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Abstract 1 

Quorum sensing (QS) is a mechanism of cell–cell communication that connects gene expression 2 

to environmental conditions (e.g. density) in many bacterial species, mediated by diffusible signal 3 

molecules. Current functional studies focus on a dichotomy of QS on/off (or, quorate / sub-4 

quorate) states, overlooking the potential for intermediate, graded responses to shifts in the 5 

environment. Here, we track QS regulated protease (lasB) expression and show that 6 

Pseudomonas aeruginosa can deliver a graded behavioral response to fine-scale variation in 7 

population density, on both the population and single-cell scales. On the population scale, we see 8 

a graded response to variation in environmental population density. On the single-cell scale, we 9 

see significant bimodality at higher densities, with separate OFF and ON sub-populations that 10 

respond differentially to changes in density; static OFF cells and increasing intensity of 11 

expression among ON cells. While the QS-controlled behavioral output is graded, the underlying 12 

multi-signal dynamics display a threshold shift in signal concentration with increasing density, 13 

reflecting the onset of positive signal auto-regulation at intermediate densities. Together these 14 

results indicate that QS can tune gene expression to graded environmental change, with no 15 

critical cell mass or ‘quorum’ at which behavioral responses are activated on either the individual 16 

cell or population scale. In an infection context, our results indicate there is not a hard threshold 17 

separating sub-quorate ‘stealth’ mode and a quorate ‘attack’ mode.  18 

 19 

Main Text 20 

Introduction 21 

Many species of bacteria are capable of a form of cell-cell communication via diffusible signal 22 

molecules, generally referred to as quorum sensing (QS). The study of QS has largely focused on 23 

the intracellular gene regulatory scale, leading to a detailed understanding of the regulatory 24 

mechanisms shaping the production of and response to signal molecules in model organisms 25 

such as Vibrio cholerae, Bacillus cereus and Pseudomonas aeruginosa (1–3). We now 26 

understand that QS is mediated by multiple diffusible signals that together control a diverse array 27 

of responses, including swarming, luminescence, competence and the production of diverse 28 

secreted factors (4, 5)  29 

 30 

While the molecular mechanisms of QS have been described for model organisms in remarkable 31 

detail, the functional and evolutionary context of QS continues to be disputed. In other words, 32 

while we now have a better understanding of how QS works, we still have limited understanding 33 

of why bacteria use this system to control behavior. What are the functions of QS? How do these 34 

QS functions help bacteria to survive and grow?  The standard answer is that bacteria use QS to 35 
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sense when they are at sufficient density (‘quorate’) to efficiently turn on cooperative behaviors 36 

such as secretion of toxins and enzymes in order to collectively modify their environment (6). 37 

Other researchers have argued that QS is an asocial sensing apparatus, where individual cells 38 

produce and monitor signal levels in order to infer their physical environment (am I in an open or 39 

enclosed space?) (7). More recently, integration of molecular and evolutionary approaches has 40 

increased the menu of potential functions to include sensing multiple aspects of both the social 41 

and physical environment (6, 8–10) and coordinating complex social strategies that limit the 42 

profitability of non-cooperating ‘cheat’ strains (11–18). 43 

 44 

A critical step in assessing the various adaptive hypotheses is establishing the functional 45 

capacities and limits of QS.  Previous studies have demonstrated ‘density sensing’ functions –46 

populations can use QS to sense when they exceed a density threshold (6, 19, 20). In addition, 47 

Darch et al. (2012) demonstrated that responding with increased QS controlled cooperative 48 

activity at high density can provide a fitness benefit (6). Other studies have demonstrated 49 

‘diffusion sensing’ functions (7) – QS systems can functionally respond to variation in physical 50 

containment, so that even a single cell can become ‘quorate’ (turn on a QS controlled reporter 51 

gene) if isolated in a sufficiently small contained space (9). More recently, some studies have 52 

demonstrated ‘genotype sensing’ functions – QS can respond to variation in the genotypic 53 

composition of a population, restricting QS-controlled responses to populations that are enriched 54 

with wildtypes (11, 14, 21, 22). 55 

 56 

The functional studies outlined above largely focus on a dichotomy of QS on/off (or, quorate / 57 

sub-quorate) states, overlooking the potential for intermediate, graded responses (Fig 1A). The 58 

threshold quorate/non-quorate concept is ingrained in the QS literature following the use of the 59 

legal ‘quorum’ analogy (20), and is also supported by mathematical models of QS signal 60 

dynamics that highlight how sufficiently strong positive feedback control of signal production can 61 

produce a sharp threshold response to changes in environmental parameters such as density or 62 

diffusion (23, 24). However, these same mathematical models indicate that graded responses are 63 

also possible, dependent on the model parameterization. More generally, Fig 1A highlights that 64 

the phenotypic response of QS bacteria to differing environmental conditions can be viewed as a 65 

‘reaction norm’ (25–28) that can in principle take differing shapes.  Reaction norms describe 66 

phenotypic responses of a single genotype (y-axis, Fig 1A) to varying environmental inputs (x-67 

axis, Fig 1A). Incorporating a reaction norm framework provides a menu of quantitative metrics to 68 

define QS responses to environmental variation (e.g., slope, intercept, and variances).  With this 69 

reaction norm framework, it is important to emphasize that in our study the x-axis is not time, but 70 

instead captures a gradient of environmental conditions. Whether responses are graded or 71 

thresholded during the growth towards high density is a separate line of inquiry (29). Describing 72 
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the reaction-norms of QS cells and populations to contrasting environments is an important step 73 

towards understanding the capacities of QS systems to differentially respond to novel 74 

environments. 75 

 76 

Figure 1. Schematic of potential population and single cell responses to variation in cell density. A) 77 
Population response (y-axis) across discrete carrying capacity environments (N, x-axis), given a threshold 78 
(left) or graded response (right). In (B) and (C) we outline alternative cell-scale responses (intensity of green 79 
cells) that are consistent with discrete population scale behaviors (yellow arrows).  (B) threshold (ON/OFF) 80 
cellular responses can produce a threshold or graded responses on population scale. (C) graded individual 81 
responses can produce threshold or graded responses on a population scale.   82 

Whether the population scale reaction norm to environmental variation is threshold-like or graded 83 

(Fig 1A), a separate question is how collective population-level responses are constructed out of 84 

individual cellular contributions (Fig 1B,C). Studies of QS on a single-cell scale have revealed 85 

substantial heterogeneity in response to QS signals (9, 30–36), highlighting that cell-cell 86 

communication does not necessarily result in tight synchronization of individual cell activity (Fig 87 

1B,C). In some systems, heterogeneity can be quenched by the addition of extra signal (31, 33), 88 

implying a lack of receptor saturation. However, this is not a universal result (30), indicating that 89 

other molecular processes can drive cellular variation in response. Regardless of the molecular 90 

details, we currently lack a behavioral understanding of how individual cellular responses vary 91 

with changes in the environment.  92 

 93 

In the current study we address the canonical ‘density sensing’ function of QS, using the 94 

environmental generalist and opportunistic pathogen Pseudomonas aeruginosa, and an 95 
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unprecedented scale of environmental resolution (13 discrete limiting carbon levels conducted in 96 

triplicate, generating 39 density environments). Our first challenge is to map the population scale 97 

resolving power of QS to quantitatively discriminate graded differences in population density (Fig 98 

1A). Does P. aeruginosa respond in a purely threshold manner, collapsing quantitative 99 

differences in population density into a simple low / high qualitative output, or can QS allow P. 100 

aeruginosa to deliver a graded response to distinct environmental densities? Our second 101 

challenge is to understand how collective responses are partitioned across individual cells. Are 102 

changes in collective responses governed primarily by changes in the proportion of cells in an on 103 

state (Fig 1B) or changes in the individual cell intensity of response (Fig 1C), or both?  104 

 105 

 106 

Results 107 

Collective level of response to density is graded and linear. Our first challenge is to map out 108 

the population scale reaction norm of the collective QS-controlled protease (lasB) response to 109 

variation in population densities. To provide a detailed picture of the QS response reaction norm 110 

to varying density, we grew a QS reporter strain (PAO1 pMHLAS containing the PlasB::gfp(ASV) 111 

reporter construct for QS regulated protease expression (37)) under 13 conditions of carbon 112 

limitation in triplicate and measured average fluorescence output per cell as the populations 113 

reach carrying capacity (Fig 2). Dead cells with compromised membranes were identified with a 114 

propidium iodide stain and excluded from analysis. The range of cell densities generated from 115 

this method is from 1x108 cells/ml to 2x109 cells/ml. Figure 2 shows that QS response is linear 116 

with increasing culture density, providing intermediate levels of average per-capita response to 117 

intermediate densities. To confirm the lack of threshold behavior we assessed alternate statistical 118 

models including threshold functions, and found that a linear fit model supports the data better 119 

than a step-function fit (AIC linear: 89, AIC step-function: 190; relative likelihood that the linear 120 

model is the best fit compared to step-function > 109, see (38)), supporting a graded population 121 

response as outlined in Figure 1. This agrees with literature that QS induction at lower population 122 

densities is possible (6, 9, 19), but differs in that there is no observable population density at 123 

which populations ‘switch’, or reach quorum, into a responsive state. 124 
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 125 
Figure 2. Population response to increasing cell density is linear and graded. 13 distinct culture 126 
carrying capacities were generated by manipulating the concentration of casein as the limiting resource (Fig 127 
S1). Cells were grown to carrying capacity in triplicate and immediately assayed for QS response via 128 
fluorescence microscopy imaging. Response is determined by a fusion of the quorum sensing controlled 129 
lasB promoter and an unstable green fluorescent protein (PAO1 pMHLAS containing PlasB::gfp(ASV)). 130 
Individual cell pixel intensity is a measure of cellular quorum sensing response and average pixel intensity is 131 
calculated across all cells in the population as a proxy for total population expression. Microscopy averages 132 
are congruent with population scale plate reader results (Figure S2). A quorum sensing signal knockout 133 
(ΔlasIΔrhlI), yellow star, shows background response with no signal in the environment. Average population 134 
investment in QS increases as culture density increases with no observable density threshold (AIC linear: 135 
89, AIC step-function: 190).  136 
 137 

Individual response to density is bimodal at high densities. Figure 2 establishes that on a 138 

collective population scale, the response to environmental variation (in density) is smoothly 139 

graded. Next, we ask how this collective response is built from individual cell contributions. Is the 140 

graded increase due to more cells turning on at higher densities (Figure 1B), cells turning on to a 141 

greater extent (Figure 1C), or both? To address this question, we take the same data presented 142 
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in Figure 2 and now present the distribution of individual cellular responses rather than simply the 143 

mean response (Figure 3).  144 

 145 

 146 
Figure 3. Individual response is heterogenous and bimodal at higher densities. Ridgeline density plot 147 
(bandwidth = 0.435) of single-cell lasB reporter response data showing the distribution of individual cell QS 148 
expression across the population. For brevity and plotting purposes, carrying capacities were averaged 149 
across 3 replicates for each of the 13 carbon environments before plotting. A full plot of each independent 150 
replicate environment can be found in Figure S3. Each line summarizes 18,000 to 30,000 individual cell 151 
measurements, scaled to a unit height. Asterisks indicate significant bimodality (Hartingan’s Dip Test (39), 152 
Figure S4). The quorum sensing signal knockout (ΔlasIΔrhlI) is denoted with yellow boxes. A total of 153 
345,000 individual cell measurements were analyzed.  154 
 155 

As expected from prior studies in other QS systems (9, 30–36), plotting all individual responses 156 

within a population shows cell-to-cell variation in QS response within a single population despite 157 

isogenic and homogenous culture conditions (Figure 3). In addition, at higher densities we see 158 

significant bimodality (defined by Hartigan’s Dip Test, Figure S4), with the population segregating 159 

into an unresponsive, sub-quorate, OFF state and a responsive, quorate, ON state.  160 

 161 
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In light of this bimodality, we fit a two-component finite mixture model to the data (Figure 4A, see 162 

Figures S10-S13 and Table S2 for extended analysis), which allows us to define the average 163 

intensity of the ON state (Figure 4B) and the proportion of cells in the OFF or ON states (Figure 164 

4C). 165 

 166 
Figure 4. Proportion of cells responding and level of response varies with density. In light of the 167 
bimodal responses in Figure 3, we course-grain the single-cell lasB response data into discrete ON/OFF 168 
states. A) Method summary. We quantify distinct ON/OFF states by fitting a two-component finite mixture 169 
model at each measured optical density, where the OFF state is fixed to the OFF state of the highest density 170 
environment. The histogram shows the distribution of cellular expression levels at a single density treatment 171 
(0.76 OD600), the grey line is the fitted OFF state and the green dashed line is the fitted ON state. B) The 172 
mean intensity of the ON (green circle) and OFF (grey triangle) states is determined from the means of 173 
mixture model component fits (green and grey lines in panel A). The mean intensity of the ON state 174 
distribution increases as culture density increases, while the mean of the OFF state remains constant. C) 175 
The proportion of cells ON in the population is determined from the relative mass of cells in the model 176 
component fits. The proportion ON increases with culture density but does not reach 100%.  177 
 178 

Figure 4B illustrates a graded linear increase in the intensity of the ON state with increasing 179 

environmental density, and a density-invariant off state. Figure 4C illustrates that the proportion of 180 

cells that are ON plateaus at around 85% at densities with consistent support for bimodality 181 

(above 0.36 OD600). At lower densities, the intensity of the ON state (Figure 4B) declines to a 182 

point where the OFF and ON states are no longer significantly different and the dip test fails to 183 

reject uni-modality (Figure S4). In supplemental materials, we present alternate statistical 184 
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analyses of this data, and of other related datasets. Across other experiments, we find consistent 185 

support for the graded and bimodal response pattern on the single-cell scale across multiple 186 

assay time-points (Figure S5) and across two reporter strain constructs (Figure S6) and support 187 

for the graded and linear response pattern on the population scale across fluorescent and lux 188 

reporters (Figure S2, Figure S7). We find further support for the graded reaction norm on the 189 

population scale across two additional QS controlled genes (pqsA, rhlI; Figure S7).  190 

  191 

As quorum sensing is a signal mediated behavior, we sought to connect these behavioral results 192 

with the underlying signaling dynamics in the environment. QS in Pseudomonas aeruginosa is 193 

heavily studied in a high-density context, revealing a complex mechanism of multi-signal control 194 

(40–42). The P. aeruginosa QS system is dominated by the acyl-homoserone lactone (AHL) 195 

signaling systems LasI/R and RhlI/R (40, 43). Each of these signaling systems codes for a signal 196 

synthase (LasI, RhlI), which guide the production of a diffusible AHL signal molecule (3-oxo-C12 197 

HSL, C4-HSL) at an initially basal level. Binding of each signal to its cognate receptor (LasR, 198 

RhlR) results in an active transcriptional factor which can up-regulate cognate synthase activity 199 

(signal auto-induction) along with other genes in the QS regulon. For more details on the 200 

complexities of P. aeruginosa QS wiring, see (44–47). 201 

 202 

In light of this established mechanistic understanding of high-density behavior, we outline three 203 

alternate hypotheses for the reaction norms of multi-signal concentrations on density: (1) First, 204 

under a null model of no autoinduction, we predict a linear increase in signal concentration, 205 

reflecting a constant (baseline) per-capita signal production. (2) Second, under a threshold model 206 

for the onset of autoinduction we predict a piecewise linear reaction norm, with a steeper slope in 207 

the higher density environment (reflecting higher per-capita signal production following a 208 

threshold onset of auto-induction). (3) Third, under a graded onset model, we predict a smoothly 209 

accelerating reaction norm, with the slope at a given density reflecting the graded degree of onset 210 

of autoinduction.  211 

 212 

To test these hypotheses, we measured the environmental concentration of 3-oxo-C12 HSL and 213 

C4-HSL from previous experiments (at the time point of QS response assays, Figure 3) using E. 214 

coli biosensors (48) (Figure 5). To discriminate among the three explicit models, we fit multiple 215 

alternate models to the data and compared their goodness of fit using information criteria. (Figure 216 

5; Tables S3-S5 and Figures S14-S15). A linear fit, representing no positive signal auto-217 

regulation, is the worst of the models considered for both 3-oxo-C12 HSL and C4 HSL data. 218 

Further statistical tests provide additional evidence for a non-linear relationship (Table S5). In 219 

Figure 5, we show model fits for the best fitting continuously accelerating functions alongside a 220 

threshold model fit. Evaluating these two models via AICc values (corrected AIC to account for 221 
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smaller datasets (38)) we find that the threshold model is the best supported model for both the 3-222 

oxo-C12 HSL and C4 HSL data (Figure 5, inset). More specifically, we can assess the strength of 223 

support for the threshold model via the relative likelihood versus the next-best exponential model 224 

(38). For the C4 HSL data, we find the threshold model has 14-fold greater support, and for the 3-225 

oxo-C12 HSL data, the threshold model has 8-fold greater support (Table S5). This analysis 226 

indicates there is a critical intermediate density that triggers an abrupt shift in the extent of signal 227 

auto-regulation, separating a basal signal regime from a higher density auto-regulated regime.   228 

 229 

 230 
Figure 5. 3-oxo-C12 HSL and C4 HSL concentration increases in a threshold (piecewise linear) 231 
manner with increasing density. Signal environment was characterized using filtered culture supernatant 232 
(extracted at the same timepoints as for the gene expression data in Figure 3) and E. coli biosensors (48). 233 
Model fits are based on nonlinear least squares estimates. Model performance was assessed via AICc (see 234 
figure insets and Table S5). See Tables S3-S5 and Figures S14-S15 for statistical analysis details.  235 
 236 

Discussion  237 

Our results show that populations of P. aeruginosa can respond in a smoothly graded manner to 238 

variation in environmental density (Figure 2), and that populations exhibit significant bimodality at 239 

higher densities (Figure 3), and that this population scale graded response can be described by 240 

the number of responsive ‘ON’ cells and the intensity of the ‘ON’ state (Figure 4). Turning to the 241 

underlying signal mechanics, we further illustrate a threshold onset of signal auto-induction at 242 
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intermediate densities (Figure 5).  The ability to achieve a graded population scale response 243 

implies in principle that P. aeruginosa can tune collective responses (such as the secreted 244 

elastase virulence factor produced by our lasB reporter gene) to graded environmental changes, 245 

rather than simply course-graining into a simple ‘high / low’ dichotomy. A similar population scale 246 

graded response to continuous environmental variation is visible in the data from Allen et al., 247 

which looked at variation in the genotypic composition of mixed populations grown to the same 248 

total density (11). As the proportion of wildtype (PAO1 versus ΔlasR ‘cheats’) increased, the 249 

wildtype per-capita investment in cooperative LasB secretions also increased, providing a simple 250 

behavioral mechanism to protect cooperative investments from exploitation by cheats (11, 22).  251 

 252 

The existence of graded population scale responses across two continuously varying 253 

environmental inputs (density, genotypic composition) raises the question of why use a graded 254 

response? Is there an evolutionary rationale for a graded response, or is a graded increase 255 

simply the ‘best approximation’ of a threshold response, given a simple system working under 256 

genetic constraints? Existing evolutionary theory suggest that graded investment reaction norms 257 

can be adaptive, under a range of distinct scenarios (49, 50) (34, 35). In the specific context of 258 

quorum-sensing bacteria, evolutionary theory suggests that population scale responses to 259 

increasing density should depend critically on the shape of the cost and benefit functions of 260 

increasing cooperative investments. Specifically, a graded response is predicted to be the optimal 261 

strategy if the benefit function is decelerating and costs are linear with increasing investment (51).  262 

 263 

To further consider the functional context of the graded reaction norms, we turn to the single cell 264 

scale data, which reveals how the graded population response is built from the contributions of 265 

individual cells. In agreement with previous work in multiple quorum-sensing organisms (9, 30–266 

36, 52, 53), we find cell-scale heterogeneity. In addition, our results illustrate how cellular 267 

heterogeneity changes with the environment, demonstrating the onset of ON/OFF bimodality at 268 

intermediate densities, with both the proportion of cells ON and the intensity of the cellular ON 269 

states increasing with increases in culture carrying capacity (Figures 3 & 4).  270 

 271 

The presence of a bimodal QS response is in contrast with the common view of QS as a 272 

mechanism of cell synchronization yet can be viewed as a striking example of widely observed 273 

cellular heterogeneity under QS control. Indeed, bimodal responses are implicit in some of the 274 

previous single-cell QS literature (31, 32, 53), for example Darch et al. (2018) report distinct 275 

populations of QS-responsive and non-responsive cells within single experimental runs (53). The 276 

degree of heterogeneity in any cellular trait can be interpreted as the interplay of biochemical 277 

properties of molecules and the architecture of gene-regulatory networks (54). Given that 278 

regulatory networks are subject to mutation and selection, this implies that the degree of 279 
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heterogeneity is an evolvable trait (55). In the context of QS, positive feedback loops (signal auto-280 

regulation (56)) and the presence of cooperative transcription factor binding (57) provides 281 

recognized regulatory ingredients for bimodal expression (58). Recently, the presence of 282 

heterogeneous QS response at the single-cell scale has been ascribed to a potential bet-hedge 283 

against mis-directed QS induction (52), suggesting that our OFF cells are poised to more quickly 284 

resume growth in the event of a rapid return to a growth-friendly environment.  285 

 286 

We made a number of specific observational choices in order to conduct our experiment that 287 

could have shaped our results in ways that are not generalizable to other contexts. In the 288 

supplementary we detail a number of additional experiments (and alternate statistical analysis 289 

approaches) that collectively illustrate the robustness of our findings. In brief, we found that our 290 

single cell results are not sensitive to the time the population was sampled (Figure S5), the 291 

presence of a potentially leaky Plac::lasR on the pMHLAS construct (Figure S6), or the plasmid 292 

nature of the pMHLAS construct (Figure S6). Additionally, we recognize that lasB is only one 293 

gene out of hundreds that are controlled by QS (3), and is often co-regulated by other factors 294 

(59–61). We chose to initially focus on lasB as it is a traditionally studied QS-controlled trait (62–295 

64) that has clinical significance as a virulence factor (65, 66). To begin to address the generality 296 

of our results across genes in P. aeruginosa, we show that two other QS regulated genes with 297 

complex promoters, pqsA and rhlI, also support a graded population response (Figure S7). It 298 

remains to be seen whether the graded responses we report here are consistent across all QS 299 

controlled genes in P. aeruginosa, and across QS systems in other species,  300 

 301 

A recent transcriptomic analysis of clinical versus in vitro gene expression in P. aeruginosa called 302 

into question the clinical relevance of in vitro models of QS, reporting that QS activity (including 303 

lasB expression) was systematically higher in in vitro models (67). Our results provide a simple 304 

interpretation of this difference: in vitro models are conducted under higher experimental 305 

densities, resulting in higher levels of average QS gene expression (Figure 2). Consistent with 306 

this graded response interpretation, Cornforth et al. (2018) also reported higher levels of relative 307 

expression in in vitro biofilm models (close-packed cells, the highest local density achievable) 308 

compared to in vitro planktonic models.  309 

 310 

In summary, our results provide a finely resolved mapping of the QS reaction norm to 311 

environmental density in PAO1, on both the collective and single-cell scale. On the population 312 

scale we see a graded linear response across a range of cellular densities (1x108 cells/ml to 313 

2x109 cells/ml) and significant individual-scale bimodality at higher densities. We further resolve 314 

this linear population response (Figure 2) into a combination of the likelihood of being responsive 315 

and the intensity of response (Figure 4). The underlying signal dynamics support a threshold 316 
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onset of signal auto-induction at intermediate densities, leading to increased levels of QS signal 317 

production (Figure 5). In an infection context, our results indicate that there is no hard threshold 318 

separating sub-quorate ‘stealth’ mode and a quorate ‘attack’ mode (68). One implication is that 319 

attempts to control virulence and biofilm expression in medicine and industry via QS inhibition 320 

could have impacts across a wider spectrum of population densities. In this applied context, it is 321 

important to assess the generality of our results and ask, how do QS reaction-norms vary across 322 

strains and species of QS bacteria? How do they vary across environments? More broadly, our 323 

work undermines the threshold concept of a ‘quorum’, instead placing QS bacteria in the graded 324 

world of reaction norms.  325 

 326 

 327 

Materials and Methods 328 

Bacterial Strains and Growth Conditions. The two main bacterial strains used in this study are 329 

P. aeruginosa NPAO1 (Nottingham-PAO1) containing the PlasB::gfp(ASV) quorum sensing 330 

reporter pMHLAS (37) and a double signal synthase mutant incapable of producing QS signal 331 

molecules, P. aeruginosa NPAO1 ΔlasI/ΔrhlI containing the same PlasB::gfp(ASV) quorum 332 

sensing reporter pMHLAS. A complete table of strains used in the main text and supplemental 333 

figures can be found in Supplemental Table 1. Overnight cultures were grown in lysogeny broth 334 

(LB), supplemented with 50 ug/ml gentamicin to maintain the pMHLAS plasmid, with shaking at 335 

37 °C. Experiments were conducted in lightly buffered (50 mM MOPS) M9 minimal defined media 336 

composed of an autoclaved basal salts solution (Na2HPO4, 6.8 gL−1; KH2PO4, 3.0 gL−1; NaCl, 0.5 337 

gL−1), and filter-sterilized 1 mM MgSO4, 100 uM CaCl2, and 1X Hutner’s Trace Elements with 338 

casein (CAA) as the sole carbon source.  339 

 340 

Controlling Culture Carrying Capacity. We manipulated density by controlling the limiting 341 

resource in the media, carbon, allowing us to tune the carrying capacity of each treatment (Figure 342 

S1). To cover a variety of densities, we generated a CAA range between 0.05% and 0.25% via 343 

dilutions of a 0.5% CAA minimal media stock for a total of 13 different carrying capacities with 344 

three replicates each. This produced a range of densities environments from 1.18x108 cells/ml to 345 

2.02x109 cells/ml. Overnight cultures were grown in LB gentamicin 50 ug/ml and centrifuged at 346 

8,500 x g for 2 minutes. The cells were then washed twice with carbonless minimal media and 347 

then each carbon treatment was adjusted to OD600 = 0.05. Then, 200 uL of each sample was 348 

added to a 96-well microplate. Plates were incubated with continuous shaking at 37 °C in a 349 

Cytation/BioSpa plate reader and growth curves were generated by absorbance readings taken 350 

at 30-min intervals. 351 

  352 
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Measuring Population QS Response. To measure population response, we performed growth-353 

curve experiments as previously described using PAO1 PlasB::gfp(ASV), additionally taking 354 

fluorescence readings at 30-min intervals. Fluorescence, population level response, was 355 

recorded when populations reached the end of their exponential growth phase, before they 356 

entered stationary phase. Controls for background fluorescence of the reporter were done with 357 

the QS signal deficient mutant PAO1 ΔlasI/ΔrhlI PlasB::gfp(ASV). The population microplate data 358 

(Figure S2) and averaged microscope data (Figure 2) agreed, so the latter is provided in the 359 

primary text. 360 

 361 

Measuring Individual QS Response. To measure individual response, we performed growth-362 

curve experiments as previously described, but removed samples for microscopy once cells 363 

reached end exponential phase. Since we control carrying capacity with the amount of carbon, 364 

the exact time that cells reach the end of exponential growth differs across treatments by 2-3 365 

hours. To robustly sample cultures at this specific point, the slope of the two most recent time 366 

points on the growth curve was monitored and samples were taken as the slope approached 0. 367 

Replicate wells were kept growing to confirm that the treatment entered stationary phase right 368 

after the sampling time point.  We also determined that our results are generalizable even when 369 

sampling at a pre-determined hour across concentrations (Figure S5). Samples were stained with 370 

propidium iodide to differentiate between life and dead cells and a small aliquot (5 ul) was added 371 

to a 0.01% poly-l-lysine coated slide to immobilize cells and immediately imaged to avoid 372 

changes in expression between sample acquisition and imaging in the dark on a Nikon Eclipse TI 373 

inverted microscope at 20x magnification. Live cell fluorescence microscopy was used for this 374 

study as fluorophores can be sensitive to fixation/permeabilization. These techniques can result 375 

in a decrease in fluorescence and therefore decrease in the observable dynamic range.  Bright 376 

field, green fluorescence (20% Lumencor light engine power, 200ms exposure, and 64x gain- 377 

sufficient for imaging of low fluorescent cells without saturating pixel intensity), and red 378 

fluorescence (20% Lumencor light engine power, 800ms exposure, and 64x gain) channels were 379 

captured. Between 5,000 and 15,000 individual cells were captured for each sample. Aliquots 380 

were diluted immediately before imaging with carbonless minimal media when required to ensure 381 

an even distribution of cells. 382 

Single cell image analysis.  A custom macro in ImageJ was written to analyze the image, 383 

outlined in Figure S8. The macro uses ImageJ’s “analyze particles” command to identify single 384 

cells on the bright field image. This then generates a ROI (region of interest) for each individual 385 

cell and these ROIs were then overlaid onto the corresponding fluorescent image. The red 386 

fluorescence channel was used to identify dead cells with compromised membranes, which were 387 

excluded from further analysis. The green fluorescence channel reflected the QS reporter and 388 

pixel intensity was measured as a proxy for level of QS response. This tabulated live cell 389 
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expression data was then analyzed using Stata Statistical Software: Release 17 from StataCorp 390 

LLC. In order to improve the fit of the mixed models, the lowest pixel intensity measurement in the 391 

highest carbon PAO1 ΔlasI/ΔrhlI PlasB::gfp(ASV) treatment was subtracted from all pixel 392 

intensities so that expression started at 0. 393 

Statistical analysis summary. The analysis was done using Stata Statistical Software: Release 394 

17 from StataCorp LLC and the additional third party resources: (69–73). Each of the 39 395 

populations was fit to a finite mixture model of two Gamma distributions. The latent classes in the 396 

mixture model correspond to OFF and ON cells. Gamma distributions are preferred to Normal 397 

distributions as gene expression is strictly non-negative and necessarily right-skewed. The 398 

models provide maximum likelihood estimates of the proportion of cells in each latent class and 399 

the shape and scale parameters of the component Gamma distributions. Mean expression level 400 

for each distribution is the product of shape and scale parameters. Information criteria for 401 

aggregate mean expression level was also calculated using Stata.  402 

Quantifying Signal Concentration. AHL signal concentration was estimated using S17-403 

1 Escherichia coli containing either the p56536 or pSB1142 plasmids (74), which luminesce in 404 

response to short and long chain AHLs, respectively. Filtered culture supernatant was diluted 405 

1/100 in LB broth and mixed 1:1 with exponentially growing bioreporter strains at an OD600 of 0.1 406 

in LB broth. A calibration curve was generated by exposing the bioreporters to synthetic signal at 407 

various concentrations. Signal bioreporters were grown with diluted supernatant for 3�hours at 408 

37�°C taking reads of optical density and luminescence every 30�min. Using the peak 409 

luminesce, a calibration curve was then fitted to calculate signal concentrations in experimental 410 

samples. 411 
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