators. To estimate species distribution, 26 

occupancy models are a flexible framework that can accommodate several datasets obtained 27 

from different sampling methods. However, repeating visits at sampling sites is a prerequisite 28 

for using standard occupancy models, which may limit their use. Under certain conditions, 29 

detection/non-detection data collected during single visit can be analysed with occupancy 30 

models. To date however, single-visit occupancy models have never been used to combine 31 

several different datasets.  32 

 2. Here, we developed an approach that combines multi-method and single-visit 33 

occupancy models. As a case study, we estimated the distribution of Bottlenose dolphins 34 

(Tursiops truncatus) over the North-western Mediterranean Sea by combining 24,624 km of 35 

aerial surveys and 21,464 km of at-sea monitoring. We compared the outputs of single- vs. 36 

repeated-visit multi-method occupancy models, and that of single-method occupancy models. 37 

 3. Multi-method models allowed a better sampling coverage in both coasts and high 38 

seas and provided a better precision for occupancy estimates than single-method occupancy 39 

models using aerial surveys or at-sea surveys in isolation.  40 

 4. Overall, single- and repeated-visit multi-method occupancy models produced 41 

similar inference about the distribution of bottlenose dolphins. This suggests that single-visit 42 

occupancy models provide robust occupancy estimates, which open promising perspectives 43 

for the use of non-standardized datasets. 44 

 5. Synthesis and applications: Single-visit multi-method occupancy models can help 45 

making the best out of ecological monitoring programs by optimizing cost effectiveness 46 

through the formal combination of datasets. 47 

 48 
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 52 

Introduction 53 

 Ecological monitoring (EM) is an inherent process of most ecology and conservation 54 

biology studies. EM produces important information for decision-making prior implementing 55 

management strategies, or for evaluating management efficiency (Lyons, Runge, Laskowski, 56 

& Kendall, 2008). With the proliferation of EM programs, concerns have been raised about 57 

the quality of sampling design (Bernhardt et al., 2005; J. Nichols & Williams, 2006; Yoccoz, 58 

Nichols, & Boulinier, 2001), and the sub-optimal use of collected data to inform wildlife 59 

management (Lindenmayer & Likens, 2010; J. Nichols & Williams, 2006). Some criticisms 60 

pointed out EM programs as being costly and wasteful, with few informative outcomes from 61 

collected data (Lovett et al., 2007), while studies in ecology and conservation are often 62 

performed in cost-constrained contexts that require making the best out of EM programs 63 

(Lindenmayer & Likens, 2010). 64 

 In applied ecology, several competing EM programs are often carried out to collect 65 

ecological data. EM programs are conducted by organizations operating across different time 66 

scales, geographic scales and funding initiatives (Lindenmayer & Likens, 2010). Some EM 67 

programs are performed at the local level, and provide highly detailed information over small 68 

spatial extents. On the other hand, institutional agenda of high-level policy-makers argue for 69 

large scale evaluation of environmental status (e.g. the EU Marine Strategy Framework 70 

Directive that requires a global assessment of European marine waters Directive 2008/56/EC 71 

of the European Parliament). Ideally, effective EM should address well-defined objectives 72 

using standardized sampling design, i.e. fixed protocols at known sampling locations (Lovett 73 
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et al., 2007). However, in many cases, EM collect data under protocols in which the sampling 74 

locations, effort and methods are meant to change over time, therefore leading to what we will 75 

refer to as non-standardized data (Miller, Pacifici, Sanderlin, & Reich, 2019). 76 

 In this context, a major challenge consists in integrating knowledge from different EM 77 

programs (Fletcher et al., 2019; Lindenmayer & Likens, 2010; Miller et al., 2019) to produce 78 

robust ecological indicators that may be used to inform decision-making. Among others, 79 

species distribution is often required in ecology and conservation biology (Cabeza et al., 80 

2004; Dorazio, 2014; Guillera-Arroita, Ridout, & Morgan, 2010). To this purpose, the IUCN 81 

introduced the Area Of Occupancy (AOO) as one of the main indicator of species 82 

distribution, defined as the area of suitable habitat occupied by the taxon (IUCN Standards 83 

and Petitions Subcommittee 2014). Recently, modelling tools have emerged to combine 84 

multiple data sources to estimate species distributions (Fletcher et al., 2019; Miller et al., 85 

2019; J. D. Nichols et al., 2008). Multi-method models refer to the modelling approaches that 86 

combine different data sources (also known as integrated species distribution models, Miller 87 

et al. 2019). The main purpose of multi-method models is to improve the accuracy of 88 

ecological indicators (Bonnet-Lebrun, Calabrese, Rocamora, & López-Sepulcre, 2016; 89 

Jiménez et al., 2016). Species distributed over large scale areas could particularly benefit from 90 

multi-method models because they allow a global coverage of species occurrence by 91 

combining different data sources collected at different spatial scales (Haynes, Rosenberger, 92 

Lindberg, Whitman, & Schmutz, 2013; Miller et al., 2019).  93 

 In addition to the challenge of combining several sources of information, EM faces 94 

uncertainties inherent to data collection. When monitoring elusive or mobile species, 95 

individuals can be missed even if present at the sampling site. The so-called imperfect 96 

detection issue (i.e. false-negative observations) leads to the underestimation of species 97 

distribution if not accounted for (Mackenzie et al., 2002). To deal with imperfect detection, 98 
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occupancy models have been developed to estimate species distribution while accounting for 99 

false negatives in the observation process (Mackenzie et al., 2002). Estimating occupancy 100 

when species detection is less than 1 requires performing repeated visits (hereafter RV) to 101 

estimate the probability of detection (MacKenzie, 2006; Mackenzie et al., 2002). However, 102 

RV come with costs and logistical issues that make them not always feasible. There is a trade-103 

off between i) investing in a reasonable sampling effort to perform RV, and ii) conducting 104 

monitoring at large scales without repeating visits at sample sites (Dénes, Sólymos, Lele, 105 

Silveira, & Beissinger, 2017). 106 

In this context, two relevant developments of occupancy models have been recently 107 

proposed. First, multi-method occupancy models combine data from different monitoring 108 

programs to improve the estimation of species distribution (Fletcher et al., 2019; Miller et al., 109 

2019; Nicol et al., 2019). Second, single-visit (SV) occupancy models allow estimating 110 

species distribution and detectability while having only one visit at the sampling site (Lele, 111 

Moreno, & Bayne, 2012; Miller et al., 2019). Therefore, we expect SV occupancy models to 112 

overcome some limitations that arise when using non-standardized data (e.g. lack of repeated 113 

surveys in occupancy modelling, Miller et al. 2019), hence being beneficial to cost-114 

constrained EM programs (Dénes et al., 2017; Lele et al., 2012). Besides, RV occupancy 115 

models require that the ecological state of sampled sites remains unchanged between visits, 116 

which is not always the case, while SV models allow to relax this so-called closure 117 

assumption (Lele et al., 2012). An increasing number of studies suggest that under certain 118 

conditions, SV models produce robust estimates of occupancy without repeating visits at the 119 

sampling sites (Laran, Authier, et al., 2017; Lele et al., 2012; Peach, Cohen, & Frair, 2017; 120 

Sólymos & Lele, 2016). 121 

 In this paper, we develop an approach that combines multi-method and single-visit 122 

occupancy models. As a case study, we focus our analysis on the distribution of Bottlenose 123 
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dolphins (Tursiops truncatus) in the North-Western Mediterranean Sea. We illustrate how 124 

two datasets of marine monitoring programs can be combined with multi-method SV 125 

occupancy models to estimate AOO indicator for biodiversity conservation. In the marine 126 

world, many species of conservation interest are elusive, and EM data can be costly 127 

(Aylesworth, Loh, Rongrongmuang, & Vincent, 2017; Read "Marine Protected Areas, 2001). 128 

In particular, the high seas are difficult to access and EM is often performed through aerial 129 

surveys (Authier et al., 2017). Coasts are another challenge that require detailed attention, and 130 

proximity to land allows to perform at-sea monitoring (Issaris et al., 2012; Pennino, Mérigot, 131 

Fonseca, Monni, & Rotta, 2017). Besides, many species such as marine megafauna are 132 

mobile and occur in both coasts and high seas (Authier et al., 2017; Laran, Pettex, et al., 133 

2017). Combining monitoring programs that are carried out in each realm (i.e. coasts and high 134 

seas) has the potential to provide relevant information about these species (Waggitt et al., 135 

2019). Here, we combine aerial surveys and at-sea monitoring into multi-method SV 136 

occupancy models. We compare the outputs of multi-method occupancy models to occupancy 137 

models using at-sea monitoring data only or aerial survey data only. We demonstrate that 138 

combining several datasets into multi-method SV occupancy models leads to accurate 139 

ecological estimation while relaxing the assumptions hampering the accommodation of non-140 

standardized data. Last, we discuss the advantages of using complementary EM programs in 141 

applied ecology. 142 

 143 

Methods 144 

1. Study species and area 145 

 The North-Western Mediterranean waters represent an important biodiversity hotspot 146 

coexisting with intense human activities (Fraschetti, Terlizzi, Micheli, Benedetti-Cecchi, & 147 

Boero, 2002; Giakoumi et al., 2017; Lloret & Riera, 2008; Moullec et al., 2019). 148 
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Anthropogenic pressures and climatic vulnerability underline the critical position of 149 

Mediterranean Sea for biodiversity conservation (Giakoumi et al., 2017). We focused on the 150 

North-Western Mediterranean, an area of 255,000 km2, which includes the Gulf of Lion and 151 

the Ligurian sea, the French coast, Corsica, and the Northern part of Sardinia (Fig. 1). For 152 

statistical analyses, we divided the study area in 5346 pixel/sites creating a 5’x5’ Mardsen 153 

grid (WGS 84). 154 

 The North-Western Mediterranean Sea is a critical habitat for many cetaceans species 155 

(Bearzi, Piwetz, & Reeves, 2019; Labach et al., 2019; Laran, Pettex, et al., 2017). Due to its 156 

coastal behaviour, bottlenose dolphins (Tursiops truncatus) suffer from several threats due to 157 

anthropic pressures (e.g. collisions, fisheries bycatch, pollution, or acoustic perturbations), 158 

which raise concerns about their coexistence with human activities (Bearzi, Fortuna, & 159 

Reeves, 2009; Bearzi et al., 2019; Laran, Pettex, et al., 2017). Mediterranean population of 160 

Bottlenose dolphins is considered “vulnerable” by the IUCN Red List (IUCN, 2009) and is 161 

one of the two cetacean species listed on the Annex 2 in the European Habitats Directive 162 

(92/43/EEC). The protected status of this species within the French seas led to development 163 

of specific monitoring programs for its study in the Mediterranean Sea within the 164 

implementation of the European Marine Strategy Framework Directive (2008/56/EC; MSFD). 165 

 166 

2. Data collection 167 

 We considered two large-scale monitoring programs developed for bottlenose 168 

dolphins in the North-Western Mediterranean Sea. 169 

 At-sea coastal monitoring program 170 

 We used data form the first large-scale study of Bottlenose dolphins in the French 171 

Mediterranean Sea. Four NGOs and one marine reserve performed at-sea surveys over 21,464 172 

km of the French continental shelf including the Gulf of Lion, the French Riviera, and 173 
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Corsica. This program was performed all year long between 2013 and 2015 (see Labach et al. 174 

2019 for details about the program). 175 

 Aerial pelagic and coastal monitoring program 176 

 Data were collected during aerial surveys targeting the main taxa of marine megafauna 177 

within the French Exclusive Economic Zone (EEZ) including the Pelagos Sanctuary. The 178 

survey covered 24,624 km of line-transect performed by scientific institutional partners of the 179 

French Biodiversity Agency between November 2011 and August 2012. This survey is 180 

repeated every six years to inform the MSFD.  181 

 Environmental data 182 

 We used two environmental covariates to estimate the area of occupancy of bottlenose 183 

dolphins: i) bathymetry, which is expected to have a negative effect on bottlenose dolphins’ 184 

occurrence (Bearzi et al., 2009; Labach et al., 2019), and ii) sea surface temperature (SST, 185 

from Aqua/MODIS | NASA” 2019), which is locally related to dolphins’ prey abundance and 186 

hence expected to affect local distribution of bottlenose dolphins (Bearzi et al., 2009; 187 

Giannoulaki et al., 2013; Passadore, Möller, Diaz-Aguirre, & Parra, 2018; Queiros, 188 

Fromentin, Astruc, Bauer, & Saraux, 2018). We checked for correlation between the two 189 

covariates and the Pearson coefficient was < 0.3.  190 

 191 

3. Occupancy models 192 

Occupancy models estimate spatial distribution while accounting for imperfect species 193 

detection (Mackenzie et al., 2002). In EM, a species may be not detected on a site even 194 

though it was present at that site – this is usually referred to as false negatives. The 195 

formulation of occupancy models as state-space models (SSM) allows distinguishing the 196 

latent ecological state process (i.e. species present or absent at a site) from the detection 197 

process (Royle & Kéry, 2007). We denote zi the latent occupancy of site i (z = 1, presence; z 198 
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= 0, absence). We assumed zi is drawn from a Bernoulli distribution with Ψi the probability 199 

that the species is present at site i.  200 

zi ~ Bernoulli(Ψi). 201 

  In standard occupancy designs, each site is visited J times to estimate the rate of false-202 

negatives. We denote yi,j (yi,j = 0, no detection ; yi,j = 1, detection) the observations 203 

corresponding to the data collected at site i during visit j (j =1,..,J). Repeating visits at a site 204 

allows estimating species detectability, with pi,j being the probability of detecting the species 205 

at visit j given it is present at site i. 206 

yi,j | zi  ~ Bernoulli(zi . pi,j) 207 

  An important assumption of occupancy models is that the latent ecological state of a 208 

site (the zi’s) remains unchanged between the repeated visits (MacKenzie, 2006). When 209 

monitoring highly mobile species, such as cetaceans, the closure assumption is likely to be 210 

violated because individuals moved into and out of the sampling sites. Occupied locations are 211 

used only temporary by individuals (MacKenzie 2006; Neilson et al. 2018). Then, occupancy 212 

is interpreted as the proportion of sampled sites used by the species, and AOO represents the 213 

area of use by the species. Subsequently, the occupancy estimator Ψi represents the 214 

probability that site i is used by the target species as opposed to the probability of occupancy 215 

(Kendall, Hines, Nichols, & Grant, 2013). The detection probability now accounts for both 216 

the probability of detecting the species and the probability that the species is present in the 217 

sampling unit, reflecting that the species might occupy the site but not during the sampling 218 

occasion (MacKenzie, 2006). MacKenzie (2006) showed that if individuals’ movement in and 219 

out of the sampling sites is random, then the occupancy estimator is unbiased (Kendall et al., 220 

2013).  221 

 We considered four sampling occasions (J = 4): winter (January, February, March), 222 

spring (Avril, May, June), summer (July, August, September), autumn (October, November, 223 
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December). To estimate the sampling effort of the two monitoring programs, we calculated 224 

the transect length (in km) prospected by the monitoring method within each site at each 225 

occasion. Each sampling occasion j depicted a similar amount of sampling effort over the 226 

studied area.  227 

 We modelled Ψ as a function of the environmental covariates bathymetry and SST on 228 

a logit scale, and p as a function of sampling effort on the logit scale:  229 

Logit(Ψi) = β0 + β1*bathymetryi + β2*SSTi,  230 

Logit(pi,j) =  α0+α1* sampling_efforti,j 231 

where regression parameters β0, β0, β0, α0, and α1 are unknown and need to be estimated.232 

 We considered that a covariate effect size was statistically significant when its 95% 233 

credible interval (CI) did not include 0. 234 

  235 

4. Multi-method occupancy models 236 

 237 

 Although most occupancy studies use a single method to collect detection/non-238 

detection data, it is possible to consider several detection methods (Miller et al., 2019; J. D. 239 

Nichols et al., 2008). Multi-method occupancy models account for several detection 240 

probabilities, therefore allowing to quantify the detection error of each sampling method 241 

(Clare, McKinney, DePue, & Loftin, 2017; Fisher & Bradbury, 2014; Pregler, Vokoun, 242 

Jensen, & Hagstrom, 2015). The Nichols et al (2008) multi-method approach considers two 243 

occupancy parameters to account for the different spatial scale of each detection methods. 244 

Bonnet-Lebrun et al., (2016) extended the multi-method framework for estimating multi-245 

species abundance. 246 

 Here, we built a multi-method occupancy model using data from the two monitoring 247 

programs. For convenience, we drop the subscripts in the notation. The observation process 248 
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takes four values with y = 0 for no detection, y = 1 for detection by aerial survey only, y = 2 249 

for detection by at-sea survey, and y = 3 for detection by both monitoring programs. 250 

Assuming the detection methods are independent, the observation process can be written 251 

using detection probability by the aerial survey (pa) and the detection probability by the at-sea 252 

survey (ps): 253 

�|� ~ ���	
��
���1, � � �� 

with 254 

� � ��� �� �� ��� � ����� � 0� ���� � 1� ���� � 2� ���� � 3�� 

� �  �1 � �� � �� � ���� ���1 � ��� ���1 � ��� ����� 

 5. Single-visit occupancy models 255 

 SV occupancy requires that the set of covariates affecting occupancy includes at least 256 

one different covariate from the one affecting detection probability (Dénes et al., 2017; Lele 257 

et al., 2012; Sólymos & Lele, 2016). We applied SV occupancy models to both aerial surveys 258 

and at-sea dataset. As we considered a single visit (J = 1), we calculated the total sampling 259 

effort and averaged the SST values over the 4 repeated visits. 260 

 6. Bayesian implementation  261 

 To assess the performance of multi-method SV occupancy models, we analysed 262 

separately aerial survey data models and at-sea data using both SV and RV occupancy 263 

models. We ran all models with three chains of Markov Chain Monte Carlo sampler with 264 

20,000 iteration each in JAGS (Plummer & others, 2003) called from R (R Core Team, v 265 

3.2.5 2019) using the r2jags package (Su & Yajima, 2015). We checked for convergence 266 

calculating the R-hat parameter (Gelman et al., 2013) and reported posterior means and 95% 267 

credible intervals (CI) for all parameters. 268 

Results 269 

 Between summer 2013 and summer 2015, at-sea surveys produced 1,670 dolphins’ 270 

detections located in 89 sites. The sampling effort of at-sea surveys was heterogeneous over 271 
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the study area (between 1 and more than 20 visits per site, Fig. 1). Sampling effort for aerial 272 

surveys was homogeneous over the studied area with three or four replicates per line-transect 273 

between November 2011 and August 2012. The aerial survey produced 170 detections located 274 

in 87 sites.  275 

 Multi-method occupancy models had a better precision than aerial survey or at-sea 276 

occupancy models to estimate effect size of environmental covariates on Ψ (see 95% CI in 277 

Fig. 2). Aerial survey had a better precision than at-sea survey. SV occupancy models 278 

produced similar estimates to RV occupancy models although with lower precision to 279 

estimate the effect size of bathymetry and SST on Ψ (Fig. 2). Estimates of SST and 280 

bathymetry effects were similar between all occupancy models. Parameter Ψ increased when 281 

bathymetry decreased. Bathymetry ranges from 0 m to 3,488 m deep, hence a negative 282 

influence of the bathymetry referred to a preference for a low seafloor (e.g. 0-200m depth). 283 

SST effect size was null for all models (Fig. 2). 284 

 All maps displayed higher Ψ values on the continental shelf than on the high seas 285 

although intensities of Ψ were different between occupancy models (Fig. 3). At-sea surveys 286 

produced the most contrasted maps, with the highest estimation of Ψ in the high-seas and the 287 

lowest in the continental shelf. Maps from multi-method occupancy models displayed 288 

moderate contrast of Ψ compared to maps from at-sea and from aerial surveys (Fig. 3). SV 289 

models displayed higher Ψ in sea shelf compared to RV occupancy models.  290 

 291 

Discussion 292 

Combining datasets improves parameter estimates of occupancy models  293 

When the species of interest displays a large range of occurrence (such as bottlenose 294 

dolphins), considering multiple sampling methods is effective to monitor the entire population 295 

making the best of each device (Haynes et al., 2013). In the marine world, aerial surveys 296 
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allow to monitor the pelagic area while at-sea surveys provided coastal information with a 297 

higher concentration of sampling effort, which results in maximizing spatial and temporal 298 

coverage of marine megafauna (Waggitt et al., 2019). In our case study, ecological estimates 299 

from multi-method occupancy models ranged between the estimates obtained with each 300 

dataset separately, and combining data increased precision of covariates effect size on AOO 301 

(i.e. Ψ, Fig. 2). 302 

 Across all occupancy models, the effects of environmental covariates were similar and 303 

consistent with other studies. Bottlenose dolphins are more likely to use low depth seafloor 304 

(Bearzi et al., 2009; Labach et al., 2019), and depth had a higher effect than SST on the use of 305 

space by bottlenose dolphins (Derville, Torres, Iovan, & Garrigue, 2018; Torres, Read, & 306 

Halpin, 2008). However, the probability of area used by bottlenose dolphins was spatially 307 

different between models (Fig. 3). Because at-sea occupancy model assigned more 308 

importance to bathymetry than aerial survey occupancy models, at-sea data occupancy models 309 

predicted a lower presence of bottlenose dolphins in the high seas than aerial surveys 310 

occupancy models (Figs 2-3). These spatial differences in the intensity of AOO could affect 311 

the allocation of conservation funding for future monitoring or management of this species. 312 

For example, assuming the species makes little use of the high seas compared to the 313 

continental shelf might lead to unbalanced conservation effort discarding the high seas. Multi-314 

method occupancy models accounted for bottlenose dolphins’ detections from aerial surveys 315 

in the high seas and produced a map closer to aerial survey occupancy models than that of at-316 

sea occupancy models. Our results support the well-known benefit of combining datasets into 317 

multi-method occupancy models (Clare et al., 2017; Haynes et al., 2013; Miller et al., 2019). 318 

The flexibility of occupancy models provided a relevant framework to combine monitoring 319 

programs (Miller et al., 2019; J. D. Nichols et al., 2008). Also, if detection methods are not 320 

independent, bias in parameter estimates may occur. Then, explicitly accounting for 321 
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dependence can overcome this issue (Clare et al., 2017; J. D. Nichols et al., 2008). Because 322 

at-sea and aerial surveys were performed during different years (see Methods section), we 323 

considered them as independent in our case study. 324 

Using SV occupancy models to make the best of EM 325 

 Here, RV multi-method occupancy model provided the highest precision in effect size 326 

estimation of AOO, but implementing multiple methods combined with RV also led to the 327 

highest sampling effort. Monitoring agencies do not always have the resources to conduct RV 328 

and to implement multiple sampling methods (Pregler et al., 2015). In applied ecology, 329 

monitoring is often performed in a cost constrained context (Lindenmayer & Likens, 2010; J. 330 

D. Nichols et al., 2008). SV occupancy models produced similar estimates to those obtained 331 

with RV occupancy but with lower precision on the covariates’ effect size (Fig. 2). Because 332 

at-sea sampling effort was heterogeneous among sampled sites, many sites were sampled only 333 

once by at-sea monitoring program. We underlined the capacity of SV occupancy models to 334 

use datasets obtained from sampling protocols that did not perform replicated surveys, which 335 

was the case for the at-sea dataset. In this way, Miller et al. (2019) encouraged further 336 

developments of methods mixing standardized and non-standardized frameworks. In this 337 

spirit, we illustrate the flexibility of the state-space modelling framework by building a multi-338 

method occupancy model mixing RV occupancy for aerial surveys and SV occupancy for at-339 

sea surveys (see Appendix I for details). 340 

Although RV occupancy models remain statistically more efficient (Lele et al. 2012, Fig. 2), 341 

there are benefits in using SV to relax the closure assumption inherent in the ecological 342 

behaviour of mobile species like bottlenose dolphins (Kendall et al., 2013; Lele et al., 2012). 343 

Overall, when financial or logistical costs are an issue, SV occupancy models provide robust 344 

estimates while accounting for imperfect detection (Lele et al., 2012). Multi-method SV 345 

sampling design combines the benefit of a large spatial coverage due to the integration of 346 
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several datasets with a reduced cost associated to SV. As EM often suffers from a lack of 347 

well-articulated design (Lovett et al., 2007), multi-method SV occupancy modelling opens 348 

perspectives for the use of non-standardized data collected through different sampling 349 

designs. 350 

 351 

Implications for EM programs 352 

  353 

 We acknowledge the importance of planning monitoring programs according to 354 

clearly stated objectives (Lindenmayer & Likens, 2010; J. Nichols & Williams, 2006). We 355 

showed that even with non-standardized datasets, using information from different monitoring 356 

programs is beneficial. Multi-method occupancy modelling has been used to evaluate EM 357 

programs prior to their implementation (i.e. comparing detection probabilities between 358 

devices, Otto & Roloff 2011; Haynes et al. 2013). In contrast, we emphasized the benefit of 359 

considering multiple methods after data collection. Even if at-sea dataset was not designed for 360 

occupancy modelling because of the lack of RV, its use into multi-method SV occupancy 361 

models improved precision in ecological estimates compared to analyses of aerial surveys 362 

only. Despite their crucial role in the conservation process, EM programs are often perceived 363 

as costly and wasteful when compared to management (Lovett et al., 2007). Maximizing their 364 

ecological outcomes through data combination and SV approaches will be beneficial for the 365 

support and cost effectiveness of EM program.  366 

   367 

 368 
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 559 

Tables & Figures 560 

 561 

562 

 563 

Figure 1: Sampling design of the two monitoring programs studied. The aerial surveys 564 

(SAMM program; dark blue) prospected 24,624 km of both sea shelf and high seas. At-sea 565 

surveys (GDEGeM program; light blue) prospected 21,646 km of the French continental 566 

shelf. 567 

 568 

 569 

  570 
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 571 

Figure 2: Effect size of bathymetry and sea surface temperature (SST) on the probability Ψ 572 

that a site is used by Bottlenose dolphins (Tursiops truncatus) obtained with different 573 

monitoring programs. The posterior mean is provided with the associated 95% credible 574 

interval. “SV” refers to single-visit occupancy models, “RV” to repeated visits occupancy 575 

models, and “MM” stands for multi-method occupancy models, in which aerial surveys and 576 

at-sea surveys are combined. Estimates are given on the logit scale.  577 

  578 
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 579 

Figure 3: Probability of space use by Bottlenose dolphins (Tursiops truncatus) over the NW 580 

Mediterranean Sea. “MM” stands for multi-method occupancy models, in which aerial 581 

surveys and at-sea surveys are combined. Repeated-visit occupancy maps refer to occupancy 582 

models with 4 sampling occasions. Single-visit maps refer to occupancy models considering 1 583 

sampling occasion. Using the posterior mean of regression parameters, we estimated the 584 

probability that site i was used by bottlenose dolphins. 585 
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