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Abstract 59 

Tumor heterogeneity encompasses both the malignant cells and their microenvironment. While 60 

heterogeneity between individual patients is well-known to affect the efficacy of anti-cancer 61 

drugs, most personalized treatment approaches do not account for intratumor heterogeneity. We 62 

addressed this issue by studying the heterogeneity of lymph node-derived B cell non-Hodgkin 63 

lymphoma (B-NHL) by single cell RNA-sequencing (scRNA-seq) and transcriptome-informed 64 

flow cytometry. We identified transcriptionally distinct malignant subclones and compared 65 

their drug response and genomic profiles. Malignant subclones of the same patient responded 66 

strikingly different to anti-cancer drugs ex vivo, which recapitulated subclone-specific drug 67 

sensitivity during in vivo treatment. Tumor infiltrating T cells represented the majority of non-68 

malignant cells, whose gene expression signatures were similar across all donors, whereas the 69 

frequencies of T cell subsets varied significantly between the donors. Our data provide new 70 

insights into the heterogeneity of B-NHL and highlight the relevance of intratumor 71 

heterogeneity for personalized cancer therapies.  72 
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Introduction 73 

The genomic and transcriptional landscape of many cancer entities has been catalogued over 74 

recent years, documenting the range of tumor heterogeneity between individual patients [1]. In 75 

addition, it has long been appreciated that tumors within each patient consist of diverse, but 76 

phylogenetically-related subclones [2]. Bulk sequencing studies of tumor cells have been 77 

conducted to infer the genetic spectrum of intratumor heterogeneity from variant allele 78 

frequencies of somatic mutations [3]. While important insights were gained from these studies, 79 

further characterization on the single cell level is needed to more accurately dissect the pathway 80 

and molecular properties associated with distinct subclones.  81 

Neoplastic cells alone do not manifest a malignant disease, but attract a battery of non-82 

malignant bystander cells, which support tumor cell growth and survival. The diversity and 83 

plasticity of the microenvironment constitutes another layer of heterogeneity, beyond the 84 

heterogeneity of the cancer cells themselves [4]. There is solid evidence that intratumor 85 

heterogeneity among malignant and non-malignant cells, and their interactions within the tumor 86 

microenvironment are critical to diverse aspects of tumor biology, response to treatment, and 87 

prognosis [5].  88 

While bulk genomic tissue profiling has only a limited ability to reconstruct the complex 89 

cellular composition of tumors, single cell DNA-sequencing [6, 7] and RNA-sequencing 90 

(scRNA-seq) methods [8-11] have emerged as powerful tools to study intratumor heterogeneity 91 

and reconstruct the full picture of malignant and non-malignant cells. These technologies 92 

further enable researchers to identify rare cell types such as cancer stem cells [12] and 93 

circulating tumor cells [13, 14], or to follow clonal dynamics during cancer treatment [15]. 94 

Most of these single cell studies have been used to describe distinct cell subpopulations on the 95 

transcriptional level, but their functional properties, such as drug response profiles, remain 96 

largely unexplored. 97 

To address this, we used B cell non-Hodgkin lymphoma (B-NHL) as a model disease entity to 98 

dissect intratumor heterogeneity on the transcriptional, genetic, and functional (drug response) 99 

level. In parallel, we investigated the cellular heterogeneity of the B-NHL lymph node 100 

microenvironment. B-NHL are a heterogenous group of hematologic malignancies that most 101 

frequently grow in the lymph node compartment. Almost half of all B-NHL are classified as 102 

diffuse large B cell lymphoma (DLBCL) or follicular lymphoma (FL) [16]. Transformation of 103 

indolent FL into aggressive DLBCL is observed in approximately 10% of all FL cases [17]. 104 

Despite effective treatment options, 20-40% of B-NHL patients relapse multiple times and 105 

present with chemotherapy refractory disease [18, 19]. The response to single agent targeted 106 
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therapy in these patient cohorts is surprisingly low [20, 21]. Intratumor heterogeneity might be 107 

a key factor contributing to therapeutic failure and low success rate of these single agent 108 

targeted therapies [3]. Understanding subclonal drug response patterns would therefore be an 109 

important asset for designing more effective personalized lymphoma therapies. 110 

To dissect the complex cellular composition of the malignant lymph node niche, we profiled 111 

transcriptomes of malignant and non-malignant cells derived from 12 different reactive or B-112 

NHL lymph node biopsies. We further studied the variation of the cellular composition of the 113 

malignant lymph node niche by flow cytometry in a larger cohort of 41 patients. Among 114 

malignant cells, we identified transcriptionally distinct malignant subclones and characterized 115 

these subclones further by ex-vivo drug perturbation and genome sequencing. This revealed 116 

new insights into intratumor heterogeneity of B-NHL and demonstrated substantially different 117 

drug responses between malignant subclones in the same patient.  118 

119 
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Results 120 

Study outline  121 

We designed an experimental pipeline to dissect the heterogeneity of non-malignant and 122 

malignant lymph node-derived lymphocytes (Figure 1A). This involved first preparing single 123 

cell suspensions of B-NHL lymph node biopsies and performing scRNA-seq. These single cell 124 

transcriptomic data were then used to identify transcriptionally-distinct subclones by flow 125 

cytometry using distinguishing subclone-specific surface markers, and finally the subclones 126 

were functionally interrogated in drug perturbation assays with a comprehensive panel of 58 127 

drugs in five concentrations, and further characterized by whole genome (WGS) and/or exome 128 

sequencing (WES).  129 

 130 

Dissecting the cellular composition of nodal B cell lymphomas  131 

We assayed single cell suspensions of a total of 12 samples: four germinal center-derived 132 

diffuse large B cell lymphoma (DLBCL) samples, of which two were transformed from FL 133 

(DLBCL1, DLBCL2, tFL1, tFL2), one non-germinal center-derived DLBCL (DLBCL3), four 134 

follicular lymphoma samples (FL1, FL2, FL3, FL4), and three reactive non-malignant lymph 135 

node sample (rLN1, rLN2, rLN3) by flow cytometry and droplet-based scRNA-seq 136 

(Supplementary Table 1). After removal of low-quality cells, we analyzed scRNA-seq profiles 137 

of 13,259 malignant and 9,296 non-malignant cells with an average sequencing depth of 1,409 138 

genes per cell.  139 

First, we verified that the lymph node-derived single cell suspensions were representative for 140 

the cellular composition (B and T cells) of the lymphoma and its microenvironment in vivo. 141 

We used sections of paraffin-embedded samples of the same lymph nodes, which were formalin 142 

fixed directly after surgical excision and therefore represent the in vivo cellular composition, 143 

and quantified B and T cell frequencies by immunohistochemistry (IHC, Supplementary Figure 144 

1A). In parallel, we calculated B and T cell frequencies by flow cytometry and scRNA-seq in 145 

single cell suspensions (Supplementary Figure 1A, B). The frequencies of B and T cells derived 146 

from scRNA-seq correlated very well with the frequencies determined by flow cytometry 147 

(r = 0.97, n = 12, Figure 1B) and IHC (r = 0.92, n = 7, Figure 1C).  148 

Next, we aimed to distinguish malignant from non-malignant B cells and delineate these 149 

populations in our single cell experiments. We took advantage of the fact that malignant B cell 150 

populations express only one type of immunoglobulin light chain (LC), either κ or λ [22]. We 151 

calculated the LC-ratio (κ/λ) based on RNA expression of the genes IGKC (coding for the 152 

constant part of the κ LC) and IGLC2 (λ LC) for each single B cell and color-coded this ratio 153 
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in a t-distributed stochastic neighbor embedding (t-SNE) plot (Figure 1D, E). In the malignant 154 

lymph nodes, we could either identify both a non-malignant and malignant or only malignant 155 

B cell clusters (Supplementary Figure 2). In contrast, reactive lymph node samples contained 156 

only non-malignant B cells (see method section for details). 157 

We further evaluated the frequencies of these subsets in a larger cohort of 41 lymph node 158 

samples by flow cytometry, including those samples used for scRNA-seq. Both approaches 159 

showed very similar frequencies of these cell subsets (r = 0.97, n = 12, 160 

Supplementary Figure 3A, B). We found that the proportion of malignant cells was highly 161 

variable across samples. It ranged from 14.6 to 97.2 % (median 79.3 %, n = 9) in DLBCL, 162 

23.7 to 85.4 % (median 79.9 %, n = 12) in FL, 48.4 to 95.5 % (median 88.0 %, n = 4) in mantle 163 

cell lymphoma, and 65.4 to 91.4 % (median 83.1 %, n = 7) in chronic lymphocytic leukemia 164 

(Supplementary Figure 3C). This substantial cellular heterogeneity complicates bulk 165 

sequencing approaches of unsorted lymph node samples, and highlights the value of single cell 166 

sequencing to simultaneously study the full spectrum of malignant and non-malignant lymph 167 

node cells. 168 

 169 

Characterization of lymph node-derived T cell populations 170 

T cells are key players of the host-specific tumor immunosurveillance [23]. B-NHL exhibit 171 

genetic immune escape strategies that can be targeted using current therapeutic strategies [24], 172 

including checkpoint inhibitors [25] and bispecific antibodies [26]. Notably, lymphoma cells 173 

can also orchestrate their tumor microenvironment so that certain T cell subsets support the 174 

growth and proliferation of the tumor cells [27]. Even though these subsets have been 175 

extensively studied by immunophenotyping, their transcriptional heterogeneity in B-NHL 176 

lymph nodes, in particular at the single cell level, still remains to be elucidated.  177 

We combined single cell RNA expression profiles of T cells from all 12 donors and jointly 178 

visualized them by Uniform Manifold Approximation and Projection (UMAP), a dimension 179 

reduction algorithm alternative to t-SNE [28]. Many well-established surface markers, which 180 

are used to distinguish T cell subsets in flow cytometry studies, are insufficiently expressed on 181 

the scRNA-seq level. We therefore chose unsupervised clustering to partition T cells into 182 

transcriptionally distinct subsets, which were then annotated by differentially expressed marker 183 

genes. All T cells from either reactive or malignant lymph nodes distributed to only four major 184 

T cell subpopulations (Figure 2 A, B). Note, that clusters were not driven by patients or disease 185 

entity, suggesting only limited transcriptional heterogeneity across all donors. Apart from 186 

conventional T helper cells (TH; CD4, IL7R, PLAC8, KLF2) and regulatory T cells (TREG; CD4, 187 
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IL2RA, FOXP3, ICOS), we identified a third T helper cell population, which was characterized 188 

by overexpression of PDCD1 (PD1), ICOS, CXCR5, TOX, TOX2 and CD200 (Figure 2C, 189 

Supplementary Table 2), suggesting a T follicular helper cell (TFH) phenotype [29-33]. In 190 

contrast to the diversity of T helper cells, we observed only one major cluster of cytotoxic T 191 

cells (TTOX, GZMK, CCL4/5, GZMA, NKG7, CD8A). However, the frequencies of the four 192 

identified T cell subsets were highly variable between different B-NHL donors (Figure 2D).  193 

To study this variation in a larger cohort, we quantified the abovementioned T cell populations 194 

in 39 lymph node samples of DLBCL, FL, mantle cell lymphoma and chronic lymphocytic 195 

leukemia by flow cytometry using the most distinctive markers (CD3, CD4, CD8, CD25, 196 

FoxP3, ICOS, PD1), as seen in Figure 2C. The frequencies of all T cell subsets derived from 197 

scRNA-seq correlated well with the frequencies determined by flow cytometry (r = 0.69, 198 

n = 10, Figure 2E). We found that TFH cells were significantly increased in FL (two-sided 199 

Wilcoxon test: p = 0.006, Figure 2F), and TREG cell frequencies were significantly increased in 200 

malignant lymph nodes, compared to the reactive ones (two-sided Wilcoxon test: p values as 201 

indicated, Figure 2F).  202 

Taken together, we demonstrated that T cells derived from malignant B-NHL lymph nodes are 203 

transcriptionally similar to those derived from non-malignant reactive lymph nodes. In contrast, 204 

the proportion of individual T cell subsets differed significantly between lymphoma entities and 205 

individual patients. This finding indicates that B-NHL shape their microenvironment by 206 

influencing the recruitment of certain T cell subpopulations, but have less effect on their 207 

transcriptional programs. Therefore, studying the frequencies of lymphoma infiltrating T cell 208 

subsets and their effect on the outcome after immunotherapies might be highly relevant for the 209 

development of biomarkers.  210 

 211 

Identification of gene expression signatures driving B cell heterogeneity by scRNA-seq 212 

Next, we examined the heterogeneity of the malignant and non-malignant B cells. To gain a 213 

global overview of the gene expression pattern across all malignant and non-malignant B cells 214 

from the 12 different donors, we combined their single cell RNA expression profiles, clustered 215 

them jointly and visualized them by UMAP (Figure 3A, B).  216 

Clustering partitioned the non-malignant B cells into two distinct subpopulations (C0-C1, 217 

Figure 3A). Among multiple differentially expressed genes between these two subsets 218 

(Supplementary Table 3), we found IGHM and CD72 to be overexpressed in cluster C0, which 219 

characterizes naïve B cells [34], and CD27 and IGHG1 to be overexpressed in cluster C1, which 220 

characterizes memory B cells [35].  221 
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Of the eight transcriptionally distinct clusters formed by the malignant B cells (C2-C9, Figure 222 

3A), six exclusively contained cells of only one donor (Figure 3A, B). This suggests a higher 223 

degree of inter-patient heterogeneity for malignant than for non-malignant B cells. We 224 

performed a gene set enrichment analysis (GSEA) on the mean expression differences between 225 

each malignant B cell cluster and all non-malignant cells, which revealed multiple cluster-226 

specific gene sets (Figure 3C). Germinal center (GC)-associated gene expression signatures 227 

were significantly enriched in all clusters except for cluster 6, which exclusively contained 228 

malignant B cells of DLBCL3. This finding supports the classification of all B-NHL cells as 229 

either GCB type DLBCL or FL, except for the remaining DLBCL3 sample, which was 230 

classified as a non-GCB type DLBCL based on the Hans-classifier (Supplementary 231 

Table 1) [36]. Individual clusters were characterized by oncogenic transcriptional programs, 232 

which indicated activation of oncogenic MYC or STK33 signaling (Figure 3D). 233 

Inter-patient heterogeneity of B cell lymphomas also comprises their proliferative capacity, 234 

which can vary from very low in FL to very high in DLBCL. We determined the proportion of 235 

B cells in S, G2 or M phase based on their single cell RNA profile (Supplementary Figure 4A) 236 

and observed a high correlation with flow cytometry- and IHC-based staining of Ki67 (R = 0.83 237 

scRNA-seq to flow cytometry, R = 0.92, scRNA-seq to IHC, Supplementary Figure 4B).   238 

In summary, these results indicate that inter-patient heterogeneity of malignant B cells, 239 

including their diverse proliferative activity, can be captured by the scRNA-Seq and can be 240 

linked to lymphoma-specific transcription signatures. Non-malignant B cells, however, had 241 

similar transcriptional profiles across different donors. 242 

 243 

Decoding the crosstalk between T cells and malignant B cells in the lymph node 244 

microenvironment 245 

Above, we concluded that B cell lymphomas shape their microenvironment by modulating the 246 

frequency of different subsets of lymphoma infiltrating T cells. We now aimed to understand 247 

through which potential ligand-receptor interactions malignant B cells could benefit from their 248 

specific T cell microenvironment. For this purpose, we adopted a computational approach 249 

described by Vento-Tormo et al. [37] and analyzed 760 known ligand-receptor combinations 250 

(Supplementary Table 4) to identify the most significant interactions between malignant B cells 251 

and lymphoma infiltrating T cells within the lymph node microenvironment (Figure 4A).  252 

This analysis suggested that malignant B cells could receive costimulatory and coinhibitory 253 

signals by all four major T cell subsets, via CD80/CD86-CD28 and CD80/CD86-CTLA, while 254 

interactions via BCMA-BAFF, BAFF-R-BAFF and CD40-CD40LG could predominantly be 255 
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mediated by TH or TREG cells. Significant interaction scores of IL4-IL4R and IL4-IL13RA1 256 

were exclusively observed between TFH and malignant B cells, providing further evidence that 257 

TFH cells represent the most important source of IL4 production in B cell lymphoma [38]. This 258 

observation might be of clinical relevance because the IL4/IL4R interaction is discussed as 259 

potential resistance mechanism against Bruton’s tyrosine kinase (BTK) inhibitors [39, 40]. In 260 

line with the current state of knowledge [41-43], we also observed strong interaction scores for 261 

TFH via IL21-IL21R with malignant B cells and via IL2-IL2R with other T cell subsets. This 262 

analysis supports the classification of TFH cell as one of the four main T cell subsets within the 263 

lymph node microenvironment and reveals that each subset may provide a distinct panel of 264 

stimuli to interact with malignant B cells.  265 

 266 

Dissecting transcriptional intratumor heterogeneity using multicolor flow cytometry 267 

Intratumor heterogeneity of nodal B cell lymphoma is a well-known phenomenon, however, 268 

most available studies infer intratumor heterogeneity from variant allele frequencies of genetic 269 

alterations corrected for purity, ploidy and multiplicity of local copy number [44, 45].  270 

Here, we aimed to investigate the genomic, transcriptomic and functional (drug response) layers 271 

of intratumor heterogeneity from single cells. Unsupervised clustering of scRNA-seq profiles 272 

of malignant and non-malignant B cells revealed that all malignant samples were composed of 273 

at least two or more transcriptionally distinct subclusters (Supplementary Figure 5). We aimed 274 

to validate scRNA-based clusters at the cellular level to understand if this clustering represents 275 

biologically and clinically relevant differences. Therefore, we selected three samples (FL4, 276 

tFL1, DLBCL1) based on the availability of material for follow-up studies. We inferred 277 

differentially expressed surface markers from single cell expression profiles and first validated 278 

the distinction of scRNA-based clusters by flow cytometry. In a second step, we cultured lymph 279 

node derived lymphocytes with 58 different drugs in 5 concentrations (Supplementary Table 5) 280 

and stained them with specific antibody combinations to assess their drug response profiles by 281 

flow cytometry. In a third step, we sorted subpopulation and performed genome sequencing for 282 

each subclone (tFL1, DLBCL1).  283 

 284 

Verifying five transcriptionally distinct clusters in follicular lymphoma sample 285 

The FL4 sample was collected at initial diagnosis. Based on single cell gene expression 286 

profiling, we identified five different B cell subpopulations (Supplementary Figure 6A). We 287 

aimed to validate all five clusters (C1 to C5) at the cellular level by flow cytometry and hence, 288 

we stained the differentially expressed surface markers CD44, CD24, CD22, CD27, kappa and 289 
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lambda light chain (encoded by IGKC and IGLC2, Supplementary Figure 6B). Using the ratio 290 

of IGKC and IGLC2 (see Methods for details), we found benign B cells in C1, lambda-restricted 291 

malignant B cells in C2, and malignant B cells with only marginal expression of IGKC and 292 

IGLC2 in C3 to C5 (Supplementary Figure 6C). The pattern of light chain expression could be 293 

perfectly comprehended using flow cytometry (Supplementary Figure 6D), enabling us to 294 

differentiate C1 versus C2 versus C3, C4 and C5. Cluster C3 could then be recognized by a 295 

high expression of CD44 (Supplementary Figure 6D, 6E). To further distinguish C4 and C5 296 

among the CD44Low cells, we combined CD22, CD27 and CD24 and detected a subpopulation 297 

with CD22High, CD27High and CD24Low, which corresponded to the expression pattern of cluster 298 

C5 (Supplementary Figure 6F). This approach allowed us to proof all five scRNA-based 299 

clusters by flow cytometry with comparable frequencies.  300 

To assess subclone-specific drug response, we stained for kappa and lambda light chains and 301 

focused on the two major populations (C2 ≙ lambda+, C3-C5 ≙ kappa/lambda-). We did not 302 

observe differential responses for the majority of targeted drugs, but we found that only the 303 

kappa/lambda- cluster was sensitive to chemotherapeutics (Supplementary Figure 6G). 304 

Interestingly, this patient received doxorubicin-based immunochemotherapy as first line 305 

treatment after sample collection and achieved only a partial remission.  306 

 307 

The indolent and aggressive component of transformed follicular lymphoma exhibit a 308 

distinct transcriptional, genomic and drug response profile 309 

For the tFL1 sample, we detected three transcriptionally distinct clusters of B cells based on 310 

single cell RNA expression profiling (Figure 5A, B). Two clusters exclusively contained 311 

malignant B cells, and one cluster contained non-malignant B cells. We assessed the 312 

proliferative activity of both malignant populations based on their gene expression profiles, and 313 

observed that only one malignant cluster contained cells in S phase (Supplementary Figure 7A), 314 

with no cells in G2 or M phase (Supplementary Figure 7B). This suggests that this cluster 315 

represents a proliferating, thus aggressive component of the transformed FL. We performed a 316 

GSEA on the mean expression differences between the two malignant clusters, which revealed 317 

that gene expression signatures associated with MYC, MTORC1, and the G2M transition [46] 318 

were significantly enriched in the presumptively aggressive malignant B cell subclone 319 

(Supplementary Figure 7D-F).  320 

Among the genes differentially expressed between both subclones, we found FCGR2B (Figure 321 

5A), which encodes a surface receptor protein (CD32B), to be exclusively expressed in the 322 

presumptively indolent subclone. Thus, we confirmed the existence of three B cell populations 323 
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by flow cytometry (Figure 5C, see Supplementary Figure 8A for complete gating strategy). 324 

CD10 was strongly positive in both malignant B cell populations (CD32High, CD32Low), but not 325 

in non-malignant B cells. 326 

As described above, we measured the ex vivo drug responses separately for each subclone 327 

(Figure 5D, E) and observed very different drug response profiles for the two malignant 328 

subclones. The BTK inhibitors, ibrutinib, acalabrutinib, and tirabrutinib, and the 329 

immunomodulatory imide drugs (pomalidomide, lenalidomide), were exclusively active in the 330 

CD32Low subclone, whereas HDAC inhibitors (panobinostat, romidepsin, vorinostat) were 331 

more active in the CD32High subclone.  332 

Based on CD32 and CD10 expression, we sorted the three B cell subclones by flow cytometry 333 

(Supplementary Figure 8A) and performed WES of peripheral blood-derived normal control 334 

DNA, whole tumor DNA, DNA of both malignant subclones, and DNA of the non-malignant 335 

B cell population. Copy number profiles of both malignant subclones were very different, 336 

including exclusive aberrations of chromosomes 3, 4, 6, 10, 12, 15, 18 and X (Supplementary 337 

Figure 7F). Only the CD32Low subclone harbored a trisomy 12 (Figure 5F), which was 338 

confirmed by scRNA-seq data (Figure 5G). Trisomy 12 has been associated with a better 339 

response to B cell receptor (BCR) signaling inhibitors [47], which was consistent with our 340 

observation that this subclone was more responsive to these drugs (Figure 5D, E). We also 341 

detected 157 somatic single nucleotide variants (SNV) in exonic regions, of which 25 (15.9 %) 342 

or 24 (15. 2%) were exclusively detected in the CD32High or CD32Low subclone, respectively 343 

(Figure 5H, I, Supplementary Table 6). However, the majority of somatic SNVs were equally 344 

represented in both subclones, indicating a phylogenetic relationship. We compared the allele 345 

count of all exonic SNVs between all three B cell populations and did not detect somatic SNV 346 

in healthy B cells (Figure 5J), which supports the validity of our sorting approach.  347 

Taken together, scRNA-seq allowed us to identify different subclones within the same lymph 348 

node, which were genetically and functionally distinct in clinically-relevant aspects.  349 

 350 

A subclone-specific copy number variation of MYC drives a distinct gene expression and 351 

drug response program  352 

The DLBCL1 sample was collected from a patient with a chemotherapy refractory disease 353 

during progression, but before retreatment. Using scRNA-seq, we identified two distinct 354 

clusters of malignant B cells, which exhibited a high number of differentially expressed genes 355 

associated with diverse cellular programs (Figure 6A, B), such as BCR signaling (PRKCB, 356 

NFKB1I), cytokine signaling (LGALS9, IFITM1), MAPK signaling (RGS13, FBLN5) and 357 
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antigen processing (PTPN22, SELL, CD48). Among the differentially expressed genes, we 358 

found CD48 and SELL (Supplementary Figure 9A, B), which encode for the surface markers 359 

CD48 and CD62L respectively. Staining for CD48 and CD62L by flow cytometry validated the 360 

existence of the two distinct subclones (Figure 6C). The proportions of both clusters 361 

(CD48HighCD62L+, CD48LowCD62L-) calculated based on flow cytometry and scRNA-seq were 362 

comparable, indicating good concordance between RNA and protein expression. We measured 363 

again the ex vivo drug responses for each subclone (Figure 6D, E) and observed a strikingly 364 

different drug response profile between the two subclones: B cell receptor (BCR) signaling 365 

inhibitors (acalabrutinib, tirabrutinib, ibutinib, duvelisib, idelalisib, entospletinib) and CDK 366 

inhibitors were exclusively effective in the CD48LowCD62L- subclone, whereas Bromodomain 367 

and Extra-Terminal motif (BET) inhibitors (I-BET-762, OTX015), nucleoside analogues 368 

(cytarabine, fludarabine, cladribine) and vincristine were exclusively efficacious in the 369 

CD48HighCD62L+ subclone. 370 

We sorted viable tumor cells based on surface markers (CD48, CD62L, Supplementary Figure 371 

8B) and performed WGS on each subclone separately, as well as on the whole tumor sample. 372 

In total, we detected 240 non-synonymous SNV located in exonic regions (Supplementary 373 

Table 7), however, only 1 (0.4 %) or 5 (2.1 %) SNV were exclusively detected in the 374 

CD48LowCD62L- or the CD48HighCD62L+ cluster, respectively (Figure 6F). We further 375 

compared CNV profiles of the two subclones and detected a number of differences: the 376 

CD48HighCD62L+ cluster carried an additional copy of MYC (8q24, Figure 6G), which was 377 

reflected by increased MYC expression levels (Supplementary Figure 9C). The q arm of 378 

chromosome 14 harbored two copy number gains and one copy number loss in the 379 

CD48HighCD62L+ cluster (Figure 6G). Moreover, chromosome X exhibited a copy number gain 380 

of the p arm in the CD48HighCD62L+ cluster, and a copy number loss of the q arm in the 381 

CD48LowCD62L- cluster (Figure 6G). 382 

Since pathologic activation of MYC renders cells sensitive to BET inhibitors [48, 49], we 383 

performed intracellular flow cytometry-based staining of MYC at baseline and after 24 hours 384 

incubation with and without the two BET inhibitors, I-BET-762 or OTX015. We confirmed the 385 

increased MYC expression level of the CD48HighCD62L+ subclone at baseline (Figure 6H, 386 

Supplementary Figure 9D), and, as expected, found that MYC was downregulated upon 387 

incubation with I-BET-762 and OTX015, but not upon incubation with the BTK inhibitor 388 

ibrutinib (Figure 6H, Supplementary Figure 9E-G).  389 

 390 
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In vivo retreatment confirms ex vivo prediction of subpopulation-specific drug response 391 

To exemplify the translational relevance of subclone-specific drug responses, we performed 392 

WES of DLBCL1 during the second relapse after retreatment with high-dose cytarabine. Based 393 

on ex vivo drug perturbation we had predicted that the CD48HighCD62L+ but not the 394 

CD48LowCD62L- subpopulation would respond to cytarabine (Figure 6D). We compared 395 

several synonymous SNV exclusive to the CD48HighCD62L+ subpopulation before retreatment 396 

and during second relapse, and observed that the cytarabine-sensitive subpopulation was 397 

successfully eradicated (Figure 6I). Due to the lack of sufficiently exclusive SNV in the 398 

resistant subclone, we took advantage of the loss of heterozygosity (LOH) on chromosome Xq 399 

(Figure 6G) to determine the aberrant fraction of cells harboring a loss of Xq before and after 400 

retreatment. We found that the fraction of chemotherapy-resistant cells, harboring the loss of 401 

Xq, increased from 72 % to 93 % (see methods section for details). 402 

In summary, we dissected the intratumor heterogeneity of the DLBCL1 sample on the 403 

transcriptional, genomic, and drug response level. This clinically relevant example highlights 404 

the huge translational relevance of tumor subpopulations and their specific drug response 405 

profile for personalized cancer treatment.   406 
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Discussion 407 

Intratumor heterogeneity poses a significant challenge for the clinical management of cancer 408 

patients. Advances of single cell technologies facilitated the profiling of intratumor 409 

heterogeneity at an unprecedented resolution [50]. Most of these studies comprehensively 410 

describe intratumor heterogeneity on the transcriptional level, but do not explore its functional 411 

consequences such as response or resistance to drugs. In this study, we address this limitation 412 

and identify transcriptionally distinct malignant subclones in B-NHL lymph node biopsies. We 413 

study differential drug response patterns of these subclones and genetic events which likely 414 

drove these differences.  415 

Our analysis revealed the coexistence of up to four transcriptionally distinct subpopulations of 416 

malignant cells within individual B-NHL lymph node samples. This result recapitulates similar 417 

observations in follicular lymphoma [45], multiple myeloma [51] and other cancer entities [8, 418 

12, 52]. We and others attributed this heterogeneity to differentially enriched gene sets, which 419 

indicate, for instance, activity of MYC, proliferation, or germinal center experience. However, 420 

we went further and established a straightforward strategy to prove the coexistence of up to four 421 

different tumor subpopulations at the cellular level. We subsequently performed perturbation 422 

assays with a comprehensive panel of clinically relevant drugs and observed that tumor 423 

subclones within the same lymph node responded strikingly different both to targeted 424 

compounds, such as ibrutinib, but also chemotherapeutics. The study by de Boer and colleagues 425 

supports our observation by demonstrating that acute myeloid leukemia subclones, which were 426 

identified on the basis of 50 leukemia-enriched plasma membrane proteins, had distinct 427 

functional properties including a differential sensitivity to FLT3-inhibition driven by a 428 

subclonal FLT3-ITD mutation [53]. Most preclinical in vitro and in vivo drug screens do not 429 

address such clonal heterogeneity, which may explain the failure of numerous drug candidates 430 

in the clinic [47]. For a single patient, we even demonstrated that the ex vivo drug response 431 

profiling correctly predicted the treatment sensitivity of tumor subclones in vivo. The 432 

prospective identification of rational combinations of cancer drugs that effectively target co-433 

existing tumor subclones separately could avoid the outgrowth of resistant tumor clones under 434 

therapeutic pressure of a single drug, and would thereby improve efficacy of cancer treatments. 435 

Our study addresses this limitation of many ex vivo drug perturbation studies, and, due to its 436 

unbiased approach to prospectively dissect the malignant substructure, it is also generalizable 437 

to other cancer entities. However, due to the limitation of lymph node derived primary cells, 438 

we have to acknowledge that we could not apply our approach to all samples. Further studies 439 
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are necessary to expand this approach and to address also spatial heterogeneity of malignant 440 

tumors.  441 

Our approach enabled us to directly identify genetic factors that underlie the transcriptional and 442 

drug response differences between subclones. This distinguishes our work from a previous 443 

scRNA-seq study in FL, which indirectly compared allele frequencies of bulk WES with the 444 

size of transcriptionally distinct subclones [45]. The authors found a correlation between 445 

genomic alterations and subclonal fractions and concluded that somatic mutations are 446 

associated with transcriptional differences. These findings are in contrast to another study, 447 

which correlated subclusters derived from targeted single cell expression profiling of 91 genes 448 

with subclusters derived from single cell immunoglobulin heavy-chain (IGH) sequencing. In 449 

this study, the authors concluded that distinct gene expression clusters were not associated with 450 

subclones derived from IGH hypermutations [54]. While these studies provide only indirect 451 

evidence, we physically sorted tumor subclones and normal B cells, and performed WGS or 452 

WES separately for transcriptionally distinct lymphoma subpopulations. With regard to somatic 453 

mutations, we observed two different scenarios: in the DLBCL1 sample we identified almost 454 

no somatic SNVs to be exclusive for one or the other subclone, whereas in the tFL1 sample we 455 

found up to 15% exclusive somatic SNVs in each subclone. However, both examples represent 456 

scenarios where subclone specific drug profiles could not have been predicted by means of gene 457 

mutation sequencing. We further compared CNV profiles of the same tumor subclones, and 458 

found that all subclones harbored significantly different CNV profiles, suggesting that copy 459 

number alterations represent an important layer of genetic events which can drive differential 460 

gene expression programs and drug response profiles. Although our results support the general 461 

notion that genetic events drive subclone specific differences in drug response, they also 462 

highlight the difficulty to predict drug responses based on only genome sequencing in clinical 463 

practice. It might therefore be beneficial to obtain both genetic- and drug response profiles for 464 

personalized treatment decisions.  465 

Exploring the heterogeneity of the immune microenvironment in B-NHL has the potential to 466 

better reveal how lymphomas shape their microenvironment and how lymphoma patients could 467 

be better stratified for the treatment with immunotherapies. T cells represented the largest non-468 

malignant population in B NHL lymph node biopsies. We identified four major, 469 

transcriptionally distinct T cell subpopulations, which were annotated as cytotoxic T cells, 470 

regulatory T helper cells, conventional T helper cells and T follicular helper cells [29-33]. We 471 

measured the frequency of these T cell subsets in an extended cohort of malignant lymph node 472 

biopsies and found T follicular helper cells to be enriched in FL, which is in line with previous 473 
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flow cytometry-based studies [33, 55]. These T cell subsets displayed only limited 474 

transcriptional heterogeneity with less variability between lymph nodes compared to malignant 475 

cells. However, the frequencies of these T cell subsets varied significantly across donors, which 476 

suggests that B-NHL shape their microenvironment by regulating the recruitment of different 477 

T cell subsets. This observation might be of clinical relevance, because cold tumors with very 478 

few infiltrating T cells have been reported to respond less well to immunotherapies [56].  479 

Despite the rather small number of analyzed B-NHL patients, our study is of high clinical 480 

relevance. We demonstrated that the prospective identification of pre-existing transcriptionally 481 

distinct malignant subclones might be of diagnostic value to detect difficult to treat tumor 482 

subclones. In addition, our research establishes scRNA-seq as a new key technology for precise 483 

molecular profiling of relapsed and refractory nodal B cell lymphomas, and facilitates the 484 

design of new and molecularly-informed diagnosis and treatment strategies.   485 
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Online Methods 486 

Patients samples and lymph node procession 487 

Our study was approved by the Ethics Committee of the University of Heidelberg. Informed 488 

consent was obtained in advance. Immediately after the excision, the lymph node was cut in 489 

small pieces and put into Roswell Park Memorial Institute (Gibco) medium supplemented with 490 

10 % fetal bovine serum (FBS, Gibco), penicillin and streptomycin (Gibco) at a final 491 

concentration of 100 U/ml and 100 µg/ml and L-Glutamine (Gibco) at a final concentration of 492 

2 mM. After filtering by a 40 µm strainer, cells were washed once with phosphate-buffered 493 

saline (PBS, Gibco and put into RPMI medium (Gibco) medium supplemented with 20 % FBS 494 

(Gibco) and 10 % dimethyl sulfoxide (DMSO, Serva), and then cryopreserved in liquid nitrogen 495 

until further analysis. an 496 

 497 

Quantification of immunohistochemical staining 498 

Formalin fixed lymph node tissue were processed through the hospital’s routine 499 

immunohistochemistry pipeline and thereby stained for CD3, PAX5 and Ki67 (all Ventana). 500 

After completion of diagnostics, the corresponding slides were scanned for a subset of patients 501 

(n = 7). To quantify the frequencies of B and T cells, the open source software QuPath (v0.1.2) 502 

was used for PAX5 or CD3 stained slides according to the recommended workflow [57]. After 503 

detection of about 100.000 cells per slide, the measurements were exported and further analyzed 504 

using R. We visualized the intracellular signal of diaminobenzidine staining of all detected 505 

events in a histogram. For the staining of PAX5 and CD3 we observed two clear peaks for all 506 

samples and set a threshold in between. Cells with an intracellular signal of CD3 or PAX5 507 

greater than this threshold were regarded as T cells or B cells, respectively. The proportion of 508 

Ki67+ cells was obtained from routine pathology reports.  509 

 510 

Surface and intracellular staining by flow cytometry 511 

As described above, lymph node derived cells were thawed and stained for viability using a 512 

fixable viability dye e506 (Thermo Fisher Scientific) and for different surface markers 513 

depending on the experimental setup. The following surface antibodies were used: anti-CD3-514 

PerCP/Cy5.5, anti-CD3-APC, anti-CD19-BV421, anti-kappa-PE, anti-kappa-FITC, anti-515 

lambda-PE/Dazzle, anti-CD22-APC, anti-CD24-BV785, anti-CD27-PE-Cy7, anti-CD32-PE, 516 

anti-CD44-PE, anti-CD48-PE, anti-CD62L-PE/Cy7, anti-CD10-APC-Cy7, anti-CD4-AF700, 517 

anti-CD8-FITC, anti-PD1-BV421 and anti-ICOS-PE/Dazzle (all Biolegend). In case of 518 
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subsequent intracellular staining, cells were fixed and permeabilized with the intracellular 519 

fixation/permeabilization buffer set (Thermo Fisher Scientific) and stained with anti-MYC-520 

AF647 (Thermo Fisher Scientific), anti-FoxP3-AF647 (BD Biosciences), or adequate isotype 521 

controls (Thermo Fisher Scientific, BD Biosciences). Cells were then analyzed with an LSR 522 

Fortessa (BD Biosciences) and FACSDiva (BD Biosciences, Version 8) 523 

 524 

Estimating the proportion of malignant and non-malignant B cells by flow cytometry 525 

Staining for expression of the light chains (kappa, lambda) is a well-established tool to identify 526 

the accumulation of light chain restricted, malignant B cells [58]. Lymph node derived cells 527 

were stained as described above. In case of a kappa+ or lambda+ B cell population greater than 528 

80 %, we regarded this population as light chain restricted and therefore as malignant. We 529 

further assumed that the ratio of kappa+ versus lambda+ B cells among the potentially remaining 530 

non-malignant B cells is still balanced. Therefore, there must be roughly the same proportion 531 

of non-malignant B cells among those carrying the restricted type of light chain. This ends up 532 

in the following formula to estimate the proportion of malignant cells:  533 

Proportion)*+,,-_/0,123034 	≈ 	Proportion)*+,,-_7+-471*4+8 −	Proportion)*+,,-_3:4.7+-471*4+8 534 

In addition, cells without detectable expression of kappa or lambda light chain on protein level 535 

were regarded as malignant cells because a loss of light chain expression is not observed in 536 

non-malignant lymph nodes [59].  537 

 538 

Single cell sample preparation and RNA sequencing 539 

After thawing, cells were washed to remove DMSO as quickly as possible. We used the dead 540 

cell removal kit (Miltenyi Biotec) for all samples to achieve a viability of at least 90%. The 541 

preparation of the single cell suspensions, synthesis of cDNA and single cell libraries were 542 

performed using the Chromium single cell v2 3’ kit (10x Genomics) according to the 543 

manufacturer's instructions. Each was sequenced on one NextSeq 550 lane (Illumina).  544 

 545 

Subclone specific drug screening 546 

58 different drugs at 5 different concentrations (Supplementary Table 5) and a suitable number 547 

of DMSO controls were prepared in 384 well plates. DMSO concentration was kept equally at 548 

0.2 % in all wells. Lymph node cells were thawed in a 37°C water bath and DMSO containing 549 

freezing medium was removed as quickly as possible to reduce cytotoxic effects. Afterwards, 550 

lymph node cells were rolled for 3 hours in RPMI medium supplemented with penicillin and 551 
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streptomycin (Gibco) at a final concentration of 100 U/ml and 100 µg/ml, L-glutamine (Gibco) 552 

at a final concentration of 2 mM and with 10 % human AB male serum (Sigma). Cells were 553 

seeded at a cell count of 50,000 in 50 µl per well. After 48 hours, cells were washed once with 554 

staining buffer [PBS (Gibco) supplemented with 1% FBS and 0.5 % ethylenediaminetetraacetic 555 

acid (EDTA, Sigma Aldrich)]. Cells were subsequently stained with fixable viability dye e506 556 

(Thermo Fisher Scientific), anti-CD3-APC, anti-CD19-BV421 and anti-CD48-PE, anti-557 

CD62L-PE/Cy7 or anti-kappa-FITC, anti-lambda-PE/Dazzle, anti-CD10-APC/Cy7, anti-558 

CD27-PE/Cy7, anti-CD32-PE (all Biolegend). After staining the microtiter plate was washed 559 

twice with staining buffer. Then, cells were fixed using paraformaldehyde at a final 560 

concentration of 2 % for 15 min at room temperature and washed with staining buffer. Fixed 561 

cells were analyzed with an LSR II and FACSDiva (BD Biosciences, Version 8) equipped with 562 

a high throughput sampler (HTS) system (BD Biosciences). Approximately 5,000 to 10,000 563 

events were recorded per well. Flow cytometry data was analyzed using FlowJo software (Tree 564 

Star). The gating strategy is illustrated in Supplementary Figure 8. We ruled out that significant 565 

up- or downregulation of subclone-discriminating surface antigens confound subclone-specific 566 

drug response assessment by evaluating the fluorescence intensity of corresponding markers 567 

before and after drug treatment (Supplementary Figure 10).  568 

 569 

Fluorescence-activated cell sorting of B cell subclones 570 

Lymph node cells were stained as described above. Sorting was performed at a FACS Aria 571 

Fusion (BD Biosciences). We sorted either for e506– CD3– CD19+ CD48– CD62L– and e506– 572 

CD3– CD19+ CD48– CD62L– (DLBCL1) or for e506– CD3– CD19+CD10–, e506– CD3– CD19+ 573 

CD10+ kappa+, CD32low and e506– CD3– CD19+ CD10+ kappa+, CD32high cells (tFL). The gating 574 

strategy is illustrated in Supplementary Figure 8. All relevant fractions were analyzed post-575 

sorting to confirm a purity of at least 95 %.  576 

 577 

Whole genome and whole exome sequencing 578 

DNA was extracted using the DNeasy mini kit (Qiagen) according to the manufacturers 579 

protocol, followed by quality control using gel electrophoresis and a TapeStation 2200 system 580 

(Agilent). Samples were prepared either for WGS or WES, as previously described [60]. Exome 581 

capturing was performed using SureSelect Human All Exon V5 in-solution capture reagents 582 

(Agilent). If samples were destined for WES on an Illumina HiSeq 2500 instrument, then 1.5 583 

µg genomic DNA were fragmented to 150 to 200 bp insert size with a Covaris S2 device, and 584 

250 ng of Illumina adapter-containing libraries were hybridized with exome baits at 65°C for 585 
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16 hours. If samples were destined for WES on an Illumina HiSeq 4000 instrument, then 200 586 

ng genomic DNA were fragmented to 300 bp insert size with a Covaris LE220 or E220 device, 587 

and 750 ng of adapter-containing libraries were hybridized with exome baits at 65°C for 16 588 

hours. If samples were destined for WGS on an Illumina HiSeq X instrument, then 100 ng of 589 

genomic DNA were fragmented to 450 bp insert size with a Covaris LE220 or E220 device, 590 

and libraries were prepared using the TruSeq Nano Kit (Illumina). On all platforms paired-end 591 

sequencing was carried out according to the manufacturer's recommendations, yielding read 592 

lengths of 101 bp (4000) or 151 bp (HiSeq X).  593 

 594 

Single cell RNA sequencing data processing 595 

The Cell Ranger analysis pipeline (v2.1, 10x Genomics) was used to demultiplex the raw base 596 

call files and to convert them into FASTQ files. FASTQ files were aligned to the reference 597 

genome (hg38) and filtered. Final numbers of cell barcodes, unique molecular identifiers (UMI) 598 

per cell, median genes and sequencing saturation are summarized in Supplementary Table 8.  599 

 600 

Filtering and normalizing single cell RNA sequencing data  601 

The R package Seurat [61] (v2.3.3) was used to perform quality control and normalization. 602 

Gene count per cell, UMI count per cell and the percentage of mitochondrial and ribosomal 603 

transcripts were computed using the functions of the Seurat package. Genes expressed in three 604 

cells or fewer were excluded from downstream analysis. Libraries with a percentage of 605 

mitochondrial transcripts greater than 5%, along with those with less than 200 genes were 606 

filtered out prior to further analysis. Since aggressive lymphomas displayed higher gene and 607 

UMI count, the upper limit was set with regard to each sample. Counts were adjusted for cell-608 

specific sampling (“normalized”) using the LogNormalize function with the default scale factor 609 

of 10,000.  610 

 611 

Assessing the cell cycle state using scRNA-seq data 612 

The cell cycle state was assessed using the gene set and scoring system, described by Tirosh 613 

and colleagues [8]. Briefly, the S-Score and the G2M-Score were calculated based on a list of 614 

43 S phase-specific and 54 G2 or M phase-specific genes. The calculation of the actual scores 615 

was performed using the CellCycleScoring function of the Seurat R package.  616 

 617 
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Analysis of ligand-receptor interactions in scRNA-Seq data 618 

We used the CellPhoneDB database [37] as basis for potential cell-cell interactions, but 619 

expanded the list by important B to T cell interactions (Supplementary Table 4). To assess the 620 

significance of each interaction, we adapted a statistical framework recently described by 621 

Vento-Tormo and colleagues [37] to our purpose. Importantly, we considered only genes which 622 

were expressed in 5 % of at least one cell type.   623 

Briefly, we performed pairwise comparisons between the different T and B cell subtypes for 624 

each ligand-receptor pair and sample. For each combination of two different cell types and each 625 

ligand-receptor-pair, we permuted the cluster labels of cells at least 1,000 times and determined 626 

the mean interaction score (mean expression of ligand in cell type A times mean expression of 627 

receptor in cell type B). A p value was determined by calculating the proportion of permuted 628 

interaction scores which were by hazard higher than the actual interaction score. All interactions 629 

were calculated sample-wise. To determine which interactions were most relevant across 630 

different samples, we calculated the mean interaction scores and combined the different p 631 

values using the Fisher’s method. Then, p values were corrected using the Benjamini-Hochberg 632 

method. The R code is available on our GitHub repository (see code availability statement 633 

below). 634 

 635 

Combining data from different samples and batch correction 636 

After identification of the different cell types the data sets were split into non-B cells or B cells 637 

using the SubsetData function. Then the respective subsets were combined using the 638 

MergeSeurat function. Putative batch effects between two runs, were corrected by the mutual 639 

nearest neighbors (MNN) technique [62] which is implemented in the scran Bioconductor 640 

package (v1.10.2).  641 

 642 

Clustering and dimensionality reduction techniques  643 

SNN (Shared-nearest neighbor)-based clustering, t-SNE and UMAP visualization were 644 

performed using the FindClusters, RunTSNE and RunUMAP functions within the Seurat 645 

package [61]. Each of these were performed on the basis of a principal component analysis 646 

which was performed using the RunPCA function of the Seurat package. The same parameters 647 

were applied to all samples. UMAP was used instead of t-SNE for combined data sets because 648 

it is significantly faster than t-SNE and better preserves aspects of global structure in larger data 649 

sets [28]. Differentially expressed genes between the clusters were identified using the 650 

FindMarkers or FindAllMarkers functions within the Seurat package [61]. Differentially 651 
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expressed genes between malignant B cell clusters can be browsed interactively using an html 652 

file (see data sharing statement below).  653 

 654 

Gene set enrichment analysis 655 

Gene set enrichment analysis (GSEA) was performed using the GSEA java desktop application 656 

[63, 64] and the Molecular Signatures Database (MSigDB, v6.2) provided by the Broad Institute 657 

[63, 65]. Differentially expressed genes of two groups were used to determine significantly-658 

enriched gene sets.  659 

 660 

WES and WGS data processing 661 

Alignment of sequencing read pairs and variant calling were performed as recently described 662 

[66]. Briefly, reads were mapped to human reference genome (hg19) with bwa-mem (version 663 

0.7.8, minimum base quality threshold set to zero [-T 0], remaining settings left to default) [67]. 664 

Subsequently, reads were coordinate-sorted with bamsort (compression option set to fast) and 665 

duplicate read pairs were marked with bammarkduplicates (compression option set to best) 666 

(both part of biobambam package version 0.0.148). 667 

SNV and indels in matched tumor normal pairs were identified using the internal DKFZ variant 668 

calling workflows based on samtools/bcftools 0.1.19 with additional custom filters (optimized 669 

for somatic variant calling by deactivating the pval-threshold in bcftools) and Platypus 0.8.1, 670 

respectively, as described previously [66]. Gene annotation of variants was done with 671 

Annovar [68]. The variants were annotated with dbSNP141, 1000 Genomes (phase 1), Gencode 672 

mapability track, UCSC High Seq Depth track, UCSC Simple-Tandem repeats, UCSC Repeat-673 

Masker, DUKE-Excluded, DAC-Blacklist, UCSC Selfchain. These annotation tracks were used 674 

to determine a confidence score for each variant by a heuristic punishment scheme and only 675 

high confidence variants were kept for further analysis. In addition, variants with strong read 676 

biases according to the strand bias filter were removed. 677 

Genomic structural rearrangements (SVs) were identified using the SOPHIA algorithm 678 

(unpublished, source code available at https://bitbucket.org/utoprak/sophia/). Briefly, 679 

supplementary alignments as produced by bwa-mem are used as indicators of potential 680 

underlying SVs. Candidates are filtered by comparing them to a background control set of 681 

sequencing data obtained using normal blood samples from a background population database 682 

of 3261 patients from published TCGA and ICGC studies as well as published and unpublished 683 

studies of the German Cancer Research Center (DKFZ). 684 
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Allele-specific CNV were detected using ACEseq (allele-specific copy number estimation from 685 

WGS) [69] for WGS data and CNVkit for WES data [70]. ACEseq determines absolute allele-686 

specific copy numbers as well as tumor ploidy and tumor cell content based on coverage ratios 687 

of tumor and control as well as the B-allele frequency (BAF) of heterozygous single-nucleotide 688 

polymorphisms (SNPs). SVs called by SOPHIA were incorporated to improve genome 689 

segmentation. 690 

 691 

Multi tumor comparison 692 

To compare multi tumor samples of the same donor, every SNV position in each sample was 693 

determined using samtools mpileup 1.6. At each of these SNV positions, the variant allele 694 

fraction was determined by calculating the ratio between the number of variant reads and the 695 

total coverage at that position. To correct the variant allele fraction for actual tumor cell content, 696 

a scaling factor was incorporated, comprising ploidy and total copy number (TCN) estimates 697 

obtained from ACEseq/CNVkit. Specifically, the scaling factor is obtained as the ratio between 698 

purity corrected number of alleles in the tumor (TCN_tumor purity_tumor) and purity corrected 699 

total number of alleles in the sample ((TCN_tumor * purity_tumor) + 2 * (1 - purity_tumor)). 700 

 701 

Aberrant cell fraction estimation from LOH 702 

To determine aberrant cell fractions, the minor allele-frequency (MAF, ratio between number 703 

of reads of minor allele and total coverage at given position) of single nucleotide polymorphism 704 

(SNP) was estimated for selected regions harboring a loss of heterozygosity (LOH) or a copy 705 

number neutral LOH (CN-LOH) in the tumor sample. Information on SNP location was 706 

received from matched-control SNV calling. To select heterozygous SNP, only SNP with a 707 

MAF ≥ 0.3 in the control were retained. Subsequently, MAF values of the selected SNP were 708 

calculated for the tumor samples. For exome samples, only SNP within the targeted capture 709 

regions were kept. The mean of the respective tumor MAF values was calculated and the 710 

aberrant cell fraction (ACF) was estimated as follows:  711 

<=>?@A = 1 − 2 ∙ FGHI	(K<>)	;	<=>NOP?@A = 	
1 − 2 ∙ FGHI	(K<>)

1 − FGHI	(K<>)
 712 

 713 

Data sharing statement 714 

The single cell expression data of merged B and T cell UMAP plots (Figure 2A/B and 715 

Figure 3A/B) are available for easy-to-use interactive browsing: 716 

https://www.zmbh.uni-heidelberg.de/Anders/scLN-index.html. 717 
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The raw single cell count tables can be downloaded here doi.org/10.11588/data/VRJUNV. This 718 

link will be activated upon publication and is accessible without further restriction. 719 

Differentially expressed genes between B cell clusters can be browsed in an interactive html 720 

file (Supplementary File 1).  721 

 722 

Code availability statement 723 

R codes used for data analysis are available at our GitHub repository without further restriction 724 

(www.github.com/DietrichLab/scLymphomaExplorer).  725 
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Figure 1. Identification of cell types using scRNA-seq.

A) Schematic overview of the study design. B and C) Lymph node-derived B and T cells were quantified by

scRNA-seq, flow cytometry and immunohistochemistry (IHC) of paraffin tissue sections (see Supplementary

Figure 1 for details). The frequencies of B and T cells were correlated for B) scRNA-seq and flow cytometry or

C) scRNA-seq and IHC. Pearson’s correlation coefficients (r) and the number of samples included (n) are given

in the left top corner. D and E) Illustration of the strategy to identify malignant B cells. Single cell RNA

expression profiles of B cells derived from the tFL1 sample were visualized by t-SNE. The different B cell

clusters are circled and labeled with hB (healthy B cells), B1 (B cell cluster 1) and B2 (B cell cluster 2). For

each single B cell we calculated the the kappa light chain (IGKC) fraction IGKC/(IGKC+IGLC2) (see color

code D and E). If this IGKC-fraction was > 0.5, we classified a B cell as a kappa positive and if this ratio was

below 0.5 we classified the B cell as a lambda positive. The percentage of B cells either expressing kappa or

lambda per transcriptionally distinct B cell cluster was calculated. The non-malignant healthy B cell (hB) cluster

contained approximately 50% kappa and 50% lambda expressing B cells while the tow malignant cluster (B1,

B2) contained B cells homogeneously expressing the kappa light chain.
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Figure 2. The transcriptional heterogeneity of lymph node-derived T cells

A and B) T cells from all samples were combined and jointly visualized using UMAP. Cells were colored with

respect to their cluster of origin (A) or to their sample of origin (B). C) The heatmap shows differentially

expressed genes, which were used to identify the T cell subsets: Cytotoxic T cells (TTOX), conventional T helper

cells (TH), T follicular helper cells (TFH), regulatory T cells (TREG). Gene expression values were scaled to the
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the maximum of each row. D) Stacked bar chart displaying the proportion of T cell subpopulations based on

scRNA-seq identified in each sample. Note that the DLBCL1 sample is not shown here due to only five T cells

identified in this sample. E and F) Single cell suspensions of lymph nodes derived from 39 different patients,

including those passed to scRNA-seq, were characterized by flow cytometry. The four different T cell

populations identified by single cell RNA-Seq were distinguished using the following marker panel: CD3, CD4,

CD8, PD1, ICOS and FoxP3. Specifically, TH were identified based on CD3+CD4+ without the phenotype of

TFH or TREG; TTOX were identified based on CD3+CD8+; TFH were identified based on CD3+CD4+

ICOSHighPD1High; and TREG were identified based on CD3+CD4+FoxP3+. E) The frequencies based on flow

cytometry were correlated with the frequencies based on scRNA-seq. Pearson’s correlation coefficients (r) and

the number of samples included (n) are given in the top left corner. Note that the DLBCL1 and tFL2 samples are

not shown here due to the low number of T cells in the scRNA-seq data (DLBCL1) or the lack of material

(tFL2). F) Frequencies for each subpopulation with regard to the sum of all T cells are shown. P values were

calculated by the two-sided Wilcoxon’s test comparing each Entity with rLN group, and corrected by

Bonferroni method. Only significant differences are shown; ** ≙ p value £ 0.01, * ≙ p value £ 0.05. SNN:
Shared-nearest-neighbor-based. UMAP: Uniform Manifold Approximation and Projection. rLN: Reactive

lymph node. MCL: Mantle cell lymphoma. FL: Follicular lymphoma. DLBCL: Diffuse large B cell lymphoma,

CLL: Chronic lymphocytic leukemia.
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Figure 3. Gene expression signatures driving B cell heterogeneity.

A and B) Single cell RNA expression profiles from all B cells were combined and jointly visualized using

UMAP. Cells are colored either by SNN-based clusters (A) or by sample (B). C) A gene set enrichment analysis

was performed separately for each malignant cluster (C3 to C9) versus all healthy B cells (C0, C1). The four

most enriched gene sets per sample are shown. Columns refer to cluster. Circles are coded by color (nominal

FDR) and size (NES). Gene sets with NES > 1.5 are shown. D) Cells in UMAP plot were colored by the mean

expression of enriched genes for four representative gene expression signatures. UMAP: Uniform Manifold

Approximation and Projection. SNN: Shared-nearest-neighbor. FDR: False-positive detection rate. NES:

Normalized enrichment score.



Figure 4

Figure 4. Cellular crosstalk in B cell lymphoma within the lymph node microenvironment.

Overview of most significant ligand-receptor interactions across all lymphoma samples, excluding DLBCL1

due to the low number of T cells. Circle size indicates negative log10 of adjusted p values which were

determined by permutation test (see Methods for details). Color scheme visualizes interaction scores which were

calculated by the mean expression of molecule 1 (blue) in cell type A (blue) and the mean expression of

molecule 2 (black) in cell type B (black). Protein names instead of gene names were used for TACI

(TNFRSF13B), BAFF-R (TNFRSF13C), BCMA (TNFRSF17) and BAFF (TNFSF13B).
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Figure 5. In depth-analysis of sample tFL1

A-B) Single cell RNA expression profiles of B cells derived from the tFL sample were subjected to SNN-based

clustering. Three transcriptionally distinct clusters emerged. A) The heatmap illustrates the top 30 differentially

expressed genes between all three identified clusters. Gene expression values were scaled to the maximum of

each row. B) Clusters were colored and visualized in t-SNE projections of scRNA-seq expression profiles of

malignant B cells. C) tFL1 derived lymph node cells were stained for viability, CD19, CD32, and CD10. The

gates highlight three CD19+ populations which correspond to the subclusters shown in panel B. D and E)

Unsorted single cell suspensions from the tFL sample were incubated for 48 hours with 58 different drugs and

five concentrations, and stained as described in panel C. Viability was normalized to vehicle control for each

subpopulation separately. D) The mean difference of viabilities between the two malignant subclones is shown.

White indicates that both malignant clones responded equally to this drug. Purple or green indicates that the

viability of the CD32High or CD32Low subpopulation was superior. E) Six representative subclone specific

responses to the following drugs are shown: panobinostat, vorinostat, romidepsin (HDAC inhibitors),

acalabrutinib (BCR signaling inhibitor), lenalidomide and pomalidomide (immunomodulatory imide drugs). F)

Whole exome sequencing was performed on FACS sorted CD32High-, CD32Low- and the non-malignant CD10- B

cell subset. The line plot shows the total copy number estimation for chromosome 12 for all three sorted

populations. The CD32Low clone harbors an additional copy of chromosome 12. G) Density curves of single cell

expression values for all genes located on chromosome 12 are shown for each subclone. H-J) The scatter plots

show the allele frequency (AF) of the mutated allele for exonic SNVs in both malignant subclones (H), in

CD32Low versus healthy B cells (I) and in CD32High versus healthy B cells (J). Shaded purple or green boxes

highlight SNV that are exclusive to one of the malignant B cell subclones. Red dots mark immunoglobulin-

associated mutations. SNN: Shared-nearest-neighbor. HDAC: Histone deacetylase. BCR: B cell receptor. SNV:

Single nucleotide variant.
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Figure 6. In depth-analysis of sample DLBCL1

A-B) Single cell RNA expression profiles of malignant B cells derived from the DLBCL1 sample were

subjected to SNN-based clustering. Two transcriptionally distinct clusters emerged. A) Top 40 differentially

expressed genes between the two identified clusters are shown in the heatmap. Gene expression values were

scaled to the maximum of each row. B) Clusters were colored and visualized in t-SNE projections of scRNA-

seq expression profiles of malignant B cells. C) DLBCL1 derived lymph node cells were stained for viability,

CD19, CD48 and CD62L (=SELL). The gate highlights a population which co-expresses CD62L and CD48,
which represents the identified subclones. D and E) Lymph node derived cells from the DLBCL1 sample were

incubated for 48 hours with 58 different drugs and 5 concentrations. Cells were stained as described in C.

Viability was normalized to DMSO controls for each subpopulation separately. D) Six representative subclone-

specific responses to the following drugs are shown: I-BET-762, OTX015 (BET inhibitors), ibrutinib, duvelisib

(BCR signaling inhibitors), cytarabine and cladribine (chemotherapy). E) The mean difference of viabilities

between the two subpopulations is shown. White indicates that both clusters responded equally to this drug.

Purple or green indicates that the viability of the CD48HighCD62L+ or CD48LowCD62L- subpopulation was

superior. F-G) Whole genome sequencing was performed on both FACS sorted populations (CD48HighCD62L+,

CD48LowCD62L-). F) The scatter plot shows the allele frequency (AF) of the mutated allele for non-

synonymous exonic SNV in bold black and synonymous or intronic SNV in faded grey of both subclones.
Shaded purple or green boxes highlight SNV that are exclusive to one or the other subclone. Red dots mark

immunoglobulin-associated non-synonymous exonic mutations. G) Line plots show total copy number

estimations for chromosome 8q24, 14 and X for both clones. H) DLBCL1 derived lymph node cells were

incubated with DMSO control, I-BET-762 at two concentrations (1 µM, 5 µM) or ibrutinib at two

concentrations (0.2 µM, 1 µM). At baseline and after 24 hours cells were harvested and stained for viability,

CD19, CD3, CD48, CD62L and MYC or respective isotype control. Histograms show the fluorescence intensity

of MYC at baseline for T cells, CD48HighCD62L+ and CD48LowCD62L- subclone, after 24 hours incubation with

I-BET-762 and DMSO control or Ibrutinib and DMSO control. I) Shown are SNV with high variant allele

frequencies in the CD48HighCD62L+ subpopulation (purple) and low or undetectable in CD48LowCD62L-

subpopulation (green). Black circles show corresponding variant allele frequencies of whole tumor samples
before and after retreatment with high-dose cytarabine. P value was calculated by the paired Wilcoxon-text.

SNN: Shared-nearest-neighbor. BET: Bromodomain and Extra-Terminal motif protein. BCR: B cell receptor.

SNV: Single nucleotide variant. DMSO: Dimethyl sulfoxide.


