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ABSTRACT 

 

Clonal hematopoiesis (CH) is frequent in cancer patients and associated with increased risk of 

therapy related myeloid neoplasms (tMN). To define the relationship between CH, oncologic 90 

therapy, and tMN progression, we studied 24,439 cancer patients. We show that previously treated 

patients have increased rates of CH, with enrichment of mutations in DNA Damage Response 

(DDR) genes (TP53, PPM1D, CHEK2). Exposure to radiation, platinum and topoisomerase II 

inhibitors have the strongest association with CH with evidence of dose-dependence and gene-

treatment interactions. We validate these associations in serial sampling from 525 patients and 95 

show that exposure to cytotoxic and radiation therapy imparts a selective advantage specifically in 

hematopoietic cells with DDR mutations. In patients who progressed to tMN, the clone at CH 

demarcated the dominant clone at tMN diagnosis. CH mutational features predict risk of therapy-

related myeloid neoplasm in solid tumor patients with clinical implications for early detection and 

treatment decisions.  100 
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MAIN 

Clonal hematopoiesis (CH) is emerging as an important clinical biomarker for early detection and 

management of individuals at risk of myeloid neoplasms (MN)1,2. CH is characterized by clonal 105 

mutations in hematopoietic stem and progenitor cells (HSPCs) in the absence of overt hematologic 

disease3–5. CH is most commonly associated with one mutation or few mutations in genes 

recognized as early and initiating events in myeloid disease, such as epigenetic modifiers 

(DNMT3A, TET2, ASXL1, IDH1, IDH2), splicing factors (SF3B1, SRSF2, U2AF1), TP53 and 

JAK23,4,6. CH is also frequent in patients with solid tumors7–10. This is largely driven by a shared 110 

association with age. However, recent studies further propose a link between prior exposure to 

oncologic therapy and CH7,11.   

 

Cancer patients are at a heightened risk for developing myeloid neoplasms including AML and 

MDS.12 When myeloid neoplasms arise following exposure to oncologic therapy, they are referred 115 

to as therapy-related (tMN) and represent one of the most aggressive and chemo-resistant 

malignancies, with a 5-year survival of <10%13. With increasing cancer survivorship, the incidence 

of tMNs is rising. Thus, there is a clear, unmet need to develop a deeper understanding of the 

pathogenesis of tMN, to inform tMN screening and prevention programs, and to identify novel 

therapeutic targets for tMN13. While tMN was traditionally thought to develop from the mutagenic 120 

effects of oncologic therapy13, recent studies have shown that tMN-initiating mutations present in 

hematopoietic cells can predate the receipt of oncologic therapy14. Recent studies have linked CH 

to an increased risk of tMN7,15–17.  

 

Studies of CH offer insights into the first clonal expansion of the multi-step process of 125 

carcinogenesis, whereby a single mutation underwrites the transition of a normal cell to one with 

a considerably stronger fitness advantage. In a small proportion of carriers,  CH may lead to overt 

myeloid disease, but most frequently these clones remain stable throughout life18. The ensuing 

genetic and clonal trajectories are likely shaped by a dynamic interplay of cell intrinsic and 

extrinsic factors. We sought to investigate the relationships between CH and oncologic therapy 130 

exposure amongst other parameters (demographic, clinical, smoking). We study how oncologic 

therapy shapes CH clonal dynamics in a cohort of prospectively followed patients in which CH 

status was assessed before and after oncologic therapy. Understanding these associations will offer 
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opportunities for early diagnosis and prevention strategies for cancer patients at high risk for tMN 

and provide mechanistic insights into tMN pathogenesis with potential therapeutic relevance. 135 

 

Molecular presentation of clonal hematopoiesis in cancer patients  

We analyzed data from 24,439 cancer patients across a wide range of primary tumor types (N=57) 

and ages (Extended Data Table 1). CH mutations were identified from targeted, deep coverage 

next-generation sequencing data (MSK-IMPACT) generated from paired peripheral blood and 140 

tumor samples as part of clinical care. We defined CH as a somatic mutation in blood with a 

minimum variant allele frequency (VAF) of 2%. For further details on CH calling refer to the 

Methods and Supplementary Notes. 

 

We identified a total of 11,391 unique variants in 7,379 individuals, representing 30% of patients 145 

in our cohort. The spectrum of CH mutations in our cohort followed expected patterns of 

enrichment for truncating variants and hotspot mutations in tumor suppressor and oncogenes 

respectively (Supplementary Fig. 1). The median VAF of CH mutations was 4.7% but the range 

was broad (range=2-87%). Among individuals with CH, 68% (n=5,044) had one mutation and 

2,335 (32%) had two or more mutations. Consistent with prior literature in healthy individuals3,4, 150 

CH mutations were most frequently identified in DNMT3A and TET2. Mutations in key regulators 

of DNA Damage Response (DDR) pathway such as PPM1D, TP53 and CHEK2 were also 

frequently mutated in our cohort, in line with prior evidence that DDR mutations are enriched in 

cancer patients exposed to oncologic therapy7,11(Supplementary Fig. 2).  

 155 

Given that by design we only interrogate bona fide cancer genes, we annotated each mutation on 

the basis of its putative role in cancer pathogenesis using OncoKB19 and recurrence in an in-house 

dataset of myeloid neoplasms20–22(see Methods for more details). Over half of the CH mutations 

that we detected were classified as putative driver mutations of cancer (CH-PD, 53%, n=6,028). 

Almost all CH-PD variants (90%, n=5,453) were recurrent mutations in myeloid neoplasms (CH-160 

myeloid PD) (Supplementary Fig. 2). The strong enrichment of myeloid variants highlights the 

strength of the fitness advantage imparted on HSPCs by mutations in genes implicated in myeloid 

pathogenesis as compared to oncogenic mutations in other cancer gene drivers. 
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The prevalence of CH among cancer patients differed by primary tumor type even after adjustment 165 

for age (Extended Data Fig. 1). While the overall mutational spectrum of CH was similar across 

cancer subtypes, mutations in DDR genes were markedly more frequent in patients with ovarian 

and endometrial cancer. This enrichment was most striking for mutations in PPM1D, which were 

found in 14% of patients with ovarian cancer and 7% of patients with endometrial cancer as 

compared to <5% in other cancer subgroups (Extended Data Fig. 2). Recent studies show that cell 170 

lines with PPM1D mutations outcompete normal cells after exposure to cisplatin but not under 

normal conditions23. Thus, the differential enrichment of PPM1D mutations by tumor site may, in 

part, reflect the increased fitness of cells with PPM1D mutations under platinum exposure. The 

observation of tumor-specific CH mutational spectra, including enrichment for DDR mutations in 

patients with select primary tumor types, points towards the existence of gene-treatment 175 

interactions with specific classes of oncologic therapy.  

 

Clinical associations with clonal hematopoiesis in cancer patients 

To determine how CH is influenced by prior cancer therapy, we extracted treatment information 

on systemic oncologic therapy and external beam radiation therapy including agent class, dosage, 180 

drug combination regimens and treatment timing for 10,207 patients who had received their cancer 

care at Memorial Sloan Kettering (MSK). Data on gender, age at the time of blood draw for 

sequencing, ethnicity, smoking history and blood count indices within one year from blood draw 

were also collected (see Supplementary Notes).   

 185 

A total of 6,240 patients (61%) were exposed to oncologic therapy (including cytotoxic therapy, 

radiation therapy, targeted therapy and immunotherapy) prior to CH testing (Extended Data Fig. 

3), whereas 3,967 (39%) were treatment naive. This cohort provided sufficient statistical power to 

conduct a detailed evaluation of the relationships between prior oncologic therapy and CH while 

accounting for demographic factors (gender, age, ethnicity) and smoking history. CH was 190 

positively associated with increasing decile of age (OR=1.8, p=<10-6), being a current or former 

smoker (OR=1.1, p=4.1x10-3), and prior exposure to oncologic therapy (OR=1.2, p=4.2x10-6) and 

was less common in Asians than in Caucasian patients (OR=0.7, p=9x10-4) (Figure 1a, Extended 

Data Table 2). In both treated and untreated patients, CH mutations in genes associated with 

myeloid neoplasms (CH-myeloid) and CH-PD mutations showed stronger associations with 195 

increasing age (Fig. 1b, Extended Data Table 2) and had higher VAFs compared to non-PD CH 
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mutations (Supplementary Fig. 3a-b, Extended Data Table 3) suggesting the presence of cell-

context/mutation specific effects on clonal selection. The VAF of mutations in patients with CH 

who harbored multiple mutations was higher compared to individuals with one mutation (Extended 

Data Table 3, Supplementary Fig. 3c). We observed an enrichment for a higher total number of 200 

CH mutations with increasing age, prior treatment and smoking exposure (p=<1x10-6, p=0.01, and 

p=0.02, respectively) and increased clonal dominance as estimated by VAF metrics with 

increasing age and in smokers (p=0.004 and p=1.3x10-5, respectively) (Extended Data Table 3-4). 

 

Clonal selection is likely multifactorial, with the realized fitness of cells with specific gene 205 

mutations dependent on both cell-intrinsic and environmental parameters. We studied, therefore, 

how age, race, smoking and prior exposure to oncologic therapy were related to the representation 

of specific gene mutations through multivariable logistic regression. Mutations in the spliceosome 

genes SRSF2 and SF3B1 were less common than other CH mutations, but showed the strongest 

enrichment with age (Fig. 1d-e). CH mutations in the DDR genes TP53, PPM1D and CHEK2 were 210 

strongly associated with prior exposure to oncologic therapy (ORTP53 = 2.7, q=9.0x10-4; ORPPM1D 

= 3.6, q= 1.2x10-5; ORCHEK2 =4.6, q=<10-6, Fig. 1e). Mutations in ASXL1 were significantly 

associated with prior smoking history (OR=2.5, q=2.0x10-4, Fig. 1e). These associations provide 

evidence that environmental factors such as oncologic treatment and smoking influence the fitness 

of specific gene mutations in HSPC’s. While there was an overall higher prevalence of CH in 215 

treated patients, the fitness associated with mutations in epigenetic modifiers (DNMT3A, TET2) or 

splicing regulators (SRSF2, SF3B1, U2AF1) were not strongly modulated by oncologic therapy 

(Fig. 1d-e). Overall, the patterns of acquired mutations were similar in treated and untreated 

patients in regards to mutational consequence and proportion of C to T transitions within a CpG 

tri-nucleotide context (Supplementary Fig. 4-5). This was true even within DDR-CH genes and 220 

ASXL1 when stratified among smoking and treatment status (Supplementary Fig. 5).    

 

Associations between clonal hematopoiesis and subclasses of oncologic therapy  

Subjects in our study were exposed to a total of 492 different systemic cancer-directed therapies, 

which we classified according to mechanism of action (Supplementary Notes and Supplementary 225 

Table 1). To define the strength of the association between CH-PD and therapy subclass, we 

performed multivariable logistic regression, adjusted for demographic parameters, smoking and 
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time from solid tumor diagnosis to blood draw. After accounting for exposure to all broad therapy 

subclasses, CH-PD was positively associated with prior exposure to radionuclide therapy (OR=1.5, 

p=0.03), external beam radiation therapy (OR=1.4, p=<10-6) and cytotoxic chemotherapy 230 

(OR=1.2, p=8x10-4) but not targeted therapy or immunotherapy (Fig. 2a). With respect to 

subclasses of cytotoxic therapy, CH-PD was most strongly associated with prior exposure to 

topoisomerase II inhibitors (OR=1.3, p=0.01) and platinum agents (OR=1.2, p=0.01) (Fig. 2a) after 

accounting for exposure to major classes of cytotoxic therapy, immunotherapy and external beam 

radiation therapy. Among platinum agents, CH-PD was significantly associated with prior 235 

exposure to carboplatin (OR=1.3, p=0.002) but not cisplatin (OR=1.1, p=0.20) or oxaliplatin 

(OR=1.1, p=0.63) (Fig. 2a). This is in line with evidence that rates of tMN are highest following 

exposure to carboplatin24. 

 

The risk of tMN increases with cumulative exposure to cytotoxic therapy25,26 and ionizing 240 

radiation27. To evaluate for the presence of dose-response relationships with CH-PD, we calculated 

each patient’s relative cumulative exposure to specific therapy classes (see Supplementary Notes 

and Supplementary Fig. 6). After adjustment for cumulative exposure to all major classes of 

therapy, increasing exposure to external beam radiation therapy and platinum chemotherapy was 

positively associated with CH-PD (p-trend=0.04 and 0.05 respectively) (Fig. 2b). A similar 245 

positive trend was seen for CH-PD and higher cumulative exposure to topoisomerase II inhibitors 

although the test for trend was not significant (Fig. 2b). Evaluation of dose response relationships 

with platinum agents showed that CH-PD was associated with higher cumulative doses of 

carboplatin (p-trend=3x10-5) and cisplatin (p-trend=0.03) further supporting the robustness of the 

association between platinum agents and CH. Considering that chemotherapy is often administered 250 

in multi-drug combinations, we explored associations between specific drug regimens and CH-PD 

in a subset of patients (N=5,594) for which full details on drug regimen was available. Regimens 

containing carboplatin or cisplatin were most strongly associated with CH (Extended Data Fig. 4).   

 

We next tested for associations between subclasses of oncologic therapy and CH-PD gene 255 

mutations, considering gene-treatment combinations with at least 10 individuals. Mutations in 

PPM1D, were strongly associated with prior exposure to radionuclide therapy (OR=6.6, q=2.7x10-

6) and platinum (OR=3.3, q=<10-6) and also showed associations with topoisomerase II inhibitors 

(OR=2.0, q=0.002), taxanes (OR=1.8, q=0.003), topoisomerase I inhibitors (OR=1.7, q=0.003) 
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and external beam radiation therapy (OR=1.9, q=0.03) (Fig. 2c). Mutations in TP53 were 260 

associated with platinum (OR=2.1, q=0.03), radiation therapy (OR=1.9, q=0.03) and taxanes 

(OR=1.9, q=0.05) and CHEK2 was associated with platinum (OR=2.3, q=0.02), topoisomerase II 

inhibitors (OR=2.3, q=0.02) and external beam radiation therapy (OR=1.7, q=0.05) (Fig. 2c). With 

larger sample sizes these interactions will be further resolved.   

 265 

Characterization of clonal dynamics in response to oncologic therapy  

To characterize how treatment shapes the mutational landscape and clonal dynamics of CH, we 

collected sequential blood samples from 525 cancer patients (median sampling interval time = 23 

months, range: 6-53 months) of whom 61% received cytotoxic therapy or external beam radiation 

therapy and 39% received either targeted/immunotherapy or were untreated (see Methods and 270 

Supplementary Figure 7 for more details on patient characteristics). Of these patients, 389 had CH 

at the time of first sampling and 136 did not. We observed 621 mutations of which the vast majority 

(95%, N=590) were detected at both timepoints.  

 

We compared the change in VAF of CH clones across treatment modalities and in untreated 275 

patients and found evidence of both positive and negative changes in clone size (Fig. 3a). Among 

mutations detected at both timepoints, 62% (n = 367) of CH mutations remained stable, 28% (n = 

164) had evidence of growth, and 10% (n = 59) decreased in clonal size between sampling 

timepoints based on a binomial test for difference in the VAF between timepoints given the 

sequencing depth. Among patients with multiple mutations, their mutations exhibited a higher 280 

growth rate1 as compared to those with one mutation (p = 0.03) irrespective of mutation type, and 

treatment status (Supplementary Fig. 8). This likely reflects the greater competitive advantage of 

a subset of clones harboring multiple mutations although this cannot be determined with certainty 

in the absence of single-cell sequencing. Among patients receiving external beam radiation therapy 

or cytotoxic therapy, the growth rate was most pronounced for CH with mutations in DDR genes 285 

as opposed to mutations in other CH genes such as DNMT3A, ASXL1 or TET2 (Fig. 3b-c). 

Increasing cumulative exposure to cytotoxic therapy and external beam radiation therapy resulted 

in higher growth rates for CH with DDR mutations (Fig. 3d). Among mutations that were detected 

only at one timepoint (N=21), 6 were detected only at the initial timepoint and not at follow-up 

and 15 were detected only at the follow-up timepoint. We observed a non-significantly higher 290 

proportion of patients with newly detected mutations among those who received interval 
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cytotoxic/radiation therapy (4%, n = 13) as compared to those who did not in a binomial test (1%, 

n=2, p=0.06) (Supplementary Fig. 9).  
 

We identified 34 subjects in our prospective serial sampling series with at least two CH mutations 295 

in which one mutation was in a DDR gene and one in a non-DDR gene. This offered the 

opportunity to study competing clonal dynamics for multiple gene mutations within the same 

patient. In patients receiving interval cytotoxic therapy or radiation therapy, CH clones with DDR 

mutations had a higher growth rate compared to clones with other CH mutations. However, the 

reverse was true in patients without interval exposure; clones with mutations in non-DDR CH 300 

genes (e.g. DNMT3A), outcompeted clones with DDR mutations (Fig. 3e). In summary, our serial 

sampling data provide clear evidence that oncologic therapy strongly selects for clones with 

mutations in the DDR genes TP53, PPM1D and CHEK2 and that these clones have limited 

competitive fitness, in the absence of specific environmental factors such as cytotoxic or radiation 

therapy. 305 

 

Risk factors for tMN development in cancer patients 

While CH is associated with an increased risk of tMN, the incidence of CH far exceeds that of 

tMN. To determine whether CH mutation type, number of CH mutations and/or clonal dominance 

were associated with tMN risk, we performed cause-specific Cox proportional hazards regression 310 

on 9,549 cancer patients exposed to oncologic therapy of whom 75 cases developed tMN (median 

time to transformation=26 months) (Supplementary Table 2). These data were drawn from our 

extended MSK cohort and from three previously published studies17,28,29 (see Supplementary 

Notes). The risk of tMN was positively associated with CH-PD (HR=6.9, p<10-6), and increased 

with the total number of mutations and clone size (Fig. 4a). The strongest associations were 315 

observed for mutations in TP53 and for CH with mutations in spliceosome genes (SRSF2, U2AF1 

and SF3B1). Lower hemoglobin, lower platelet counts, lower neutrophil counts, higher red cell 

distribution width (RDW) and higher mean corpuscular volume (MCV) were all positively 

associated with increased tMN risk. We saw no significant heterogeneity between studies for the 

strength of the association between CH-PD and tMN. The number of CH mutations, TP53, SF3B1 320 

mutations and peripheral blood count parameters, specifically hemoglobin, platelet count, and 

RDW retained significance in multivariable model. Given that our estimates were derived from a 

cohort of cancer patients, we compared our findings to recent studies in healthy individuals1,30 
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investigating CH as a risk factor for the development of AML. Comparison of HRs for tMN and 

AML risk showed similar effect sizes (Supplementary Fig. 10). These data suggest that the relative 325 

risk of myeloid neoplasms associated with CH and related parameters (gene, VAF and mutation 

number) are shared among healthy individuals and cancer patients.  

 

Relationship of clonal hematopoiesis to tMN development  

Findings from our risk model suggest that there is a direct link between CH and tMN, whereby 330 

CH likely represents the precursor clone for tMN. To further compare the genetic and clonal 

relationships between tMN and the proceeding CH, we analyzed 35 cases for which paired samples 

were available with a median inter-sampling time of 24 months (5-90 months) (Supplementary 

Table 2). Targeted mutational analysis combined with clinical cytogenetics identified at least one 

disease defining event at the time of tMN diagnosis in 34 cases (97%).  In 19 patients (59%), we 335 

found evidence of at least one of these mutations at the time of pre-tMN sequencing and in 13 

(41%), we identified two or more in the pre-tMN sample. tMN transformation was frequently 

associated with acquisition of additional somatic mutations in cases who were CH positive at the 

time of pre-tMN sampling (Supplementary Fig. 11). In all cases the dominant clone at tMN 

transformation was defined by a mutation seen at CH (Extended Data Fig. 5).  340 

 

Nearly half (n = 14, 40%) of the tMN patients had mutations in TP53 at the time of tMN diagnosis, 

further validating the relevance of TP53 mutations in tMN pathogenesis. TP53 mutations were 

already present at time of CH in 10/14 patients. At tMN, TP53 mutations co-occurred with isolated 

chromosomal aneuploidies or complex karyotype in 12/13 (92%) cases with available karyotype. 345 

In agreement with our prospective serial sequencing data, in the four cases with a TP53 mutation 

and another non-DDR mutation in the pre-tMN sample that had ongoing exposure to cytotoxic 

therapy or radiation therapy, the TP53 clone consistently outcompeted other mutations to attain 

dominance at the time of tMN transformation (Extended Data Fig. 5). In the cases where we did 

not identify mutations at time of pre-tMN sequencing (N=16), the tMN sample was commonly 350 

defined by chromosomal aneuploidies or MLL fusions common to myeloid neoplasm pathogenesis 

(Supplementary Fig. 11). Additional pathways to tMN pathogenesis through structural variation, 

including fusions of the MLL gene and aneuploidies of chromosome 5 and 77,13 would not have 

been captured by our study.  

 355 
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Implications of tMN risk stratification in tailoring treatment decisions  

Taken together our findings further refine the relevance of CH as a biomarker for tMN risk. We 

sought to evaluate how CH, in combination with other clinical parameters such as age and 

peripheral blood counts, might provide clinically meaningful tMN risk stratification. For example, 

in solid tumor patients undergoing surgical resection, adjuvant oncologic therapy can improve 360 

overall survival by reducing cancer recurrence. However, in some situations, the absolute survival 

benefit of adjuvant therapy is modest and is countered, at least in part, by the risk for subsequent 

tMN. In the absence of prospective clinical studies, we performed an exploratory analysis using a 

synthetic model to quantify the absolute risk of AML/MDS following a breast cancer diagnosis. 

Using previously established methodology31,32 (iCARE), we combined estimates of HR 365 

parameters obtained from our multivariable analysis, the distribution of CH mutational features 

and blood count parameters from untreated patients at MSK aged 50-75 and external data sources 

for 1) age-specific AML/MDS rates in breast cancer, 2) competing hazards for mortality in breast 

cancer, 3) the relative risk for tMN conferred by adjuvant chemotherapy compared to surgery alone 

in breast cancer and 4) the proportion of women with breast cancer who received adjuvant 370 

chemotherapy.  

 

Using these parameters we modeled the 10-year cumulative AML/MDS absolute risk distribution 

for women with breast cancer aged 50-75 in the United States. We estimated how the risk 

distribution would change with receipt of adjuvant therapy by shifting the population between 375 

receiving and not receiving adjuvant chemotherapy. Our estimates showed that the majority (96%) 

of breast cancer patients have a low 10-year absolute risk (AR < 1%) for tMN (Fig. 4b) and for 

these patients, deferment of adjuvant chemotherapy would not impact their tMN absolute risk (Fig. 

4c). However, for the women at the highest risk of tMN (top 1%), adjuvant chemotherapy was 

estimated to increase tMN absolute risk by over 9%.  This would exceed the predicted absolute 380 

benefit in overall survival of chemotherapy in many women with early stage breast cancer 33. While 

not suitable for immediate clinical application, this provides proof-of-concept that incorporating 

CH mutational and clinical characteristics could achieve adequate tMN risk stratification to 

influence clinical decision making. However, prospective studies are needed to develop evidence-

based guidelines for clinical practice.  385 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848739doi: bioRxiv preprint 

https://doi.org/10.1101/848739


 
14 

DISCUSSION  

 

Cancer develops as a result of the successive acquisition of genomic alterations that contribute to 

a cell population’s fitness advantage, selection and malignant potential in a process that is often 

likened to Darwinian evolution34,35,36,37. To this end, estimates of tumor phylogenies are 390 

frequently modelled on the basis of the observed genetic and clonal structures at the time of 

cancer diagnosis 38–41. Such approaches do not offer the possibility to study the dynamics of early 

clones that may never progress into a tumor or allow for an evaluation of the factors that can 

shape the fitness of specific gene mutations under diverse environmental exposures. We show 

that the fate of CH mutations is dictated by a complex interplay between the inherent fitness 395 

advantage of the mutation(s) in HSPC’s and cell extrinsic features that preferentially select for 

specific mutations, i.e. oncologic therapy for genes involved in DDR, aging for spliceosome 

mutations, and smoking for ASXL1 mutations (Extended Data Fig. 6).  

 

Previously, CH has been shown to demarcate patient subgroups with adverse clinical outcomes7. 400 

We show that in cancer patients CH is strongly associated with older age, smoking history and 

exposure to oncologic therapy, highlighting that these factors should be considered in future 

correlative studies of CH in cancer cohorts. We refine the specificity and strength of the 

association between oncologic therapy and CH and extend this to characterize the relationship at 

a gene and treatment-specific resolution. We show that radiation therapy and cytotoxic therapy 405 

are associated with CH, with regimens containing platinum and topoisomerase II inhibitors most 

strongly correlating with CH in DDR pathway genes. The strong dose-response relationships 

observed in our study provide further supporting evidence of a causal relationship. Serial 

sampling of patients before and after therapy provide clear, definitive evidence that therapy 

induces gene-specific clonal expansion, whereby clones with mutations in DDR genes 410 

outcompete other clones and attain clonal dominance in the setting of oncologic therapy, but not 

in its absence. We further validate the relevance of CH as a predictor and precursor of tMN in 

cancer patients. We show that CH mutations detected prior to tMN diagnosis were consistently 

part of the dominant clone at tMN diagnosis and demonstrate that oncologic therapy directly 

promotes clones with mutations in genes associated with chemo-resistant disease such as TP53.  415 
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This demonstrates, for the first time, a causal relationship between genetic subtypes of CH, 

subsequent oncologic therapy, and clonal expansion of CH to tMN.  

 

The realization of precision medicine is reliant upon the development of evidenced-based 

guidelines that consider molecular biomarkers alongside standard clinical criteria to inform 420 

clinical care. Here we show that prospective clinical sequencing can identify patients with CH, 

and that this can be used to predict risk of subsequent tMN.  Moreover, our observations pave the 

way to using this data for therapeutic intervention, including the development of therapies aimed 

to target high risk CH clones and modulating the use of adjuvant systemic cancer therapy in 

patients at highest risk of subsequent myeloid neoplasm. The decreasing cost of prospective 425 

clinical sequencing assays and the high frequency of CH in cancer patients suggest that screening 

for CH prior to initiation of oncologic therapy may be feasible, and may represent an avenue for 

molecularly based early detection and interception. 
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METHODS 430 

 
Sample Ascertainment and clinical data extraction 
 
MSK-IMPACT Cohort 

The study population included patients with non-hematologic cancers at MSKCC that underwent 435 

matched tumor and blood sequencing using the MSK-IMPACT panel on an institutional 

prospective tumor sequencing protocol ClinicalTrials.gov number, NCT01775072 before July 

1st 2018. We extracted data on race, smoking, date of birth and cancer history through the MSK 

cancer registry. Subjects who had a hematologic malignancy within three years of blood 

collection for MSK-IMPACT testing or who had an active hematologic malignancy at the time 440 

of blood draw were excluded. When unavailable through the cancer registry, we extracted data 

on race and smoking through structured fields in clinician medical notes if available. Subjects for 

which age was not available were excluded. Blood indices were taken from clinical labs closest 

to the date of blood collection for MSK-IMPACT, within one year before or after blood 

collection (median=0 days).  445 

 

Serial Sampling Cohort 

In order to study the growth rate of clonal hematopoiesis mutations over time we collected 

additional blood samples on patients sequenced using MSK-IMPACT for repeat CH mutation 

testing. These came from three sources: 1) 372 patients with CH where we obtained second 450 

blood sample at least 18 months after initial MSK-IMPACT blood collection, 2) 21 samples 

from patients with clonal hematopoiesis on MSK-IMPACT who had a blood sample banked at 

least 12 months prior to MSK-IMPACT testing and 3) 132 samples that were taken for repeat 

MSK-IMPACT testing for clinical purposes at least six months after the first MSK-IMPACT 

testing irrespective of clonal hematopoiesis status (Supplementary Fig. 7). For all patients who 455 

had sequential sampling data, we manually reviewed their medical records to capture receipt of 

oncologic therapy received at outside institutions during the follow-up period. If subjects 

received therapy outside MSK during the follow-up period, we excluded them from analyses of 

dose-response relationships since cumulative dose of therapy could not be consistently collected 

from outside records. This study was approved by the MSKCC Institutional Review Board. 460 
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Targeted Capture-Based Sequencing  

Subjects had a tumor and blood sample (as a matched normal) sequenced using MSK-IMPACT, 

a FDA-authorized hybridization capture-based next-generation sequencing assay encompassing 

all protein-coding exons of 341, 410, or 468 cancer-associated genes (Supplementary Table 3). 

MSK-IMPACT is validated and approved for clinical use by New York State Department of 465 

Health Clinical Laboratory Evaluation Program and is used to sequence cancer patients at 

Memorial Sloan Kettering. Genomic DNA is extracted from de-paraffinized formalin fixed 

paraffin embedded (FFPE) tumor tissue and patient matched blood sample, sheared and DNA 

fragments were captured using custom probes44.  

 470 

The blood samples in the serial sampling cohort that were obtained for repeat CH testing were 

sequenced using a comparable capture-based custom panel using 163 genes implicated in 

myeloid pathogenesis, which included the most commonly mutated genes in our MSK-IMPACT 

study, with the exception of ATM. The median sequencing depth was 665X (range=111-1987X ) 

which was comparable to that obtained in the blood using MSK-IMPACT. For all subsequent 475 

analyses using the serial sampling cohort we only considered mutations that were present in both 

the initial and follow-up panel.  

 

Variant Calling 

Pooled libraries were sequenced on an Illumina HiSeq 2500 with 2x100bp paired-end reads. 480 

Sequencing reads were aligned to human genome (hg19) using BWA (0.7.5a). Reads were re-

aligned around indels using ABRA (0.92), followed by base quality score recalibration with 

Genome Analysis Toolkit (GATK) (3.3-0). Median coverage in the blood samples was 497x, and 

median coverage in the tumors was 790x. Variant calling for each blood sample was performed 

unmatched, using a pooled control sample of DNA from 10 unrelated individuals as a 485 

comparator. Single nucleotide variants (SNVs) were called using Mutect and VarDict. Insertions 

and deletions were called using Somatic Indel Detector (SID) and VarDict. Variants that were 

called by two callers were retained. Dinucleotide substitution variants (DNVs) were detected by 

VarDict and retained if any base overlapped a SNV called by Mutect. All called mutations were 

genotyped in the patient matched tumor sample. Mutations were annotated with VEP(version 86) 490 

and OncoKb.  
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Post-Processing Filters for Clonal Hematopoiesis Calling 

We applied a series of post-processing filters to further remove false positive variants caused by 

sequencing artifacts and putative germline polymorphisms. We removed variants that were found 495 

(with a VAF of >2% at least once) in a panel of sequencing data from 300 blood samples 

obtained from persons under 20 years of age and without evidence of clonal hematopoiesis. We 

further filtered single nucleotide deletions within a homopolymer stretch of (>=3 base repetition) 

of the same deleted base pair, single nucleotide substitutions completing a stretch of a >= 5bp-

long homopolymer (E.g. GGCGG -> GGGGG) in-frame deletions or insertions in a highly 500 

repetitive region (DUST45 algorithm score of >=5), and variants with unequal proportions of 

forward/reverse direction supporting reads based on a fisher test. We performed manual review 

in IGV of recurrent mutations not previously reported in public databases. We required a variant 

allele fraction of at least 2% and at least 10 supporting reads. All genotypes were calculated 

using sequencing reads and bases with a quality value of at least 20.  Because somatic mutations 505 

in the blood would be expected to be detected in the blood but not other tissue compartments, we 

compared the variant allele fraction (VAF) of mutations in the blood compared to the matched 

tumor. Variant calls that were present in the blood with a VAF of at least twice that in the tumor 

or 1.5 times the VAF if the tumor biopsy site was a lymph node were considered somatic. This 

ratio was chosen based on minimizing sensitivity and specificity of CH calls through simulations 510 

of leukocyte contamination in the tumor (see Supplementary Notes and Supplementary Figures 

10 and 11). To further filter putative germline polymorphisms that passed the blood/tumor solid 

tissue ratio due to allelic imbalance in the tumor specimen, we removed any variant reported in 

any population in the gnomAD database at a frequency greater than 0.005.  

 515 

Validation of Calls 

To test the reproducibility of our clonal hematopoiesis mutation calling, we compared the 

mutational calling results from 1,173 samples, where the same DNA library for a blood sample 

was sequenced and analyzed twice using MSK-IMPACT. We detected 91% of variants in both 

samples using our calling criteria with a correlation coefficient of 0.98 for the variant allele 520 

fraction between the two calls indicating that the reproducibility of our calls was high. In 10 

cases with CH, we obtained a second blood sample and re-sequenced using a custom capture 

based panel with unique molecular identifiers and found that this independent method confirmed 

all 18 of our CH calls using MSK-IMPACT.  
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Variant Annotation 525 

Variants were annotated according to evidence for functional relevance in cancer (putative driver 

or CH-PD) and for relevance to myeloid neoplasms specifically (CH-Myeloid-PD). We 

annotated variants as oncogenic in myeloid disease (CH-Myeloid-PD) if they fulfilled any of the 

following criteria:  

1) Mutation in a putative myeloid driver gene (Supplementary Table 4) 530 

2) Truncating variants in NF1, DNMT3A, TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, 

TP53, CEBPA, ASXL1, RUNX1, BCOR, KDM6A, STAG2, PHF6, KMT2C, PPM1D, 

ATM, ARID1A,  ARID2,  ASXL2,  CHEK2,  CREBBP,  ETV6,  EZH2,  FBXW7,  MGA,  

MPL,  RB1,SETD2, SUZ12, ZRSR2 or in CALR exon 9 

3) Translation start site mutations in SH2B3 535 

4) TERT promoter mutations 

5) FLT3-ITDs 

6) In-frame indels in CALR, CEBPA, CHEK2, ETV6, EZH2 

7) Any variant occurring in the COSMIC “haematopoietic and lymphoid” category greater 

than or equal to 10 times 540 

8) Any variant noted as potentially oncogenic in an in-house dataset of 7,000 individuals 

with myeloid neoplasm greater than or equal to 5 times 

 

We annotated variants as oncogenic (CH-PD) if they fulfilled any of the following criteria: 

1) Any variant noted as oncogenic or likely oncogenic in OncoKB19 545 

2) Any truncating mutations (nonsense, essential splice site or frameshift indel) in known 

tumor suppressor genes as per the Cancer Gene Census or OncoKB. Genes not listed in 

the cancer census or OncoKB were reviewed in the literature to determine if they were 

potentially tumor suppressor genes. 

3) Any variant reported as somatic at least 20 times in COSMIC46 550 

4) Any variant meeting criteria for CH-Myeloid-PD as above. 

All missense variants not meeting the above were individually reviewed for potential 

oncogenicity as previously described47. 

 

Statistical Methods 555 

dN/dS  
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We used the dNdScv (https://github.com/im3sanger/dndscv) package to quantify the dN/dS 

ratios for missense and truncating mutations at the gene level as well as on the panel level. Due 

to the difference in the gene panel between different MSK-IMPACT panel versions, we excluded 

all MSK-IMPACT-341 samples and only included genes that were present on both MSK-560 

IMPACT-410 and MSK-IMPACT-468 panels in the analysis. Finally, to generate the overall 

dN/dS landscape in CH, we only presented genes that reached a significance level of q < 0.1 

after multiple testing correction and contained more than 25 variants. 

 
Modeling the association between CH and prior exposure to oncologic therapy 565 

We used multivariable logistic regression to evaluate for an association between clonal 

hematopoiesis (including gene and variant specific factors) and therapy, age, gender and 

smoking history. In addition to these variables, we also adjusted for time from cancer diagnosis 

to blood draw for MSK-IMPACT testing because trends in preferred oncologic agents vary over 

time and CH is known to associate with survival. We did not adjust for primary tumor type since 570 

we hypothesized that most of the difference in CH-PD rates reflected differences in oncologic 

regimens. Indeed, among untreated patients, a global Wald test for differences in CH-PD 

prevalence by tumor type was not significant (p=0.98). Analyses stratified by the time since start 

and by completion of external beam radiation and chemotherapy showed no clear evidence of a 

time-dependence/latency between CH-PD and cumulative exposure to therapy. Thus, the time 575 

from start or stop of therapy was not adjusted for. While considering exploratory analyses, we 

performed multiple hypothesis correction using the false discovery rate (FDR) q-values for gene-

specific analyses to control for inflation of type I error.  We did not perform multiple hypothesis 

correction for analyses testing an association between subclasses of oncologic therapy and CH 

because the association between oncologic therapy and CH is known and our goal was to define 580 

the relative strength of these associations with subtypes of therapy rather than hypothesis testing.  

Heterogeneity p-values to test for differences in the strength of the association between 

subclasses of CH and clinical variables were calculated through logistic regression models 

limited to CH-positive individuals testing for a difference in the odds of having CH with the 

mutational feature of interest (e.g. CH-PD) vs. having CH without the mutational feature (e.g. 585 

non-CH-PD). Generalized estimating equations were used to test for an association between CH 

VAF and selected clinical and mutational features among CH positive individuals accounting for 
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correlation between the VAF of mutations in the same person.  Ordinal logistic regression among 

CH positive individuals was used to test for an association between clinical characteristics and 

increasing CH mutation number. A test for trend between increasing cumulative exposure to 590 

oncologic therapy and the odds of CH-PD was performed using multivariable logistic regression 

limited to individuals exposed to the therapy of interest.  

 

Modeling the effect of oncologic therapy on mutation growth rate 

For each mutation in each individual with sequential sequencing data available, we modeled the 595 

growth rate of the mutation between the two time points according to the following formula: 

α = log (V / V0) / (T - T0) 

Where T and T0 indicates the age of the individual (in days) at the two measurement time points 

and V and V0 correspond to the VAF at T and T0 respectively. We also classified mutations as 

having increased, decreased or remained constant during the follow-up period based on a 600 

binomial test comparing the two VAFs. Generalized estimating equations were used to test for an 

association between exposure to cytotoxic therapy and external beam radiation therapy and CH 

growth rate adjusting for age, gender and smoking status accounting for correlation between the 

growth rate of mutations in the same person. Among patients with at least one mutation in a 

DDR CH gene and another non-DDR CH gene (N=34), we calculated the difference in the 605 

growth rate between mutations. When patients had more than two mutations in the same gene 

category, we used the highest growth rate for that category. A paired t-test was used to test for 

significance in the difference between growth rates of DDR mutations compared to non-DDR 

mutations within individuals who received cytotoxic therapy and/or external beam radiation 

therapy and within those who were untreated during the follow-up period.  610 

 

Combined Analysis for AML/MDS Risk  

We combined data from three previously published studies, Gillis et al., abbreviated MOF 

(N=68), Takahasi et al., abbreviated MDA (N=67), Gibson et al., abbreviated DFC (N=401) 

studying the effect of CH on tMN risk in cancer patients. For all samples, uniform post 615 

processing filters were applied to ensure retention of variants in accordance to the QC standards 

of the MSK cohort including a universal 2% minimum VAF cutoff. We only included mutations 

within genes that are present on the panel from all centers and on all panel versions from each 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848739doi: bioRxiv preprint 

https://doi.org/10.1101/848739


 
22 

center.  The only exceptions were SRSF2 which the IMPACT-341 sequencing panel did not 

cover and PPM1D which was not sequenced in IMPACT-341, MDA or MOF.  We performed 620 

mean imputation of missing clinical data for blood counts. Only mutations that we classified as 

CH-PD were included in analyses. We performed univariate cause-specific Cox proportional 

hazards regression for the effect of maximum VAF, total number of CH mutations, CH in 

specific genes and blood count parameters adjusted for age and gender and stratified by study 

site. Interaction terms between study and CH were used to test for heterogeneity between studies 625 

on the effect of CH on tMN risk. The proportional hazards assumption was tested through visual 

inspection of residual plots and through the inclusion of time-varying covariates. We performed 

a multivariable analysis including age, gender and all variables that were significant in the 

univariate analysis with the exception of the genes not included in all studies to prevent 

reduction of sample size, PPM1D and SRSF2. 630 

 

We also combined data from two studies investigating the effect of CH on AML risk in healthy 

individuals, Abelson et al., abbreviated PMC (N=969) and Young et al., abbreviated WSU 

(N=103), with data from MSK and applied uniform processing to mutation data from different 

centers. As in the solid tumor combined analysis, the same post processing filters used in the 635 

main MSK cohort including a universal 2% minimum VAF cutoff were applied to these studies 

and only mutations that we classified as CH-PD were included in analyses. We performed a 

multivariable Cox regression adjusted for age and gender including the variables used in the 

multivariable tMN risk analysis in solid tumor patients.  

Modeling absolute risk of AML/MDS  640 

We used the iCARE software package31,32 to build a model for absolute risk of AML/MDS in 

women with breast cancer aged 50-75 in the United States (U.S) by combining 1) the multivariate 

HR estimates from our study that were significant in the univariate model including maximum 

VAF of CH, gene specific effects and peripheral blood count indexes (RDW, hemoglobin) 2. Age-

specific AML/MDS rates in breast cancer using data provided by the National Comprehensive 645 

Cancer Network (NCCN)49; 3. Competing hazards for mortality in women with breast cancer in 

the U.S aged 50-75 as reported in SEER50; 4. Previously published HR estimates for chemotherapy 

on the risk of tMN in women with breast cancer from the NCCN49; 5. The distribution of CH VAF, 
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number of mutations, CH gene and peripheral blood count indexes using our cohort of MSK solid 

tumor cancer patients aged 50-75 who were untreated prior to blood draw and 6. The proportion 650 

of women who receive adjuvant chemotherapy for breast cancer in the U.S from SEER50. While 

our IMPACT cohort is not representative of the general breast cancer population in the U.S, since 

the distribution of CH mutational features is largely driven by age and since we do not see major 

differences in rates of CH between gender or untreated tumor types, we believe that the distribution 

of CH mutational features in untreated solid tumor patients sequenced on IMPACT reasonably 655 

approximates an age-matched untreated breast cancer population. While blood count indexes are 

known to differ by sex and we chose to use the distribution of blood counts from the entire 

treatment-naive IMPACT population (both male and female) to capture the inter-relationship 

between blood count indexes and CH mutational features. Sensitivity analyses using the 

distribution of blood count parameters from female IMPACT patients only produced similar 660 

results. This risk model assumes an additive association on the log scale of CH mutational features 

and oncologic therapy for risk of tMN. This assumption is supported by the similarity between risk 

estimates for CH mutational features between AML in healthy individuals never exposed to 

therapy and tMN (Supplementary Fig. 10).  

  665 

All the statistical analyses were performed with the use of the R statistical package (www.r-

project.org). The code used in statistical analysis is provided in the Supplementary Appendix.  
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Supplementary Notes for “Oncologic therapy shapes the fitness landscape of clonal 

hematopoiesis" 

 

Clinical data ascertainment in MSK solid tumor patients 860 

 

Chemotherapy 

Data on chemotherapy were taken from two different sources. Prior to January 1st of 2011, data 

were extracted from pharmacy dispensing records. These data were accurate for outpatient 

treatments since 1992 and inpatient treatments since 1994. After January 1st of 2011, these data 865 

were taken from completed orders for chemotherapy in the electronic medication administration 

reconciliation system (EMar). Oral oncologic therapy prescribed through outside pharmacies was 

not uniformly captured in our cohort. For this reason, we did not attempt to study exposure to 

hormonal therapy since this is often given orally and filled at outside pharmacies. When 

chemotherapy is ordered in the EMar at MSK, this is done using a set of orders (orderset) that 870 

frequently contain multiple oncologic agents (i.e. the orderset named “FOLFOX” prescribes for 

Leucovorin, Fluorouracil, Oxaliplatin). Clinicians may choose to drop or add drugs to the order 

set and this is given as an option when placing chemotherapy orders. The order set used to 

prescribe chemotherapy was available for orders placed after January 1st of 2011. Among 

patients who only received chemotherapy after January 1st of 2011, we defined exposure to a 875 

drug regimen as the combination of drugs ordered using a given order set for an individual.  

 

Patients in our main MSK cohort received 492 unique cancer-directed systemic therapies. In 

order to achieve adequate power to characterize the relative strength of associations between 

oncologic therapy and CH, we grouped systemic therapies according to their primary mechanism 880 

of action. “Goodman & Gilman’s The Pharmacologic Basis of Therapeutics”42 was primarily 

used for drug classification, supplemented by literature review for agents not described in this 

text. We classified agents as “cytotoxic” if they were traditional, non-specific, cytotoxic 

therapies. Drugs that act primarily through pathway-specific mechanisms (i.e. monoclonal 

antibodies and protein kinase inhibitors) were classified as “targeted” therapies. Systemically 885 

administered radionuclides not conjugated to antibodies (e.g. 131I, 223Ra, etc.) were classified as 

“radionuclide therapy” while antibody-conjugated radionuclides were grouped with targeted 

agents since they were considered to have target-localized effects. Agents that act primarily 
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through modulation of the immune system were classified as “immune therapies”. Drugs that 

inhibit or modulate hormonal pathways were classified as “hormonal therapies” and were not 890 

included in our analysis of cancer-directed therapy (e.g. patients who only received hormonal 

therapies were considered to be treatment naive). This was done for two reasons; first, because 

there is a paucity of evidence linking receipt of hormonal therapy with risk of therapy-related 

leukemia and second, receipt of oral hormonal therapy was not well captured in our study. 

Cytotoxic drugs were further classified according to mechanism of action including alkylating 895 

agents, platinum complexes, antimetabolites, topoisomerase I inhibitors, topoisomerase II 

inhibitors, microtubule damaging agents, etc. Because microtubule damaging agents encompass 

a large number of agents, these were further classified into “taxanes” and “other microtubule 

damaging agents”. Cytotoxic agent groupings that contained fewer than 20 individuals were 

combined into “other cytotoxic agents”. Supplementary Table 1 shows the final classification of 900 

agents in this study. 

 

Radiation therapy 

Dosimetric parameters for each course of external beam radiation (i.e. dose, fractionation, 

technique/modality, target) were extracted from the treatment planning system (ARIA; Varian 905 

Medical Systems, Palo Alto, CA), from radiotherapeutic prescriptions and from clinical 

treatment summaries. For patients treated prior to the implementation of contemporary treatment 

planning (prior to 2003), receipt and timing of radiation therapy was abstracted from medical 

billing records, although dose and fractionation were not available for these patients and were set 

as missing. 910 

 

Measurement of cumulative therapy dose 

Given the variety of radiotherapy fractionation schemes and prescribed tumor doses, we calculated 

the cumulative radiation dose received by each patient prior to blood draw in 2-Gy per fraction 

equivalents (EQD2) using an  α/β of 3 Gy, considering CH to be a late-responding tissue effect43. 915 

We calculated tertiles of dose based on the distribution of cumulative EQD2 received over the 

entire cohort and assigned each individual a score based on their tertile of exposure (e.g. a patient 

who did not receive external beam radiation received a score of zero for that particular agent. If 

the patient’s cumulative radiation dose, as expressed in EQD2, was within the first tertile, a score 

of one was assigned, and so forth).   920 
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To derive metrics for cumulative exposure to cytotoxic therapy subclasses, we applied the 

approach used by the Late Effects Study Group 25. For each drug the total dose per kg received 

prior to blood draw was summed for each patient. The dose distribution for each agent was divided 

into tertiles and the patient’s dose was assigned a score based on tertile of total exposure. An 925 

individual patient’s scores for each drug in a specific drug class were summed. The distribution of 

the resulting sum across all patients was used to derive tertiles of total exposure to the drug class 

in the entire cohort (Supplementary Fig. 6).  

 

Development of secondary myeloid disease 930 

We used a combination of sources to identify incident hematologic malignancies following blood 

collection for MSK-IMPACT testing including: 1) the MSK cancer registry for any listed 

diagnoses of hematologic neoplasms, 2) visits to an oncologist within the leukemia service, 3) 

pathology reports describing bone marrow biopsies, 4) billing codes relating to hematologic 

neoplasms, and 5) a free-text search of all EMR documents for leukemia or MDS-related search 935 

terms. We reviewed the medical records individual for any patient who was selected as a 

possible case using the above criteria. If a patient was diagnosed within six months of blood 

collection for MSK-IMPACT testing, they were considered to have active disease at the time of 

testing and were excluded. We defined the date of last follow-up as the last visit to MSK, the last 

date of phone/email contact with the patient, or the date of death as per the Social Security Death 940 

Index or death notification from family members or outside institutions.  

 

Clinical characteristics of previously published studies included in combined analyses 

 

To study the relationships between CH and tMN we aggregated data from 5 previously published 945 

studies to include Gillis et al, (MOF) Takahshi et al (MDA), Gibson et al. (DFC), Young et al., 

(WSU) and Abelson et al., (EPI).  

 

MOF 

Gillis et al.,1 performed a nested case-control study for tMN risk using subjects from an internal 950 

biorepository of 123,357 cancer patients who consented to participate in the Total Cancer Care 

biobanking protocol at Moffitt Cancer Center (Tampa, FL, USA) between Jan 1, 2006, and June 
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1, 2016. Cases were individuals diagnosed with a primary malignancy, treated with 

chemotherapy who subsequently developed a therapy-related myeloid neoplasm, and were 70 

years or older at either diagnosis. Controls were individuals who were diagnosed with a primary 955 

malignancy at age 70 years or older and were treated with chemotherapy but did not develop 

therapy-related myeloid neoplasms. Controls were matched to cases in at least a 4:1 ratio on the 

basis of sex, primary tumour type, age at diagnosis, smoking status, chemotherapy drug class, 

and duration of follow-up. DNA was isolated from peripheral blood collected before therapy-

related myeloid neoplasm diagnosis and subjected to Droplet-partitioned, targeted, amplicon-960 

based, next-generation sequencing was used in accordance with the manufacturer's instructions 

(RainDance Technologies, Billerica, MA, USA) to identify somatic mutations in 49 myeloid-

driver genes (ThunderBolts Myeloid Panel, RainDance, Billerica, MA, USA). 

 

MDA 965 

Takahasi et al.2 performed a case-control study for cancer patients who developed therapy-

related myeloid neoplasms (cases) and lymphoma patients who did not develop therapy-related 

myeloid neoplasms (controls). Cases were identified using a clinical database at the Department 

of Leukemia of The University of Texas MD Anderson Cancer Center (Houston, TX, USA) 

including 40,000 patients who have consented for their data to be used in research. Inclusion 970 

criteria were that patients had to have been treated for a primary cancer from June 11, 1997, and 

subsequently had diagnoses of therapy-related myeloid neoplasms between Jan 1, 2003, and Dec 

31, 2015, and had paired samples of diagnostic bone marrow at the time of therapy-related 

myeloid neoplasm diagnosis and peripheral blood samples obtained at the time of primary cancer 

diagnosis. An aged-matched control group (using a 3:1 control to case ratio) was identified using 975 

a clinical database of patients treated for lymphoma from 2008 to 2015. Eligible patients were 

those who had a pre-treatment blood sample available, had received a combination 

chemotherapy regimen including an alkylating agent, had at least 5 years of follow-up with no 

clinical evidence of therapy-related myeloid neoplasm development, and had no evidence of 

bone marrow metastasis of lymphoma in a bilateral bone marrow biopsy. Targeted sequencing of 980 

32 myeloid genes was performed using an amplicon-based targeted deep sequencing method, 

including unique molecular barcodes. 
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DFC 

Gibson et al.,3 performed a cohort study among 401 adult patients who underwent ASCT for 

non-Hodgkin lymphoma between 2003 and 2010 (Dana-Farber Cancer Institute, Boston, MA; 985 

targeted sequencing cohort) with mobilized stem-cell products available at the time of ASCT. All 

subjects had been exposed to oncologic therapy prior to stem cell collection. During the follow-

up period 18 patients developed tMN. Samples were obtained from mobilized stem-cell products 

at the time of ASCT. Targeted deep sequencing was performed using 86 known myeloid genes 

using the Custom SureSelect hybrid capture system (Agilent Technologies, Santa Clara, CA). 990 

WSU 

Young et al.4, utilized a nested case-control design for AML using data from two large cohort 

studies, the Nurses Health Study (NHS) and the Health Professionals Follow-Up Study. Subjects 

were drawn from the “blood sub-cohorts” of these two studies which included 32,826 women 

(NHS) with a blood sample from 1989-90 as well as 18,018 men (HPFS) who provided a whole 995 

blood sample from 1993-95. The case definition included all blood sub-cohort participants with 

confirmed diagnoses of AML occurring after blood draw. Two matched controls were selected 

per case on cohort (sex), race, birthdate (± 1 year), and blood draw details (date ± 1 year, time ± 

4 hours, fasting status <8, 8+ hours). Samples were sequenced using the Illumina TruSight 

Myeloid Sequencing Panel for targeted capture from 54 leukemia-associated genes Technical 1000 

replicate libraries were sequenced on different machine runs. Error corrected sequencing analysis 

of raw sequencing results was performed as described elsewhere5.  

EPI 

Abelson et al.6, performed a case-control study for AML using samples from EPIC 7. We used 

data from both the discovery and validation sets. The discovery set included individuals who 1005 

enrolled on the EPIC study between 1993 and 1998 across 17 different centres. The validation 

cohort included individuals enrolled in the EPIC-Norfolk longitudinal cohort study between 

1994 and 2010. Subjects who developed AML during the follow-up period were matched to age- 

and gender-matched controls without a history of cancer or any hematological conditions. 

Targeted deep sequencing in the discovery cohort was performed using error-corrected, custom 1010 
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capture based sequencing using the xGen AML Cancer Panel. Targeted sequencing in the 

validation set was performed using a custom complementary RNA bait set (SureSelect, Agilent, 

ELID: 0537771) designed complementary to all coding exons of 111 myeloid driver-genes. 

Eliminating germline events and technical artifacts using tumor comparator 

 1015 

Using a synthetic dataset, we profiled the error rates of several methods that use the matched 

tumor as a comparator to eliminate germline events and false positive calls (artifacts).  

We simulated pairs of observed variant allele fractions in the blood and the tumor as follows: 

 

Let fb be the true variant allele fraction in blood,  ft be the true variant allele fraction in blood and 1020 

c be the level of blood contamination in the tumor and r ∈ {0,1} be an indicator for whether the 

variant is real (r=1) or artifact (r = 0). Let vb be the observed VAF in the blood, vt be the 

observed VAF in tumor and d be the sequencing depth in both blood and tumor. For 

convenience, d is fixed to be 500 as per the typical coverage for IMPACT sequencing panels.  

 1025 

A called mutation m can be either be true CH (a somatic mutation in the blood), an artifact, or a 

germline mutation. If m is a real CH mutation, then we would expect the tumor VAF to be a 

product of the amount of blood contamination in the tumor and the true VAF in the blood,  ft = 

cfb. If m is an artifact or a germline mutation, we would expect the tumor VAF to be same as the 

blood VAF, namely ft = fb. vt  is expected to follow a binomial distribution based on the 1030 

sequencing depth d and true VAF in the blood and tumor respectively. Thus, the observed blood 

VAF can be modeled by vb ~ Bin(d,fb) while the observed tumor VAF can be modeled by vt ~ 

Bin(d,c,fb). We simulated the observed blood and tumor VAFs for real and artifactual mutations 

under a range of blood contamination levels (c = {0.05, 0.1, …, 0.5}) and true blood VAFs (fb.= 

{0.02, 0.04, …, 0.2}). Using this synthetic dataset, we evaluated two methods (with different 1035 

threshold parameters) that aim to differentiate real CH variants from non-CH variants using the 

observed VAFs: 

 

1. Blood-tumor Ratio:  Predict mutation is real if  vb /vt >= C otherwise consider it an 

artifact. We evaluated a range of cutoffs for C {1, 1.5, 2, 3, 4}. 1040 
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2. Binomial test: Predict mutation is real if p<0.05 from a binomial test with the null 

hypothesis of vb =vt     

 

The predictions by each method were evaluated against the true mutation types that gave rise to 

the data points, and were classified as true positive (TP), false positive (FP), true negative (TN), 1045 

and false negative (FN). The overall precision of various methods/cutoffs were calculated as 

TP/TP+FP and its recall as TP/TP+FN (Supplementary Figures 3 and 4). 

 

Since we expect most CH mutations to have a true variant allele frequency of less than 10% and 

since we expect most solid tumors to a range of contamination levels with leukocytes (but 1050 

generally less than 20%), based on our simulations we used vb /vt  cutoff of two. However, in the 

situation where a lymph node with metastatic disease was chosen as the source for tumor 

material, a high level (greater than 30%) of leukocyte contamination could be present in some 

cases.  

 1055 
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Figure 1. Characteristics of CH by age, prior therapy exposure and smoking history. (A) Proportion of patients with CH among previously 
treated (received any oncologic therapy prior to blood draw, N=6240) and untreated patients (N=3967) by ten-year age group. (B) Proportion of 
patients with CH due to a known cancer driver mutation (CH-PD) and those without a known driver (CH non-PD) stratified by prior treatment 
exposure (C) Proportion of patients with CH mutations in specific genes among treated and untreated patients. Multivariable logistic regression was 
used to test whether the odds of having a specific gene mutated differed among treated and untreated patients after adjustment for age, gender, 
smoking and race. (D) Among patients with CH, the proportion with mutations in specific genes, by age group and treatment status. (E) Odds Ratio 
for CH mutation in ten most commonly mutated genes with 1) increasing age, 2) for patients previously exposed to oncologic therapy compared to 
those with no exposure prior to blood draw, 3) for current/former smokers compared to non-smokers in multivariable logistic regression models 
adjusted for therapy, smoking, race, age, gender and time from diagnosis to blood draw. Shown are the q-values (FDR-corrected p-values): * <0.05, 
** <0.01,***<0.001. Age is expressed as the mean centered value. 
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Figure 2. Association between CH and prior exposure to oncologic therapy. (A) Odds ratios (OR) and 95% confidence intervals for CH-PD 
and specific classes of oncologic therapy in multivariable logistic regression adjusted for each other, smoking, race, gender and time from diagnosis 
to blood draw. The top panel shows the OR for broad classes of oncologic therapy. The middle panel shows the OR between CH-PD and prior 
exposure to subclasses of cytotoxic therapy. The bottom panel shows the OR between CH-PD and exposure to specific platinum-based drugs. (B) 
The OR between prior receipt oncologic therapy and CH-PD stratified by tertile of cumulative exposure for the agent. Multivariable logistic 
regression was used adjusted as in (A) but with cumulative weight-adjusted dose of systemic therapy classes and cumulative radiation dose (as 
expressed in EQD2. The p-trend was calculated testing for an association between CH and increasing tertiles of cumulative oncologic therapy 
exposure among those who received the therapy in the multivariable model. (C) Heat-map showing the log(OR) between CH-PD in specific genes 
and prior exposure to the major classes of cytotoxic therapy and radiation therapy in logistic regression models adjusted for each all therapy 
subclasses, smoking, race, gender and time from diagnosis to blood draw. Q-values (FDR-corrected p-values) are shown with an asterix: *<0.05, ** 
<0.01, ***<0.001.
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Figure 3. Clonal evolution of CH mutations under 
the selective pressure of oncologic therapy. (A) 
Change in VAF for CH mutations from initial 
sequencing to follow-up sequencing for patients 
stratified by the type of therapy received during the 
follow-up period. Shown are those who received 
cytotoxic therapy, those who received 
targeted/immune therapy alone, external beam 
radiation (XRT) alone and those who received no 
therapy during the follow-up period. (B) Change in 
the growth rate for DDR CH mutations and non-DDR 
CH mutations among those who received external 
beam radiation (XRT) or cytotoxic therapy during the 
follow-up period. The growth rate for mutations in 
treated patients are shown in orange and untreated 
in blue. (C) Change in the growth rate for specific CH 
mutations stratified by whether patients received 
cytotoxic therapy/radiation therapy (treated) or 
whether they received no therapy during the follow-
up period. Shown are the FDR-corrected p-values (q-
value). (D) Change in the growth rate for DDR CH 
mutations and CH due to mutations in other genes 
stratified by tertile of cumulative exposure to cytotoxic 
therapy and XRT. Shown are the p-values for a trend 
test for increasing growth rate of CH with increasing 
tertile of therapy exposure. E) Intra-subject 
competition between DDR and non-DDR-CH 
mutations. Among patients with at least one mutation 
in a DDR CH gene and a non-DDR CH gene we 
compared the difference in the growth rate between 
mutations. Connecting lines show the difference in 
growth rate between DDR vs other genes in patients 
who received XRT/Cytotoxic therapy (treated) during 
the follow-up period and in those who did not receive 
such therapy (untreated) during the follow-up period. 
A paired t-test was used to test for significance in the 
difference between growth rates within individuals. 
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Figure 4. Risk of AML/MDS by clinical and mutational characteristics in solid tumor patients. (A) Hazard ratios from Cox regression for blood 
count indexes, and CH mutational characteristics for tMN in solid tumor patients. All models were adjusted for age and gender and stratified by 
study center. (B) Projected distribution of absolute 10-year risk of AML/MDS for women after a breast cancer diagnosis in the United States aged 
50-75 at presentation C) Distribution of absolute 10-year risk of AML/MDS for among women at the top percentiles of risk for those who go on to 
receive adjuvant cytotoxic chemotherapy and those who receive surgery only.  
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Extended Data Figure 1. Association between primary tumor site and clonal hematopoiesis. Shown are 
the odds ratios and 95% confidence intervals for clonal hematopoiesis in selected primary tumor types with at 
least 100 subjects compared to breast cancer (N=3553) in a logistic regression model adjusted for age. P-
values: *  <0.05, ** <0.01,***<0.001 
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Extended Data Figure 2. Proportion of patients with common CH mutations by primary tumor sites. Genes 
mutated in at least 75 individuals and the top 12 primary tumor sites are shown.
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Extended Data Figure 3. Distribution of oncologic therapy received prior to blood 
collection for sequencing. A) Frequency of patients receiving systemic therapy or external 
beam radiation therapy by primary tumor type. B) Frequency of patients receiving specific 
classes of systemic therapy by primary tumor type. C) Frequency of patients receiving top ten 
subclasses of cytotoxic therapy. Most patients (91%) who received at least one of these 
cytotoxic therapy classes received multiple classes. 
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Extended Data Figure 4. Association between most commonly prescribed drug regimens containing at least 
one cytotoxic therapy and CH-PD. Shown are the odds ratios of CH-PD given prior exposure to the most 
commonly prescribed drug regimens adjusted for each other, external beam radiation, smoking, age, race and 
time from primary tumor diagnosis to blood draw.  
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Extended Data Figure 5. Variant frequencies (VAF) at time of pre-tMN testing and tMN diagnosis. Plots show changes in mutational 
frequencies in relation to oncologic therapy exposure in 19 CH positive cases. TP53 mutations are shown in red, other mutations are showing in 
black. Solid lines denote treatment during the interval period where the exact dates are known and dotted lines denote treatment that was received 
during the interval period but treatment is unknown. Arrows indicate treatment received prior to pre-tMN testing with the number of days between 
the end of treatment and the pre-tMN sample.
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Extended Data Figure 6. Graphical depiction demonstrating how differences in the fitness effect of CH 
mutations and the environment shape clonal dominance over an individual’s lifetime. The retrospective 
associations we observed between smoking and ASXL1 mutations and oncologic therapy and DDR gene 
mutations (Figures 1 and 2) largely reflect the result of clonal expansion leading to increased detectability (as 
shown for treatment and DDR genes in Figure 3.
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Extended Data Table 1. Clinical characteristics of solid tumor patients assessed for CH. 
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Extended Data Table 2. Association between clinical characteristics and CH mutational characteristics. 
The association between CH and clinical characteristics is evaluated comparing mutations in genes mutated in 
myeloid neoplasms (Myeloid CH), in genes not linked to myeloid neoplasms (Non-Myeloid CH), synonymous 
CH variants (silent), non-synonymous CH variants (non-silent), variants known to be myeloid drivers (Myeloid 
PD CH), mutations that are putative somatic driver mutations in myeloid neoplasms (Myeloid PD CH), 
mutations within genes linked to myeloid neoplasms but that are not putative drivers (Myeloid Non-PD CH), 
mutations that are putative somatic driver mutations of cancer in genes not linked to myeloid neoplasms (Non-
Myeloid PD CH) and mutations within genes not linked to myeloid neoplasms that are not putative drivers of 
cancer (Non-Myeloid Non-PD CH) using multivariable logistic regression models. Heterogeneity p-values for 
clinical variables were calculated using logistic regression testing for a difference in the odds of having at least 
one CH mutation in myeloid compared to CH only in non-myeloid genes, for silent compared to non-silent 
mutations, myeloid PD CH compared to myeloid non-PD CH and Non-myeloid PD CH compared to Non-
Myeloid Non-PD CH for predictor variables listed in the table. Sensitivity analyses restricted to individuals with 
only one mutation yielded similar results. Age expressed in decile. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2019. ; https://doi.org/10.1101/848739doi: bioRxiv preprint 

https://doi.org/10.1101/848739


 
52 

 
 
Extended Data Table 3. Association between variant allele fraction (VAF) of CH mutations and clinical 
characteristics. Generalized estimating equations were used to test for an association between VAF of CH 
among those with a mutation and selected clinical and mutational features accounting for correlation between 
the VAF of mutations in the same person. Age expressed in decile. 
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Extended Data Table 4. Association between CH mutation number and clinical characteristics. Ordinal 
logistic regression was used to test for an association between clinical characteristics and mutation number in 
patients with clonal hematopoiesis in a multivariable model. Age is expressed as the decile. 
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Supplementary Figure 1. Quantification of the extent of natural selection by gene in clonal 
hematopoiesis using a dN/dS method. Using the dNdScv method (see Methods) we quantified the dN/dS 
ratios for missense and nonsense and essential splice mutations (truncating), at the level of individual genes. 
Shown are the dN/dS ratios for genes mutated at least 25 times showing evidence of significant selection. The 
log(dN/dS)<0 evidences negative selection and log(dN/dS)>0 evidences positive selection. 
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Supplementary Figure 2. Mutational characteristics of CH in solid tumor patients. (A) Number of mutations observed in the 30 most common 
genes. (B) Proportion of mutations in a myeloid gene and those not in a myeloid gene. (C) Proportion of mutations considered to be a possible 
driver of myeloid neoplasms (Myeloid PD), a driver of non-myeloid neoplasms (Non-Myeloid PD) and those not considered to be a possible cancer 
driver. (D) Proportion of mutations by functional effect. (E). Proportion of deletions (DEL), insertions (INS) or SNVs. (F). Proportion of single 
nucleotide variants (SNV) with specific nucleotide.
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Supplementary Figure 3. Relationship between variant allele fraction (VAF) and CH mutational features 
in (A) genes recurrently mutated in myeloid neoplasms (myeloid gene) and those not implicated in myeloid 
disease (Non-myeloid gene), (B) in variants thought to be putative cancer drivers (PD) and variants not known 
to be cancer drivers (Non-PD) and (C) by the total number of mutations within the individual. P-values were 
calculated from generalized estimating equations testing for associations between VAF and mutational 
features adjusted for age, sex, race, smoking history and exposure to oncologic therapy accounting for the 
within-subject correlation in VAF. 
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Supplementary Figure 4. Mutational characteristics of CH in solid tumor patients and prior exposure to 
oncologic therapy. Among patients who received any oncologic treatment prior to blood draw for mutational 
testing (treated) and those who did not receive therapy prior to blood draw (untreated) we compared the 
following. (A) Proportion of mutations in a hypothesized myeloid neoplasm driver gene (myeloid gene) and 
those in a gene not known to be a driver of myeloid neoplasms (non-myeloid gene). (B) Proportion of 
mutations considered to be a possible driver of myeloid neoplasms (myeloid PD), a driver of non-myeloid 
neoplasms (non-myeloid PD) and those not considered to be a possible cancer driver (non-PD). (C) Proportion 
of non-synonomous (non-silent) and synonymous (silent) mutations. (D). Proportion of mutations within major 
functional effect categories. (E) Proportion of deletions (DEL), insertions (INS) or SNVs. (F) Proportion of 
insertions or deletions by the nucleotide length of the alteration. (G) Proportion of single nucleotide variants 
(SNV) with specific nucleotide changes. 
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Supplementary Figure 5. Mutational context of single nucleotide CH mutations and the proportion of SNVs with C>T in CpG context overall 
(A), in DDR genes (B) and ASXL1 (C) according to smoking history and prior exposure to oncologic therapy.  
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Supplementary Figure 6. Calculation of cumulative exposure for therapy subclasses. For each drug, the sum of the dose (per kilogram of 
body weight) received prior to blood draw was summed for each patient. The dose distribution for each agent was divided into tertiles and the 
patient’s dose was assigned a score based on tertile. The scores for an individual patient were summed among drugs belonging to a specific class. 
The distribution of the resulting sum was used to derive tertiles of total exposure to the drug class that was again used to assign a score of 0-3 for 
each individual. For example, if an individual received 100mg/kg of carboplatin, 2mg/kg of cisplatin and no oxaliplatin, their platinum score would be 
4 (3 for carboplatin, 1 for cisplatin and 0 for oxaliplatin), they would be assigned to the 3rd tertile of platinum. 
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.  

Supplementary Figure 7. Overview of serial samples included in the study relative to MSK-IMPACT testing. We analyzed sequential blood 
samples in 525 patients. The majority of these were among patients found to have CH on MSK-IMPACT and a follow-up blood sample was 
collected at least 18 months following MSK-IMPACT testing (N=132). We obtained 160 samples that had repeat MSK-IMPACT testing performed on 
the blood at least six months apart for clinical purposes (not selected for CH positivity) and 17 samples that had CH on MSK-IMPACT who also had 
a previously banked blood sample at least 12 months prior to MSK-IMPACT testing.  
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Supplementary Figure 8. Growth rate of CH mutations and mutation number. Shown are the growth rates 
for each mutation during follow-up period by the total number of mutations in that individual stratified by 
therapy during the follow-up period. Regression using generalized estimating equations was used to calculate 
a test for trend for increasing growth rate with mutation number among subjects with clonal hematopoiesis 
adjusted for age, gender, treatment and smoking accounting for correlation between the VAF of mutations in 
the same person. This supported a slight increase in the average growth rate of mutations with increasing total 
number of mutations (p-trend=0.03). 
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Supplementary Figure 9. Proportion of patients who gained or lost a mutation during follow-up period 
stratified by interval therapy. Newly observed: no read at time point 1, VAF >= 2% at time point 2. Complete 
loss: VAF >= 2% at time point 1, no read detected at time point 2. 
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Supplementary Figure 10. Risk of myeloid malignancy by clinical and mutational characteristics 
comparing studies for tMN in solid tumor patients and AML risk in healthy individuals. Shown are the 
hazard ratios from multivariable Cox regression for including CH mutational characteristics. All models were 
adjusted for age and gender and stratified by study center.
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Supplementary Figure 11. Mutation landscape in 34 tMN cases with at least one genetic alteration present at the time of tMN diagnosis. 
Pre-tMN sample denoted by “–N01” and sample attained at time of tMN diagnosis denoted by “-tMN”. Grey boxes represent genes not sequenced. 
Chromosomal abnormalities were not evaluated at the time of pre-tMN testing. 
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Supplementary Figure 12. Precision of CH calling by simulation. Precision for discrimination of true CH calls from artifacts using a range of 
cutoffs (1:1, 1:1.5, 1:2, 1:2.5, 1:3) for the ratio of the VAF in the blood to the VAF in tumor ratio and a binomial test testing the null hypothesis for an 
equal VAF in the blood and the tumor.    
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Supplementary Figure 13. Recall of CH calling by simulation. Recall for discrimination of true CH calls from artifacts using a range of cutoffs (1:1, 
1:1.5, 1:2, 1:2.5, 1:3) for the ratio of the VAF in the blood to the VAF in tumor ratio and a binomial test testing the null hypothesis for an equal VAF 
in the blood and the tumor. 
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