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Abstract 11 

Cells consist of molecular modules which perform vital biological functions. Modules are key 12 

units of adaptive evolution because organismal fitness depends on their performance. Yet, our 13 

understanding of adaptive evolution at the level of modules is limited. Theory predicts that in 14 

rapidly evolving populations, such as those of many microbes, natural selection focuses on 15 

improving one or a few modules at a time and its focus shifts to other modules as adaptation 16 

continues. Such shifts have never been directly observed, their timescale is unknown and the 17 

extent to which they limit the power of natural selection to improve any particular module is 18 

unclear. Here, we empirically characterize how natural selection improves the translation 19 

machinery (TM), one of the most essential cellular modules. To this end, we experimentally 20 

evolved populations of Escherichia coli with genetically perturbed TMs for 1,000 generations. 21 

Populations with different TMs embarked on statistically distinct adaptive trajectories. Yet, in all 22 

genetic backgrounds, the focus of natural selection shifted away from the TM before its 23 

performance was fully restored. Our results show that shifts in the focus of selection can occur 24 

on time scales comparable to those of environmental fluctuations. Variability in selection 25 

pressures can delay the resumption of adaptation in stalled modules, which would make it 26 

difficult for evolution to fully optimize even essential modules.  27 
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Introduction 28 

Biological systems are organized hierarchically, from molecules to cells, organisms and 29 

populations [1–5]. At the lowest level, macromolecules form cellular modules, such as the 30 

translation machinery, or other metabolic pathways [4,6–9]. Different modules perform different 31 

cellular functions, which together determine the fitness of the organism. Populations adapt by 32 

accumulating beneficial mutations that modify module function, which in turn can profoundly 33 

change the physiology of organisms, allowing them to consume new resources [10,11] or become 34 

resistant to drugs [12–14]. The dynamics of evolution can be extremely complex, particularly in 35 

large populations with limited recombination [14–20]. Much progress has been made recently in 36 

our theoretical and empirical characterization of these dynamics at the genetic level [15,18,19,21–37 

24], but it is a major challenge to understand how evolution unfolds at the level of functional 38 

cellular modules [25]. 39 

The classical population genetics models predict that the speed of module evolution depends on 40 

the supply and the fitness effects of mutations in that module alone [26], and modules evolve 41 

independently of each other. Natural selection cannot improve a module if the fitness benefits of 42 

all beneficial mutations in it are below ~1/N, the inverse of the population size [27–31]. More 43 

recent work suggests that adaptive evolution of a module may reach a steady state where the 44 

fixation of beneficial mutations is counterbalanced by the accumulation of deleterious mutations 45 

[32,33]. Regardless of the nature of the limit, some cellular modules may be fundamentally not 46 

improvable by natural selection. However, classical models predict that all improvable modules 47 

would adapt, albeit at module-specific rates. 48 

In many populations, particularly in microbes, beneficial mutations are common and 49 

recombination is rare, which violates the assumptions of classical models [14,16,17,20]. Then, 50 

multiple new mutations affecting different modules may simultaneously arise, they compete with 51 

each other and prevent each other from fixing [21–23,34,35]. In this so-called “clonal interference” 52 

regime, small-effect mutations are usually outcompeted. Instead, adaptation is driven by mutations 53 

that provide fitness benefits above a certain “clonal interference” threshold, which depends on the 54 

supply and the fitness effects of all adaptive mutations in the genome [23,34,36]. Thus, modules 55 

do not evolve independently, and the rate of adaptation in any one module depends on the supplies 56 

and effects of beneficial mutations in all modules. 57 

The dynamics of module evolution in the clonal interference regime can be qualitatively different 58 

from those in the absence of clonal interference. At any given time, modules where many 59 

mutations provide fitness benefits above the current clonal interference threshold will accumulate 60 

adaptive mutations. All other modules would not adapt, that is modules both modules that are not 61 

improvable and modules that are improvable but only by mutations with fitness effects below the 62 

clonal interference threshold. We refer to this phenomenon as “evolutionary stalling”. 63 

Evolutionary stalling limits the power of natural selection to improve a module. However, in 64 

contrast to the hard limits imposed by the drift barrier or by the balance between beneficial and 65 

deleterious mutations, evolutionary stalling can be overcome. Once the supply of the adaptive 66 

mutations with the largest effects is diminished, the clonal interference threshold would drop. As 67 

a result, previously stalled modules may come into the focus of natural selection, while those that 68 

were previously adapting may in turn stall. Such shifts in the focus of natural selection are expected 69 

to occur as long as the supplies and the fitness effects of adaptive mutations are sufficiently 70 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2019. ; https://doi.org/10.1101/850644doi: bioRxiv preprint 

https://doi.org/10.1101/850644
http://creativecommons.org/licenses/by-nc/4.0/


variable between modules. However, because these quantities are unknown, it is unclear whether 71 

the theoretically predicted shifts can occur on faster time scales than environmental fluctuations 72 

and to what extent they limit the power of natural selection to improve any particular module. 73 

Numerous previous studies have demonstrated that selection is often focused on improving a 74 

relatively small number of cellular modules, in both natural and experimental populations [15,37–75 

54], suggesting that adaptive evolution in other modules is stalled. However, these studies do not 76 

attempt to identify the time scale on which the focus of natural selection shifts between modules 77 

nor do they inform us whether these shifts slow down module improvements. 78 

A shift in the focus of selection is associated with the onset of evolutionary stalling in one or 79 

multiple modules and can be detected in two ways. If we can directly measure the physiological 80 

performance of a module over time, an abrupt reduction in the rate of its phenotypic improvement 81 

despite steady increases in fitness would indicate the onset of stalling. However, it is often unclear 82 

which aspects of a module’s performance are relevant for fitness. Alternatively, if we know all the 83 

genes that encode a module, we could infer the onset of stalling from an abrupt reduction in the 84 

rate of accumulation of mutations in such genes despite continued accumulation of beneficial 85 

mutations elsewhere in the genome. A recent study of a 60,000 generation long evolution 86 

experiment in Escherichia coli (E. coli) used such genomic approach and found that the statistical 87 

distribution of mutations among genes and operons changes over time [51]. This observation 88 

implies that the focus of natural selection shifts from some genes and operons to others. However, 89 

because most cellulars modules are insufficiently well annotated, one cannot rule out the 90 

possibility that all evolving genes encode the same set of modules, such that the shifts in the focus 91 

of natural selection occur within but not between modules. 92 

To overcome these difficulties and characterize the onset of evolutionary stalling, we 93 

experimentally examine the evolution of the translation machinery (TM) in E. coli. There are two 94 

reasons for this choice. First, TM is an essential component of every living cell, and TM 95 

performance is a major component of fitness. Second, TM is encoded by an extremely well 96 

annotated set of genes [8,9,55–57], which allows us to use the genomic approach for detecting 97 

evolutionary stalling. We disrupted the TM by replacing the native Elongation Factor Tu (EF-Tu) 98 

in E. coli with several of its orthologs [58–60] and evolved these strains in rich media where rapid 99 

and accurate translation is required for fast growth [61,62]. We hypothesized that more severe 100 

disruptions of the TM will increase the supply of large-effect beneficial mutations in the TM [63]. 101 

Thus, we expect that natural selection would focus on improving the TM in at least some strains 102 

with disrupted TMs, but not in the control strain which carries the native E. coli EF-Tu. We then 103 

set out to characterize the onset of evolutionary stalling in the TM in two ways. First, we determine 104 

which strains acquire substitutions in the known TM genes and how much fitness these strains 105 

gain. This allows us to quantify whether natural selection is able to fully restore TM performance 106 

before its focus shifts to other cellular modules. Second, we observe how the rate of accumulation 107 

of mutations in the TM changes over time, which provides us with direct evidence for the onset of 108 

evolutionary stalling on short time scales relevant for the evolution in natural populations. 109 

  110 
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Results 111 

We previously replaced the native EF-Tu in E. coli with its orthologs from Salmonella 112 

typhimurium, Yersinia enterocolitica, Vibrio cholerae and Pseudomonas aeruginosa and one 113 

reconstructed ancestral variant [58] (Table 1). EF-Tu is encoded in E. coli by two paralogous 114 

genes, tufA and tufB, with the majority of the EF-Tu molecules being expressed from tufA [64]. 115 

To replace all EF-Tu molecules in the cells, the tufB gene was deleted and the foreign orthologs 116 

were integrated into the tufA locus [58]. We also included the control strain in which the tufB 117 

gene was deleted and the original E. coli tufA was left intact. We refer to the engineered 118 

“founder” E. coli strains as E, S, Y, V, A and P by the first letter of the origin of their tuf genes 119 

(Table 1). 120 

 121 

Strain EF-Tu origin species Number of amino 

acid differences 

from E. coli EF-Tu  

(percent identity) 

Fitness ± SEM, 

% per generation 

E Escherichia coli (control) 0 (100) 0 ± 0.7 

S Salmonella typhimurium 1 (99.75) +0.49 ± 0.09 

Y Yersinia enterocolitica 24 (93.91) –3.02 ± 0.03 

V Vibrio cholerae 51 (87.06) –19.0 ± 1.1 

A Reconstructed ancestor 21 (94.67) –34.4 ± 0.7 

P Pseudomonas aeruginosa 62 (84.38) –35.0 ± 0.2 

Table 1. Founders used for the evolution experiment. Strains with foreign EF-Tu orthologs are ordered by their fitness 122 
relative to the control E strain. SEM stands for standard error of the mean. 123 

We first quantified the TM defects in our founder strains. Kaçar et al. showed that EF-Tu 124 

replacements lead to declines in the E. coli protein synthesis rate and proportional losses in 125 

growth rate in the rich laboratory medium LB [58]. In our subsequent evolution experiment, 126 

natural selection will favor genotypes with higher competitive fitness, which may have other 127 

components in addition to growth rate [65–69]. We confirmed that EF-Tu replacements caused 128 

changes in competitive fitness relative to the control E strain (Table 1), and that competitive 129 

fitness and growth rate were highly correlated (Figure S1). We conclude that the competitive 130 

fitness of our founders in our environment reflects their TM performance. Further, we found that 131 

the fitness of the S and Y founders were similar to that of the control E strain (≤ 3% fitness 132 

change) indicating that their TMs were not substantially perturbed. In contrast, the fitness of the 133 

V, A and P founders were dramatically lower (≥ 19% fitness decline; Table 1) indicating that 134 

their TMs were severely perturbed.  135 
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 136 

Figure 1. Competitive fitness of founder and evolved populations. The competitive fitness gain after 137 
evolution relative to the unevolved founder averaged across replicate populations (y axis) is plotted against the 138 
competitive fitness of the founder relative to the E strain (x axis). Fitness is measured in % per generation. 139 
Dashed black line is y = –x. Populations above (below) this line are more (less) fit than the control E strain, 140 
under the assumption that fitness is transitive. Error bars showing ±1 SEM are masked by the symbols (see 141 
Table 1 and Figure S2). 142 

Clonal interference slows down TM adaptation 143 

To determine whether natural selection focuses on restoring defective TMs, we instantiated 10 144 

replicate populations from each of our six founders (60 populations total) and evolved them in 145 

LB for 1,000 generations (Methods) with daily 1:104 dilutions and the bottleneck population size 146 

N = 5×105 cells. We then measured the competitive fitness of the evolved populations relative to 147 

their respective founders. Fitness in all but one population increased significantly (t-test P < 0.05 148 

after Benjamini-Hochberg correction; Figure S2), and the average fitness increase of a 149 

population correlated negatively with the initial fitness of its founder (Figure 1). These results 150 

show that even substantial fitness defects caused by reductions in TM performance can be 151 

largely compensated in a short bout of adaptive evolution. 152 

The pattern of “declining adaptability” in Figure 1 has been frequently observed in previous 153 

microbial evolution studies [45,46,50,70–74]. It could arise if adaptation is driven either by 154 

mutations only in the TM, by mutations only in other modules, or by mutations in the TM and in 155 

other modules. For evolutionary stalling in the TM to occur, mutations improving the TM must 156 

compete against other types of mutations within the same population. To determine whether both 157 

types of mutations occur in our populations, we conducted whole-population whole-genome 158 
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sequencing at multiple timepoints throughout the evolution experiment. This sequencing strategy 159 

allows us to directly observe competition dynamics between mutations in different modules 160 

[15,51,75,76]. 161 

We selected replicate populations 1 through 6 descended from each founder (a total of 36 162 

populations), sampled each of them at 100-generation intervals (a total of 11 time points per 163 

population) and sequenced the total genomic DNA extracted from these samples. We developed 164 

a bioinformatics pipeline to identify de novo mutations in this data set (Methods). Then, we 165 

called a mutation adaptive if it satisfied two criteria: (i) its frequency changed by more than 20% 166 

in a population; and (ii) it occured in a “multi-hit” gene, i.e., a gene in which two independent 167 

mutations passed the first criterion. Reliably tracking the frequencies of some types of mutations 168 

(e.g., large copy-number variants) is impossible with our sequencing approach. Therefore, we 169 

augmented our pipeline with the manual identification of copy-number variants which could only 170 

be reliably detected after they reached high frequency in a population (Methods and Figure S3). 171 

This procedure yielded 167 new putatively adaptive mutations in 28 multi-hit genes, with the 172 

expected false discovery rate of 13.6%, along with an additional 11 manually-identified 173 

chromosomal amplifications, all of which span the tufA locus (Methods and Table S1, Figure 174 

S4). We classified each putatively adaptive mutation as “TM-specific” if the gene where it 175 

occurred is annotated as translation-related (Methods). We classified mutations in all other genes 176 

as “generic”. We found that 38 out of 178 (21%) putatively adaptive mutations in 6 out of 28 177 

multi-hit genes were TM-specific (Table S1). This is significantly more mutations than expected 178 

by chance (P < 10–4, randomization test) since the 215 genes annotated as translation-related 179 

comprise only 4.0% of the E. coli genome. All of the TM-specific mutations occurred in genes 180 

whose only known function is translation-related, such as rpsF and rpsG, suggesting these 181 

mutations arose in response to the initial defects in the TM. The set of TM-specific mutations is 182 

robust with respect to our filtering criteria (Figure S5). 183 

TM-specific mutations occurred in 17 out of 36 sequenced populations. Generic mutations were 184 

also observed in all of these populations (Figure S4). Thus, whenever TM-specific mutations 185 

occurred, generic mutations also occurred, such that the fate of TM-specific mutations must have 186 

depended on the outcome of clonal interference between mutations within and between modules 187 

(Figure 2). As a result of this competition, only 14 out of 27 (52%) TM-specific mutations that 188 

arose (excluding 11 tufA ampliciations) went to fixation, while the remaining 13 (48%) 189 

succumbed to clonal interference (Figures 2, S4). In at least two of these 13 cases a TM-specific 190 

mutation was outcompeted by expanding clones likely driven by generic mutations: in 191 

population V6, a TM-specific mutation in fusA was outcompeted by a clone carrying generic 192 

mutations in fimD, ftsI and hslO (Figure 2); in population P3, a TM-specific mutation in tufA was 193 

outcompeted by a clone carrying generic mutations in amiC and trkH (Figure 2). We conclude 194 

that, while TM-specific beneficial mutations are sufficiently common and their fitness effects are 195 

at least sometimes large enough to successfully compete against generic mutations, clonal 196 

interference reduces the power of natural selection to recover TM performance. 197 
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 198 

Figure 2. Mutational trajectories in evolving populations. Mutation frequency trajectories for one 199 
representative replicate population per founder is shown (complete data for all sequenced populations can 200 
be found in Figure S4). Each line represents the frequency trajectory of a single mutation. Shading 201 
indicates the range of timepoints in which a tufA amplification was detected. 202 

The onset evolutionary stalling and a limit on the power of natural 203 

selection to improve the TM 204 

Competition between adaptive mutations in different modules is necessary but not sufficient for 205 

evolutionary stalling to occur in any one module. Therefore, we sought direct evidence of 206 

evolutionary stalling in the TM. To this end, we examined the distribution of TM-specific 207 

mutations among populations derived from different founders. 208 

In the A and P founders, defects in the TM incur a fitness cost of about 35% (Table 1), and we 209 

observed a total of 30 TM-specific mutations in these populations (Figure 3A), including eight 210 

tufA ampliciations (2.5 mutations on average per population). At least one TM-specific mutation 211 

fixed in each of these populations (Figure S4). Thus, when the TM defect is large, highly 212 

beneficial mutations in the TM are available, and natural selection is focused on improving this 213 

module. 214 
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 215 

Figure 3. Evidence for evolutionary stalling in the adaptation of the TM. A. The average number 216 
of fixed and not fixed adaptive TM-specific and generic mutations across the six sequenced 217 
populations derived from each founder. B. Cumulative number of fixed TM-specific or generic 218 
mutations per population derived from the V, A and P founders. 219 

In the V founder, a defect in the TM incurs a fitness cost of about 19% (Table 1), and we 220 

observed a total of 8 TM-specific mutations across all V populations, including three tufA 221 

amplifications (1.3 mutations on average per population). However, only 2 out of 6 populations 222 

fixed at least one TM-specific mutation (Figure S4). Thus, TM defects with a fitness cost of 19% 223 

are improvable by mutations, but these mutations provide benefits that are barely enough to 224 

survive clonal interference. We conclude that when a TM defect incurs a fitness cost of around 225 

19%, the focus of natural selection begins to shift to other cellular modules, and the adaptation of 226 

the TM begins to stall. 227 

Given that the TM adaptation is beginning to stall in the V populations, we predict that no TM-228 

specific mutations would fix in the E, S and Y populations, as their TM defects are much 229 

smaller. Consistent with this prediction, we do not observe any TM-specific mutations in the E, S 230 

and Y populations (Figure 3A). Interestingly, the Y populations gained on average 2.1% in 231 

fitness by fixing on average 2.2 generic mutations. This implies that natural selection in the Y 232 

populations is improving modules other than the TM, even though their TM incurs a ~3% fitness 233 

cost (Table 1). 234 

We also expect that as the V, A, and P populations accumulate TM-specific mutations and TM 235 

performance improves, the focus of natural selection should shift away from the TM to other 236 

cellular modules. We examined the distribution of TM-specific and generic adaptive mutations 237 

across evolutionary time in these populations. Out of the 14 TM-specific mutations that 238 

eventually fixed, 12 (86%) did so in the first selective sweep (this excludes 11 tufA 239 

amplifications). In contrast, out of the 16 generic mutations that fixed, only seven (44%) did so 240 

in the first selective sweep. As a result, an average TM-specific beneficial mutation reached 241 

fixation after only 300 ± 52 generations, compared to 600 ± 72 generations for an average 242 

generic mutation (Figure 3B, S4). Only one (7%) TM-specific beneficial mutation reached 243 
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fixation after generation 600, in comparison to nine (56%) generic beneficial mutations. Thus, by 244 

the end of the experiment, the fixation of TM-specific mutations has essentially ceased. Yet, 245 

these populations remained on average ~5.3% less fit than the control E strain, assuming fitness 246 

is transitive (Figure 1). Even if we conservatively attribute all these fitness gains to 247 

improvements in the TM, this observation suggests that the evolved TMs have not reached the 248 

level of performance of the TM in the control E founder. As with the Y founder, we conclude 249 

that the TMs in these evolved V, A and P populations has stalled before TM performance was 250 

fully recovered. 251 

For adaptive mutations in the TM to fix, they must provide fitness benefits above the clonal 252 

interference threshold. To determine where this threshold is in P and A populations which fixed 253 

most of the TM-specific mutations, we selected two TM-specific mutations that arose in these 254 

populations, genetically reconstructed them in their respective founders and directly measured 255 

their fitness benefits. We found that the TM-specific mutation A74G in the rpsF gene, which 256 

arose in population A5, provides an 8.2 ± 1.0% fitness benefit in the A founder. And the TM-257 

specific mutation G331A in gene rpsG, which arose in populations P2, P3 and P5, provides a 6.5 258 

± 1.2% fitness benefit in the P founder. This result suggests that the clonal interference threshold 259 

in the A and P populations is below 8.2% and 6.5%, respectively. Similarly, by reconstructing 260 

mutation T193D in the ybeD gene, we estimated that the clonal interference threshold in the V 261 

populations was below 5.9%. Finally, the upper bound on the clonal interference threshold in the 262 

Y, S, and E populations can be estimated from the total fitness gains in these populations (Figure 263 

1), and it is below 2.1%, 1.3% and 3.9%, respectively. 264 

Epistasis and historical contingency in TM evolution 265 

We observed that natural selection improved all severely perturbed TMs, but it is unclear 266 

whether different TM defects can be alleviated by a common set of mutations or whether 267 

repairing each TM defect requires its own unique genetic solution. Previous work has shown that 268 

genetic interactions (or “epistasis”) between mutations in the TM have been important in the 269 

evolutionary divergence of TMs along the tree of life [58,77–80]. We reasoned that genetic 270 

interactions might be similarly important in the short bout of evolution observed in our 271 

experiment. Specifically, we asked whether different initial TM variants acquired adaptive 272 

mutations in the same or in different translation-associated genes. 273 

We found that 4 out of 7 classes of TM-specific mutations arose in a single founder (Figure 4A). 274 

For example, we detected six independent mutations in the rpsG gene, which encodes the 275 

ribosomal protein S7, and all of these mutations occurred in the P founder (P < 10–4, 276 

randomization test with Benjamini-Hochberg correction, Methods). Similarly, all four mutations 277 

in the rpsF gene, which encodes the ribosomal protein S6, occurred in the A founder (P < 10–4, 278 

randomization test with Benjamini-Hochberg correction). To directly measure how the effects of 279 

these mutations vary across genetic backgrounds, we attempted to genetically reconstruct 280 

mutation A74G in the rpsF gene and mutation G331A in rpsG gene in all six of our founder 281 

strains. We successfully reconstructed both of these mutations in the founder strains in which 282 

they arose and confirmed that they were strongly beneficial, as described above (8.2 ± 1.0% and 283 

6.5 ± 1.2% benefit, respectively). In contrast, our multiple reconstruction attempts in all other 284 

founders were unsuccessful (Methods), suggesting that these mutations are strongly deleterious 285 

in all other genetic backgrounds that we tested. 286 
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These results suggest that genetic interactions between different TM components cause initially 287 

different TM variants to embark on divergent adaptive trajectories and lead to historical 288 

contingency and entrenchment in TM evolution [81–83]. 289 

 290 

Figure 4. Distribution of putatively adaptive mutations. Heatmap of all putatively adaptive mutations 291 
identified via whole-genome sequencing, grouped by founder and by gene. Amplification of the tufA 292 
locus are counted separately from other mutations in tufA. A. Translation-associated genes B. All other 293 
genes. Genes in bold are those where mutations were detected in significantly fewer founders than 294 
expected by chance (P < 0.05, Benjamini-Hochberg correction, see Methods). Numbers in parentheses 295 
indicate the total number of mutations in that gene observed across all sequenced populations. 296 

Genome-wide adaptive responses to TM perturbations 297 

Adaptive evolution of the TM stalls because natural selection acts on multiple cellular modules 298 

in E. coli, all of which are encoded on a single non-recombining chromosome. However, 299 

modules are linked not only physically by the encoding DNA but also functionally in that they 300 

all contribute to the fitness of the organism. This functional interdependence implies that 301 

mutations in one module may alter the selection pressure on other modules. For example, 302 

improvements in translation efficiency may increase the selection pressure to improve efficiency 303 

of catabolic reactions, analogously to the “shifting and swaying of selection coefficients” on 304 

enzymes in the same metabolic pathway discussed in the classic work by Hartl et al. [27]. 305 

Therefore, in addition to intra-module epistasis demonstrated above we might expect inter-306 

module epistasis, such that initially different TM variants could precipitate distinct adaptive 307 

responses in the rest of the genome. To test this hypothesis, we examined the distribution of 308 

generic mutations among founder genotypes. 309 

We found that generic mutations in 7 out of 22 genes occurred in fewer founders than expected 310 

by chance (Figure 4B, Methods). For example, we detected five independent mutations in the 311 

ybeD gene, which encodes a protein with an unknown function, and all these mutations occurred 312 

in the V founder (P < 10–4, randomization test with Benjamini-Hochberg correction). Similarly, 313 
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all three mutations in the alaA gene, which encodes a glutamate-pyruvate aminotransferase, 314 

occurred in the A founder (P < 10–4, randomization test with Benjamini-Hochberg correction). 315 

To corroborate these statistical observations, we reconstructed the T93G mutation in the ybeD 316 

gene in all six founder strains and directly measured its fitness effects. As expected, this 317 

mutation confers a 5.9% fitness benefit in the V founder. In contrast, it is strongly deleterious in 318 

the P founder and indistinguishable from neutral in the remaining founders (Figure 5). These 319 

results show that at least some genetic perturbations in the TM can have genome-wide 320 

repercussions. They can precipitate bouts of genome-wide adaptive evolution that are contingent 321 

on the initial perturbations in the TM. 322 

 323 

Figure 5. Fitness effect of the ybeD T193D mutation in different founders. Fitness effect of the 324 
mutation is measured in a direct competition of each founder with the mutation against the founder without 325 
the mutation. Error bars show the SEM. 326 

  327 
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Discussion 328 

The fitness of an organism depends on the performance of many molecular modules inside cells. 329 

While natural selection favors genotypes with better-performing modules, it is difficult for 330 

evolution to improve multiple modules simultaneously, particularly when recombination rates 331 

are low and many adaptive mutations in different modules are available. In this regime, natural 332 

selection is expected to focus on those modules where mutations provide large fitness benefits, 333 

while the adaptive evolution in other modules stalls. Here we have documented and 334 

characterized the onset of evolutionary stalling in the adaptation of the translation machinery 335 

(TM) in E. coli. 336 

We found that populations whose TMs were initially severely perturbed (incurring ~35% fitness 337 

cost) rapidly discovered and fixed TM-specific beneficial mutations. Populations whose TM had 338 

a intermediately strong defect (incurring ~19% fitness defect), discovered TM-specific 339 

mutations, but only some of these populations were able to fix them due to clonal interference. 340 

Thus, adaptive evolution of the TM begins to stall when the TM defect incurs a fitness cost of 341 

about 19%. As a consequence, populations whose TMs were initially mildly perturbed (incurring 342 

≲ 3% fitness cost) adapted by acquiring mutations that did not directly affect the TM. 343 

Furthermore, even in populations where TM-specific mutations occurred, their fixations 344 

essentially ceased by the end of the experiment, while mutations in other modules continued to 345 

accumulate. Our results imply that the focus of natural selection shifted from the TM to other 346 

modules in the cell within ~600 generations (about 1 to 2 fixation events), before the 347 

performance of the original unperturbed TM was fully recovered. 348 

There could be two explanations for why the focus of natural selection shifts away from the TM, 349 

despite it still being defective. First, there may simply be no more TM-specific beneficial 350 

mutations available, i.e., natural selection may have reached its limit on TM improvement.  351 

Alternatively, TM-specific beneficial mutations are available but provide fitness benefits that are 352 

too small to overcome clonal interference. We favor the latter explanation because both 353 

theoretical and empirical (albeit limited) evidence suggest that small-effect beneficial mutations 354 

should be more common than large-effect mutations [24,84–86]. The fact that we observed TM-355 

specific mutations with effects ≥ 5% indicates that the rate of such mutations is relatively high, 356 

and we can expect the rate of TM-specific mutations with effects < 5% to be even higher. In fact, 357 

if we relax the stringency criteria for detecting beneficial mutations, we find one TM-specific 358 

mutation in the gene rbbA in the population E5 (Figure S5). This suggests that small-effect TM-359 

specific beneficial mutations do arise and supports the conjecture that adaptation of the TM 360 

stalled rather than stopped. 361 

Our results give us a glimpse of the fitness landscape of the TM. This landscape appears to be 362 

broadly consistent with Fisher’s geometric model [85,87,88] in that more defective TMs have 363 

access to beneficial mutations with larger fitness benefits than less defective TMs. However, 364 

Fisher’s model does not inform us how many distinct genotypes encode highly performing TMs 365 

and how they are connected in the genotype space. We observed that the different founders 366 

gained distinct TM-specific adaptive mutations. This suggests that the high-performance TMs 367 

can be encoded by multiple genotypes that either form a single contiguous neutral network [89] 368 

or multiple isolated neutral networks [90]. Moreover, we observed that most of our populations 369 

with initially severely perturbed TMs were able to discover TM-specific mutations. This 370 
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suggests that genotypes that encode high-performing TMs may be present in the mutational 371 

neighborhoods of many genotypes [89,91]. 372 

In this work, we identified several TM-specific adaptive mutations, but their biochemical and 373 

physiological effects are at this point unknown. However, the fact that 11 chromosomal 374 

amplifications and 12 noncoding or synonymous events occurred in the tufA operon suggests that 375 

some of the TM-specific mutations are beneficial because they adjust EF-Tu abundance in the 376 

cell. This would be consistent with previous evolution experiments [42,92,93]. Directly 377 

measuring the phenotypic effects of the TM-specific mutations described here is an important 378 

avenue for future work. 379 

Our results show that evolutionary stalling limits the ability of natural selection to improve a 380 

module, but this limit is not absolute. As a population accumulates beneficial mutations in other 381 

modules, their supply will be depleted and their fitness effects will likely decrease due to 382 

diminishing returns epistasis [50,63,70,71,94,95]. These changes will in turn increase the 383 

chances for small-effect mutations in the focal module to survive clonal interference thereby 384 

overcoming evolutionary stalling. While we did not observe resumption of adaptive evolution in 385 

the TM in this experiment, we find some evidence for such a transition in one other module. We 386 

detected 11 mutations in multi-hit genes that affect cytokinesis (Methods, Figures S6, S7). Most 387 

of these mutations reached high frequency in the second half of the experiment, suggesting that 388 

adaptation in the cytokinesis module was initially stalled and then resumed. 389 

Although adaptive evolution of a stalled module can resume once large-effect mutations in other 390 

modules are depleted, variability in selection pressures can replenish the supply of these 391 

competing mutations and thereby leave the focal module stalled for long periods of time. Given 392 

that populations in nature typically experience fluctuation in selective pressures, natural selection 393 

may not be able to fully optimize any module even over long evolutionary timescales. 394 

Our results imply that it is impossible to fully understand the evolution a cellular module in 395 

isolation from the genome where it is encoded and the population-level processes that govern 396 

evolution. The ability of natural selection to improve any one module depends on the population 397 

size, the rate of recombination, the supply and the fitness effects of all beneficial mutations in the 398 

genome and on how these quantities change as the population adapts. Further theoretical work 399 

and empirical measurements integrated across multiple levels of biological organization are 400 

required for us to understand adaptive evolution of modular biological systems. 401 

  402 
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Materials and methods 403 

Materials, data and code availability 404 

All strains and plasmids constructed and used in this work are available per request. Raw 405 

sequencing data were analyzed with the python-based workflow implemented in Ref. [51] and 406 

run on the UCSD TSCC computing cluster via a custom python wrapper script. All analysis and 407 

plots reported in this manuscript have been performed using the R computing environment. The 408 

script, modified reference genomes and the raw data (except for raw sequencing data) used for 409 

analysis can be found at https://github.com/sandeepvenkataram/EvoStalling. Raw sequencing 410 

data for this project have been deposited into the NCBI SRA under project PRJNA560969. 411 

Media and culturing conditions 412 

Liquid medium is the Luria-Bertani medium (LB) (per liter, 10 g NaCl, 5 g yeast extract, and 10 413 

g tryptone) and solid medium is LBA (LB with 1.5% agar), unless noted otherwise. All 414 

incubations were done at 37°C, and liquid cultures were shaken at 200 rpm for aeration, unless 415 

noted otherwise. All media components and chemicals were purchased from Sigma, unless noted 416 

otherwise. 417 

Strains and plasmids 418 

All strains in this study were derived from E. coli K12 MG1655. Strain genotypes are listed in 419 

Table S2. Complete methods for the construction of the E, S, Y, V, A and P strains, which harbor 420 

a single tuf gene variant replacing tufA gene, can be found in Ref. [58]. Strains with engineered 421 

ybeD, rpsF and rpsG mutations were constructed using the same method, except the 422 

chromosomal kanR marker was not removed (Figure S9). For a full list of primer sequences used 423 

for ybeD, rpsF and rpsG engineering, see Table S2. 424 

Plasmids pZS1-TnSL and pZS2-TnSL were used in competition assays to provide Ampicillin 425 

and Kanamycin resistance, respectively. pZS1-TnSL, derived from pUA66 [96], was kindly 426 

provided by Georg Rieckh. pZS2-TnSL was constructed from pZS1-TnSL by replacing the 427 

ampR cassette with kanR. 428 

Evolution experiment 429 

Experimental evolution was performed by serial dilution at 37°C in LB broth. To start the 430 

evolution experiment, an initial 5 mL overnight culture was inoculated from a single colony from 431 

the frozen stock of each founder strains. 10 replicate populations were started from single 432 

colonies derived from these overnight cultures. The replicates were serially transferred every 24h 433 

(±1h) as follows: 100 µL of saturated culture were transferred into 10 mL saline solution (145 434 

mM NaCl), 50 µL of these dilutions were then transferred to 5 mL fresh LB (tubes were 435 

vigorously vortexed prior to pipetting). This resulted in a bottleneck population size of about 436 

5×105 cells. Freezer stocks (200 µL of 20% glycerol + 1 mL saturated culture) were prepared 437 

approximately every 100 generations and stored at –80°C. 438 
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Competitive fitness assays 439 

To carry out pairwise competition assays, an Ampicillin-resistant and a Kanamycin-resistant 440 

versions of the query and reference strains/populations were generated by transforming these 441 

strains/populations with plasmids pZS1-TnSL and pZS2-TnSL, using standard methods [97]. 442 

Two replicate competition assays were performed for each query-reference pair with reciprocal 443 

markers (four assays total per pair), except for allele-replacement mutants (see below). To 444 

validate that the resistance-marker plasmids do not differentially impact fitness in any of the six 445 

founder genetic backgrounds, we carried out three-way competition assays between the KanR-446 

marked, AmpR-marked and the unmarked versions of the founders (Figure S8). Since the allele-447 

replacement mutants carry a chromosomal kanR marker (see above), they were only competed 448 

against AmpR reference strains. 449 

To start a competition assay, a query and a reference cultures were scraped from frozen stocks 450 

and inoculated into 5 mL LB-Amp or LB-Kan media as appropriate. After about 24 hours, the 451 

query and the reference cultures were mixed together in ratio 1:9 and diluted 1:10,000 into 5 mL 452 

fresh LB media. After that, the mixed culture was propagated as in the evolution experiment. To 453 

determine the relative abundances of the query and reference individuals in the mixed culture, 454 

100 µl of appropriately diluted cultures were plated on both LB-Amp and LB-Kan plates after 455 

24, 48 and 74 hours of competition. For some competitions, where fitness differences were 456 

particularly large or small, samples from 0 or 96 hours were also obtained. Plates were 457 

photographed after an ~24-hour incubation period (when colonies were easily visible) and 458 

colonies were automatically counted with the OpenCFU software [98]. In each competition, we 459 

estimated the fitness of the query strain relative to the reference strain by linear regression of the 460 

natural logarithm of the ratio of the query to reference strain dilution-adjusted colony counts 461 

against time. Variance was also estimated from these regressions. Replicate measurements were 462 

combined into the final estimate using the inverse variance weighting method. 463 

Competitions between two reciprocally marked versions of the same strain represent a special 464 

case. If the two marker-carrying plasmids impose exactly the same fitness cost, our competition 465 

assay between two reciprocally marked versions of the same strain is fully symmetric, which 466 

implies that in expectation it must yield a fitness value of exactly zero. Any estimate of fitness 467 

from a finite number of measurements even in such idealized fully symmetric case will not zero. 468 

However, such deviations from zero would reflect only measurement noise rather than any 469 

biologically meaningful fitness difference. In reality, the two marker-carrying plasmids may 470 

impose slightly different fitness costs, but because the difference in the cost is detectable (see 471 

above), we still interpret deviations from zero in our fitness estimates as noise. Therefore, in 472 

competitions of reciprocally marked versions of the same strain, we set our fitness estimate to 473 

zero and use the four fitness values obtained from the replicate assays to estimate the noise 474 

variance as the average of the squared fitness value. 475 

Growth rate assays 476 

Strains were inoculated from frozen stock into 5 mL LB media in 15 mL culture tubes and grown 477 

overnight. After 24 hours of growth, the cultures were diluted 1:100 into fresh 5 mL of media 478 

and grown for 4 hours. They were diluted again 1:100 into 200 µl of LB in flat-bottom Costar 96 479 

well microplates (VWR Catalog #25381-056) and grown in a Molecular Devices SpectraMax i3x 480 
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Multi-mode microplate reader at 37°C with shaking for 24 hours with absorbance measurements 481 

at 600 nm every 15 minutes. Three replicate growth measurements were conducted for each 482 

strain. Optical density data were first ln-transformed. A linear regression model was fit to all sets 483 

of 5 consecutive data points where OD was below 0.1. Growth rate for the culture was estimated 484 

as the maximal slope across all of these 5-point regressions. The mean growth rate and standard 485 

error of the mean were calculated from replicate measurements. 486 

Genome sequencing 487 

Whole-genome sequencing was conducted for population samples of 6 replicate populations for 488 

each of the 6 founders (36 total populations). Each population was sequenced at 11 timepoints, 489 

every 100 generations beginning at generation 0. Four lanes of 100 bp paired end sequencing 490 

was conducted at the UCSD IGM Genomics center on an Illumina HiSeq 4000 machine. The 491 

average per-base-pair coverage across all samples was 131x. Samples E1_t600, E2_t500, 492 

Y3_t600, P3_t600, P2_t800, P2_t1000 and A1_t700 yielded data inconsistent with the rest of the 493 

allele frequency trajectories from the same population, likely due to mislabelling during sample 494 

preparation. These samples were subsequently removed from our analysis.  495 

DNA extraction and library preparation 496 

To minimize competitive growth during handling, 100 µl of a 1:10,000 dilution of frozen stock 497 

from each sample was plated on LB agar plates and incubated at 37°C overnight. The entire plate 498 

of colonies was then scraped and used for genomic DNA extraction. DNA extractions were 499 

conducted using the Geneaid Presto mini gDNA Bacteria Kit (#GBB300) following the 500 

manufacturer’s protocol. Library preparation was conducted using a modified Illumina Nextera 501 

protocol as described in [99]. 502 

Validation of variants with Sanger sequencing 503 

43/45 variants, particularly those in loci previously annotated to be involved with translation, 504 

were validated using Sanger sequencing. Briefly, populations and timepoints containing the 505 

variant at substantial frequency were identified, and clones isolated for genomic DNA extraction, 506 

PCR and Sanger Sequencing using standard protocols. The primers used for this validation are 507 

detailed in Table S3. The two mutations that failed to validate were expected to be at relatively 508 

low frequency in their populations (17% and 38%), so additional clone sampling may be 509 

required to validate these events. 510 

Analysis of sequencing data 511 

Variant calling 512 

Sequenced samples were mapped to the MG1655 reference genome (NCBI accession U00096.3) 513 

and variants were called using a custom breseq-based pipeline described in Supplementary text 514 

section 4 of Ref. [51] and kindly provided to us by Dr. Benjamin Good. Briefly, this method 515 

leverages the fact that each population was sampled multiple times across the evolution 516 
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experiment to increase our ability to distinguish real low-frequency variants from sequencing 517 

errors and other sources of noise.  518 

The reference genome was modified with the appropriate tufA sequence for each genetic 519 

background used in the evolution experiment along with the removal of the tufB sequence, and 520 

annotation coordinates were lifted over to be consistent with the original MG1655 reference 521 

sequence using custom scripts. The modified reference genomes and annotation files are 522 

included in the github repository. The variants reported in Table S1 have been lifted back to be 523 

compatible with the original MG1655 reference genome. 524 

Annotation 525 

Variant annotation was conducted using the software package ANNOVAR[100]. Coding 526 

variants were established as normal, while noncoding variants were annotated as being 527 

associated with the closest gene (in either strand, in either direction) in the genome, as long as it 528 

was less than 1 kb away. As ANNOVAR is not set up to work with E. coli by default, the E. coli 529 

MG1655 nucleotide annotation was downloaded in GFF3 form from NCBI Genbank 530 

(U00096.3). Cufflinks[101] gffread tool was used to convert this file to GTF, which was then 531 

converted to GenePred by using the UCSC Genome Browser gtfToGenePred tool. The final 532 

annotation file was generated using the ANNOVAR retrieve_seq_from_fasta.pl script. The 533 

annotation file was lifted over to be compatible with each reference sequence. 534 

Copy number variants were called manually using genome-wide coverage plots generated using 535 

samtools[102] “view” command and the R computing environment. As these variants have their 536 

frequency confounded with their copy number, only their presence/absence was noted for 537 

downstream analysis. 538 

Filtering 539 

We considered single nucleotide polymorphisms, short insertion/deletion and the manually 540 

identified copy number variants for further analysis. Chromosomal aberrations were ignored 541 

because breseq appears to have a high false positive rate (average of 27 “junction” calls per 542 

population across all timepoints). Variants were filtered in three successive steps. (1) Variants 543 

not identified in multiple consecutive time points were removed. (2) Variants supported by less 544 

than 10 reads across all timepoints in a given population were removed. (3) Since we observed 545 

fixation events in every population and since there should be no DNA exchange, all truly 546 

segregating variants present in a population at generation 100 must either be fixed or lost in 547 

generations 900 and 1000. Thus, we removed variants that failed to do so. 548 

Variants that were present at an average frequency ≥ 95% at generation 100 across at least 18 549 

populations were denoted as ancestral mutations that differentiate the founder from the reference 550 

genome (n = 10). Variants that were not ancestral but present at ≥ 95% on average across all 551 

populations derived from one founder were denoted as founder mutations (n = 11). These 552 

mutations were likely introduced as a byproduct of the strain engineering process. Multiallelic 553 

variants (two or more derived alleles present in a single population at the same site) were also 554 

removed as likely mapping artifacts. Finally, variants that were present at generation 100 in 11+ 555 

populations (of 36 total sequenced populations) are either mapping artifacts or pre-existing 556 

variants and were not considered further (n = 169, including the 10 ancestral mutations identified 557 

earlier). 558 
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Identification of adaptive mutations 559 

The putatively adaptive mutations were identified as follows. We first identified mutations that 560 

reached at least 10% frequency, were present in at least two consecutive time points and whose 561 

frequency changed by at least 20% throughout the evolution. We then merged together such 562 

mutations within 10 bp of each other as likely being derived from a single event. This resulted in 563 

a set of candidate adaptive mutations. To identify likely adaptive mutations in this candidate set, 564 

we considered only mutations in “multihit” genes, i.e., genes with 2 or more candidate adaptive 565 

mutations. 566 

Identification of modules in the genome 567 

The 215 genes annotated as being associated with translation were identified using the Gene 568 

Ontology database at http://geneontology.org/ by searching for all E. coli K12 genes that were 569 

identified in a search for “translation OR ribosom”. Similarly, the 45 genes associated with 570 

cytokinesis were identified using a search for “cytokinesis”. 571 

Statistical analyses 572 

The expected number of mutations in multihit genes was calculated via multinomial sampling. 573 

Mutations were randomly redistributed across all genes in the E. coli genome controlling for 574 

variation in gene length. The average of 10,000 such randomizations was used to calculate an 575 

empirical FDR. A similar procedure was used to estimate the probability of observed as many or 576 

more TM-specific mutations by chance as we actually observed in this study. 577 

To test whether mutations in the 7 TM-specific multi-hit loci were distributed uniformly across 578 

the six founders we first estimated the entropy of the distribution of mutations across founders 579 

for each gene. Mutations in that gene were then randomly redistributed across six founders 580 

10,000 times, weighted by the total number of TM-specific mutations observed in each founder. 581 

An empirical P-value was calculated as the fraction trials with smaller than observed entropy 582 

value. These P-values were then corrected for multiple testing across the 7 TM-specific loci 583 

using the Benjamini-Hochberg procedure. We used the same procedure to test for significant 584 

deviations in the distributions of generic mutations across founders. 585 

Acknowledgements 586 

We thank members of the Kryazhimskiy and Kaçar groups, Joanna Masel, Ryan Gutenkunst, 587 

Suparna Sanyal, Grant Kinsler, Justin Meyer, and Lin Chao for input and feedback. We thank 588 

Alex Pleşa, Divjot Kaur, Emily Peñaherrera, Kevin Longoria and Lesly Villarejo for laboratory 589 

assistance. We thank Huanyu Kuo for the analysis of growth-curve data. We thank Eva 590 

Garmendia for providing the recombineering plasmids and Georg Rieckh for providing the 591 

resistance marker plasmids. We thank Benjamin Good for help with his genome sequencing data 592 

analysis pipeline. We thank Kristen Jepsen and the UCSD Institute for Genomic Medicine for 593 

sequencing services and the San Diego Supercomputing Center for providing the computational 594 

environment. BK acknowledges the support by the John Templeton Foundation (#58562 and 595 

#61239); the NASA Exobiology and Evolutionary Biology Program (#H006201406) and the 596 

NASA Astrobiology Institute (#NNA17BB05A). SK acknowledges the support by BWF Career 597 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2019. ; https://doi.org/10.1101/850644doi: bioRxiv preprint 

https://doi.org/10.1101/850644
http://creativecommons.org/licenses/by-nc/4.0/


Award at the Scientific Interface (#1010719.01), the Alfred P. Sloan Foundation (#FG-2017-598 

9227) and the Hellman Foundation. 599 

Supplemental Figures and Tables 600 

Figure S1 601 

Fitness of founders relative to the E strain vs. growth rate. Related to Figure 1. 602 

 603 
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Figure S2 605 

Competitive fitness of the 60 evolved populations relative to their founders, with error bars 606 

showing ±1 SEM. Related to figure 1. 607 

 608 
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Figure S3 610 

Genome-wide coverage of 11 populations with evidence of tufA amplifications shown at one 611 

timepoint where the amplification is detected. The red vertical dashed lines denote the genomic 612 

coordinates ~50kb upstream and downstream of the tufA locus. Related to figure 2. 613 
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Figure S4 615 

Mutational trajectories for all 36 sequenced populations. Each line represents a single mutation 616 

that changed in frequency by > 20%. Thin lines represent mutations in loci that were only 617 

mutated once across the entire dataset, while thick lines are loci that were multiply mutated. 618 

Generic mutation are shown in grey and TM-specific mutations are shown orange. Orange 619 

shading indicates timepoints in which a tufA amplification was detected in that population. 620 

Related to figure 2. 621 

 622 

 623 
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Figure S5 625 

Similar to Figure S4 but for mutations with the relaxed criterion for frequency changes (> 10% 626 

instead of > 20%). This relaxation of our filtering criteria increases the total number of detected 627 

mutations from 288 to 423 and the number of putatively adaptive mutations in multi-hit genes 628 

from 178 to 263. The FDR for putatively adaptive mutations in multi-hit genes is 21.9%. This 629 

relaxed filtering yields only one additional TM-specific mutation in gene rbbA in population E5. 630 

Related to figure 2. 631 

 632 

 633 
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Figure S6 635 

Similar to Figure S4 but highlighting genes annotated as being involved with cytokinesis (blue-636 

green) along with translation genes (orange). Gene names are only shown for cytokinesis 637 

mutations. Related to figure 2. 638 

 639 

  640 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2019. ; https://doi.org/10.1101/850644doi: bioRxiv preprint 

https://doi.org/10.1101/850644
http://creativecommons.org/licenses/by-nc/4.0/


Figure S7 641 

Similar to Figure 3, but considering mutations (n=11) in cytokinesis-specific rather than TM-642 

specific genes in all founders. “Generic” in this case is all non-cytokinesis-associated genes, 643 

including TM-specific genes. Related to figure 3. 644 

 645 
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Figure S8 647 

3-way competition between Kanamycin-resistant, Ampicillin-resistant and unmarked strains for 648 

each founder to test for fitness differences between markers. Three replicates were conducted for 649 

each assay. Related to table 1. 650 
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Figure S9 652 

Methods for integrating mutations into the genome. Related to figure 5. 653 
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Table S1 656 

List of selected (>20% frequency change) variants. Putatively adaptive (locus repeatedly 657 

mutated) variants, which were used for all analyses after Figure 2, are annotated in the table. 658 

Table S2 659 

Primer names and sequences used for strain construction and validation. 660 

Table S3 661 

Primer names and sequences used for Sanger sequencing validation of 43/45 tested variants. 662 
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