
Regularities in species niches reveal the World’s climatic regions1
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Although classifications of the Earth’s climates date back to the ancient Greeks, the climatic
regions shaping the distribution of animals remain poorly resolved. Here we present a classification
of global climates based on regularities in realised niches of 3657 amphibians, 7204 reptiles, 10684
birds and 4574 mammals. We found 16 main climatic regions that are mostly consistent across
groups and previous plant expert-based classifications, confirming the existence of major climatic
restrictions for life. The results also suggest that differences among groups likely relate to their
particular adaptations and dispersal capabilities. We further show how the integration of species
niche classifications with geographical information provides valuable information on potential mech-
anisms shaping the climatic regions. Our climate classification has applications in several disciplines,
including conservation planning and ecological and evolutionary studies.

INTRODUCTION5

Climate governs the basis for life on Earth. Besides6

historical contingencies and geographical barriers, abiotic7

conditions determine species ranges [1–3] and derived di-8

versity patterns [4, 5]. On a global scale, distinctive cli-9

matic regimes impose generalised restrictions, leading to10

the formation of species pools adapted to them and ul-11

timately to the generation of biomes [6]. Identifying the12

boundaries of these climate regimes is, therefore, a fun-13

damental challenge to understand how life organizes on14

Earth.15

Already Pythagoras proposed a classification of cli-16

mate regimes of the known world in the sixth century17

BC [7]. However, it was not until the 19th century when18

geographers laid the foundations for such classifications19

[8]. By that time, researchers noticed the close rela-20

tionship between the distribution of various life forms,21

especially vegetation types, and climate [8]. For in-22

stance, Köppen built his long-standing climate classifi-23

cation from pioneer plant classifications, assuming that24

vegetation forms carry information about climatic con-25

ditions [9, 10]. This assumption has received consider-26

able support [11], and the Köppen classification system27

is widely used nowadays as the standard classification28

of climates in a range of disciplines, including climatol-29

ogy [12], geography [13], conservation planning [14], and30

ecology [15]. However, the fact that plant species are31

good indicators of general climatic conditions does not32

necessarily imply that such conditions restrict the dis-33

tribution of other organisms in the same manner. If34

different taxa have different climatic adaptations, the35

boundaries defining climate types will vary among them.36

Following Thornthwaite [10], the “truly active factors”37

describing a climate type may vary among organisms.38

Thus, while Köppen’s climate classification can indicate39

the active climatic factors for plants, it remains unknown40

whether they are also appropriate for other organisms.41
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Despite several attempts to refine or propose alternative42

climatic regions [16–19], quantitative studies defining cli-43

matic regions for other organisms are still lacking.44

The current information on species distributions and45

global climatic variables, together with recent advances46

in niche modelling and classification techniques provide47

an unprecedented opportunity to identify the climatic48

boundaries shaping the distribution of faunas and flo-49

ras across the globe. The last decades have witnessed50

a tremendous collective effort to record occurrences of51

a large number of species [20], which has resulted in52

comprehensive datasets with the distributional ranges of53

several groups [21–23]. Also, data on climatic variables54

at a global scale have been developed at high spatial55

resolutions [24, 25]. This information allows to charac-56

terise the realised climatic niches of diverse species and57

to find regularities among them. For example, project-58

ing these realised climate niches into a climatic space [26]59

should, if climatic boundaries exist, reveal co-occurring60

groups of species across particular portions of the cli-61

matic space. Thus, identifying these portions, or niche62

domains, should uncover the main climatic boundaries63

shaping the organization of life (Fig. 1).64

Besides climate shaping niche domains, dispersal bar-65

riers and historical contingencies may also influence their66

shape [3, 27, 28]. Therefore, similar climates may have67

different effects across geographic regions [29]. For in-68

stance, while a given climate may lead to specific species69

pools in some parts of the Earth, the same climate in70

other parts of the Earth may not hold specific species71

pools. Such lack of specific species can occur, for ex-72

ample, because the required adaptations have not ap-73

peared [30], the adapted species have been not able to74

disperse [31], or the area is too small to hold large species75

pools [32]. Thus, studying the signature of these histor-76

ical and geographical processes, the geographical signal77

for short, in niche domains can provide valuable informa-78

tion about the potential mechanisms behind them and79

their associated climatic regions.80

Here we explore the global climate regions of81

Tetrapoda by characterising the climatic niche domains82

of amphibians, birds, mammals and reptiles. Tetrapoda83
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FIG. 1: Workflow to identify niche domains and climatic regions. Using the climatic conditions a given
species experiences within its range (1), we project the species’s niche into a climatic space discretised in an optimal
number of bins (Appendix S1) (2). We translate the binned data into a weighted bipartite network, where climatic
bins and species form the nodes and the probabilities of finding the species in the bins form the weighted links (3).
Using a network community detection algorithm, we identify domains of the climatic space with similar species (4,

upper). The climatic conditions defining these domains delineate the corresponding climatic regions of the Earth (4,
lower).The striped climatic bin is linked to species classified in both climatic domains and, therefore, it represents a

diffuse transition with low specificity.

is a well-suited group for our purpose. First, comprehen-84

sive databases are available, including the distributional85

ranges of most species in the group [21–23]. Second,86

the different classes within Tetrapoda possess diverse ca-87

pabilities to disperse and withstand abiotic conditions.88

Therefore, we can investigate if various capabilities influ-89

ence climatic niche domains, and possibly generalise the90

climatic regions to other groups. Third, there is accumu-91

lated evidence on the main climatic factors controlling92

the distribution of these species, which simplifies the se-93

lection of appropriate climatic variables. In particular,94

the distribution of tetrapods is strongly determined by95

water and energy aspects of climate [4, 33–37]. Finally,96

researchers study Tetrapoda species in several disparate97

fields – from animal husbandry [38] to ecological [39] and98

evolutionary studies [40] – where a description of their99

climatic regions can be especially useful.100

In our classification approach, we first approximate the101

realised niche of each species as the probability of finding102

the species across a two-dimensional space that repre-103

senting water and energy aspects of climate (Fig. 1). We104

then use a community-detection algorithm from network105

theory to simultaneously find portions of the climatic106

niche space holding similar species, the niche domains,107

and the species grouped into these domains. Mapping108

back to the Earth’s surface gives for each climatic niche109

domain a climatic region. We then examine the transi-110

tion zones and the geographical signal in the climatic re-111

gions. The novel climatic regions confirm the existence of112

generalised climatic constraints across life forms. There-113

fore, the climatic regions provide valuable information114

for conservation and ecological and evolutionary studies115

of Tetrapoda in particular and animals in general.116

RESULTS117

Major climatic niche domains of Tetrapoda118

We first identified the niche domains of each Tetrapoda119

class independently. We calculated the proportion of ob-120

servations of each species within each bin of a climatic121

space defined by potential evapotranspiration (PET) and122

annual precipitation (AP; Fig. 1, Methods and Appendix123

S1). We represented this data as a weighted bipartite124

network where climatic bins and species form two dis-125

junct sets of nodes, and the probabilities of finding the126

species in the bins form the link weights. Using a hierar-127

chical network clustering algorithm [41, 42], we obtained128

groups of climatic bins holding similar species (i.e. niche129

domains) and the species most associated with them.130

We found similarities among Tetrapoda classes in the131

detected niche domains, but also observed some differ-132

ences (Fig. 2). For instance, the number of major do-133

mains with 50 or more species in the lower hierarchical134

level is similar across Tetrapoda classes, ranging from 13135

to 15. However, mammals and birds show a domain of136

low energy, whereas reptiles present some domains across137

arid conditions, that is with elevated energy inputs and138

low water availability (Fig. 2). These differences seem139

to be related to the particular adaptations of each group140

to withstand climatic conditions. Nevertheless, the clas-141

sification of most domains was largely congruent across142

classes, and hence we classified the climatic space of the143
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FIG. 2: Tetrapoda niche domains across the climatic space. The climatic niche domains of each group shown
across a space defined by potential evapotranspiration (PET) as a surrogate of energy and annual precipitation

(AP) as a surrogate of water inputs. Tetrapoda superclass domains labelled so that E and W represent energy and
water, respectively, and superscripts H, M and L mean high, medium and low, respectively. Numerical subscripts

differentiate domains of similar climates. Bootstrap support between 0 and 1. The dotted line represents the
domains at the highest hierarchical level. Domains formed of less than 50 species coloured in dark grey.

Tetrapoda superclass by using all species jointly. The144

niche space of Tetrapoda divided into 16 main domains145

that were similar to those of the independent classes, and146

some of the above-explained particularities did not ap-147

pear (Fig. 2).148

Since uncertainties related to the ranges of species ex-149

ist, we employed a bootstrap and a significance clustering150

procedure [43, 44] to asses the domain robustness (Ap-151

pendix S2). While several domains were well supported,152

we found that the niche domains corresponding to inter-153

mediate energy (between approximately 1000 and 1500154

PET units; EM climates in Fig. 2) and low to moderate155

water (up to approximately 800 m.m.l.l.; WL to WM)156

were among the least supported. This robustness analy-157

sis shows that these niche domains are more challenging158

to classify.159

Tetrapoda vs Köppen’s climatic regions160

With delineated niche domains, we studied the geo-161

graphic location of their climatic conditions, the climatic162

regions in Fig. 1 and 3, which allowed for a more pre-163

cise comparison between groups and Köppen’s regions.164

The similarities among the regions of Tetrapoda classes165

measured as Adjusted Mutual Information (AMI) ranged166

from 0.57 to 0.68, with mean AMI = 0.62 (Table S1).167

Moreover, the regions based on the niche domains of the168

superclass Tetrapoda were mostly congruent with the re-169

gions of its independent classes (mean AMI = 0.71, rang-170

ing from 0.66 to 0.77). Köppen’s regions were more dis-171

similar both to the regions of Tetrapoda (AMI = 0.44)172

and the ones of Tetrapoda classes (mean AMI = 0.44,173

ranging from 0.40 to 0.47).174

Focusing on particular regions, we saw that climates175

of high energy (EH) were consistent among groups and176

Köppen’s classification. Desert climates (high energy and177

low water, EHWL, BWh and BWk according to Köppen’s178

system) were the most similar across all classifications.179

Tropical savanna and steppe climates (high energy and180

medium water, EHWM, Aw and BSh respectively follow-181

ing Köppen) were also consistently defined, though both182

of these Köppen regions were often classified together183

in all groups but reptiles (Fig. 3). Similarly, Köppen’s184

tropical rainforest (Af) and tropical monsoon (Am) cli-185

mates were for the most part well recovered. However,186

we found three different tropical-humid regions, each one187

mostly corresponding to one of the three largest masses of188

tropical rainforests: Amazonian, African and Southeast189

Asian rainforests; EHWH
1, EHWH

2 and EHWH
3, respec-190

tively (Fig. 3). Regarding regions of low energy (conti-191

nental, E, and polar climates, D, corresponding to the192

highest hierarchical level in Köppen’s system), we found193

a slightly higher level of disagreement between Köppen’s194
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and Tetrapoda classifications (Fig. 3). Finally, temper-195

ate climates (medium energy EM) were the least congru-196

ent between groups and Köppen’s regions. Regions of197

medium energy were at the same time the least congru-198

ent among the different classifications and the least sup-199

ported by the bootstrap analyses, suggesting that these200

climates impose less restrictive conditions.201

Climatic transition zones202

A complete understanding of niche domains and their203

associated climatic regions entails exploring whether the204

domains have hard or diffuse transitions. Climatic condi-205

tions corresponding to diffuse transitions should present206

low specificity levels to the domain where they belong207

(Fig. 1). Our network approach allows to calculate this208

specificity by the dual classification of climatic bins and209

species into same niche domains (Fig. 1). We com-210

puted the specificity of each climatic bin as the ratio211

between the link weights of the species classified in the212

same domain and the total link weights [3, 45]. Then,213

we projected these values geographically. As expected,214

lower specificity values were in general associated with215

the boundaries of the climatic regions (Fig. 4a and S1).216

Our results also revealed that harsh conditions, such217

as desert and continental-polar climates (EHWL and218

ELWL), present the highest specificity levels, regardless219

of the group (Fig. 4a and S1), reflecting the difficulties220

to colonise these climates. Contrarily, temperate regions221

showed the lowest levels of specificity. These regions were222

also weakly supported in the bootstrap analysis; we found223

that bootstrap p-values and mean specificity were signif-224

icantly correlated (stand. Glmm. coeff. 6.21; P < 0.001;225

R2 conditional = 0.29, see Material and Methods). To-226

gether with the higher variability of these regions across227

groups, this result further supports the idea that these228

climatic conditions could impose less restrictive condi-229

tions to Tetrapoda.230

Geographical signal in climatic regions231

Historical and geographical processes can produce the232

detection of climates leading to specific species pools in233

some regions of the Earth but not in others. Thus,234

to explore for this geographical signal, we first com-235

pared the distribution of the climatic conditions and236

species grouped within the same niche domain. A ge-237

ographic mismatch between species and climate distri-238

butions would point to portions of the climatic regions239

that are defined by species occurring in other geographic240

areas. Exploring these patterns for each niche domain241

revealed notable geographic agreement between species242

and climatic conditions of the same domain (Figs. 4b243

and S2-6). Nevertheless, we found some differences across244

groups and regions. More extreme climates showed larger245

mismatches between species and climates distributions.246

For instance, for all groups but reptiles, desert climate247

(EHWL) was mostly defined by species inhabiting Aus-248

tralia and to a lesser extent by species from the Namib-249

ian desert and The horn of Africa, with few or none250

species inhabiting the Sahara desert (Figs. 4c and S2-251

S6). Similarly, the northern climatic regions of amphib-252

ians and reptiles were defined by species at lower lat-253

itudes (Figs. S2-3). Approaching the geographical sig-254

nal more quantitatively (see Material and Methods), we255

found a stronger signal for the worse dispersers amphib-256

ians and reptiles than for mammals and birds (Fig. 4d),257

suggesting that dispersal capabilities can contribute to258

the geographical signal in the niche domains. Finally,259

the Tetrapoda superclass showed the lowest geograph-260

ical signal, which suggests that, beyond dispersion, an261

increased evolutionary time can reduce the geographical262

signal.263

DISCUSSION264

We detected 16 climatic regions governing the distri-265

bution of Tetrapoda. Despite the substantial physiolog-266

ical and functional differences among the groups, most267

of their niche domains and climatic regions are consis-268

tent. Some of these climatic regions resemble Köppen’s269

regions, which supports the idea that general climatic270

constraints organise the distribution of life on Earth.271

While we found a high general congruence across272

groups, some niche domains and climatic regions were273

more consistent than others. In general, more extreme274

climates, such as arid or low-energy continental areas,275

were well defined in all groups. These climates also276

presented high levels of specificity, showing that species277

adapted to other climates have more difficulties to with-278

stand these conditions. Both of these results suggest that279

extreme climates impose strong adaptive barriers [46, 47],280

even across distinctive evolutionary lineages.281

Contrarily, milder climatic conditions, especially tem-282

perate climates, showed the lowest specificity, statisti-283

cal support, and congruence across groups. These cli-284

mates are more difficult to classify due to the overlap285

in the climatic space of species pools with different cli-286

matic optima. Two complementary reasons can explain287

this ambiguity: First, while we used two variables widely288

recognised to shape Tetrapoda distributions, alternative289

variables, such as seasonal changes of energy and precip-290

itation [48], may also influence species inhabiting tem-291

perate regions. Including these variables might help to292

further separate temperate species pools across the cli-293

matic space. Second, the climatic conditions of these do-294

mains may not prevent the colonisation of species with295

other realised optima or preferences, which would gen-296

erate the observed overlap in the climatic space across297

milder conditions. Questions remain about the relative298

contribution of each factor.299

We also found some domains that were well supported300

but unique for each group. These differences between301
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FIG. 3: Tetrapoda groups and Köppen’s climatic regions are largely congruent. a Geographic location of
Tetrapoda niche domains and Köppen’s climatic regions. b Alluvial diagram showing the similarities among the

climatic regions. Colours according to Fig. 2.
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groups seem to relate to the particular physiological302

adaptations of each group. For instance, homeothermic303

birds and mammals defined a region of low energy, con-304

sistent with Köppen’s polar climates, that reptiles and305

amphibians lacked. Similarly, reptiles, a group holding306

several species adapted to arid environments [36], de-307

fined some regions of low precipitation and high PET.308

Hence, despite the high similarities among groups, our309

results stress that caution is needed when generalising310

the climatic regions to other groups of organisms.311

Beyond niche domains, our results also show differ-312

ences in the geographical signal across groups. That313

amphibians – species with the lowest dispersal capac-314

ity – showed the highest geographical signal suggests315

that dispersal processes play an essential role: worse dis-316

perser species have more difficulties tracking their pre-317

ferred climates [49], limiting the colonisation of disjoint318

areas with similar climates. Moreover, the Tetrapoda319

superclass shows the lowest geographical signal, which320

suggests that a increased evolutionary time can reduce321

this effect. Thus, evolutionary history – through the ap-322

pearance of convergent adaptations to similar climates in323

different geographic regions[50] – may also influence the324

geographical signal in niche domains. In any case, the325

ultimate causes and consequences of this signal require326

further attention. Why are some amphibians able to in-327

habit arid conditions in the Australian desert but not328

in the Sahara desert (Fig. S2)? Why can some reptiles329

withstand cold climates in and around the Himalayan330

mountains but not at the high latitudes of the northern331

hemisphere (Fig. S3)? These are some of the emerging332

fundamental questions whose answers require historical333

biogeographical and evolutionary approaches.334

Our results bring us closer to a definition of climatic335

regions that represent active factors for the organisation336

and evolution of life. Nevertheless, it would be interesting337

to improve some aspects in future studies. First, while338

we used a large number of species (about 26,000), they339

are taxonomically biased and only represent a small frac-340

tion of the terrestrial organisms. Similarly, we used two341

climatic variables widely known to affect the distribution342

and diversity patterns of animals and plants in general343

[4, 33], but other climatic variables might refine some of344

the least supported regions. Finally, our domains repre-345

sent portions of the realised climatic niche space, and this346

space may be influenced by historical, geographical, and347

biotic factors beyond pure climate [3, 27, 51]. Although348

the geographical signal was rather low, identifying po-349

tential niches may also improve the accuracy of climatic350

regions. At the current pace of biological data accumula-351

tion and computational development, it is reasonable to352

expect that some of these limitations will soon be over-353

come. Meanwhile, the considerable congruence of several354

climatic regions across the studied groups and Köppen’s355

system provides confidence in their robustness. Hence, it356

is likely that using more and better data would not pro-357

duce regions substantially different from those presented358

here.359

Regardless of how generalisable the results are, the360

niche domains and their associated species pools and cli-361

matic regions can be used as a basis for ecological and362

evolutionary studies, as well as for conservation planning363

concerning Tetrapoda. Some of the many questions that364

the results reported here (data available in Appendix S3)365

can help to answer include : Are all the climatic regions366

similarly conserved and/or protected? Do the species367

forming each niche domain differ functionally or phy-368

logenetically? Is the adaptation to niche domains evo-369

lutionary constrained? Do diversification, extinction or370

speciation rates differ among the species associated with371

different domains?372

In conclusion, our data-driven climate classification re-373

veals major climatic boundaries organising the distribu-374

tion of life on Earth. Questions remain regarding the375

mechanism underlying differences between groups in the376

climatic regions and the geographical signal. Neverthe-377

less, the regions that are consistent across groups can378

help answer questions in a diverse array of fields, includ-379

ing climatology, geography, ecology, evolution and con-380

servation.381

MATERIAL AND METHODS382

Data383

We obtained the distribution ranges of mammals and384

amphibians from The IUCN Red List of Threatened385

Species [21], of birds from Bird species distribution maps386

of the world [22] and of reptiles from ref. [23]. We in-387

cluded only the native range of terrestrial species in the388

analyses in all instances. In the case of birds, we only389

used the breeding ranges. Moreover, since there is a390

higher uncertainty when determining the realised niches391

of narrow-ranging species [52], we removed the species392

whose ranges were less than 5 grid cells of 0.5 degrees.393

After this cleaning of the data, we used 3657 amphibians,394

7204 reptiles, 4574 mammals and 10684 birds, for a total395

of 26119 Tetrapoda species.396

We approximated the species’ Grinnellian niches[51]397

with two climatic variables that represent energy and wa-398

ter inputs. While we could have used several other vari-399

ables, we chose energy and water since they best explain400

climatic effects on species distributions [4]. As surrogates401

of energy and water inputs, we used mean annual poten-402

tial evapotranspiration (PET) and annual precipitation,403

respectively. Both variables have been shown to be im-404

portant factors for Tetrapoda species distributions [33–405

35]. Moreover, they have also been used in previous cli-406

mate classifications [18] and are regularly used to derive407

other drivers of species distributions such as the UNEP408

aridity index [53, 54]. We obtained PET from ref. [25]409

and annual precipitation from ref. [24], both at a 0.08◦410

resolution. Finally, we obtained Köppen’s climatic re-411

gions from refs. [9, 55].412
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FIG. 4: The geographic location of climatic domains and their associated species provide insights into
the mechanism underlying the climatic regions. a Geographic projection of the specificity of climatic bins to
their niche domain. b An example showing a bird’s niche domain with a low geographical signal. The distribution of

the climatic conditions (black line) and the species (coloured richness values) belonging to the same niche domain
were mostly congruent. c An example of an amphibian’s niche domain showing a high geographical signal, reflected
in a substantial mismatch between the distribution of climatic conditions and species belonging to the same domain.

d A quantitative approximation of the geographical signal, ranging between 0 and 1, for the different taxonomic
groups (see Materials and Methods).
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Niche characterisation413

We characterised the realised climatic niche of each414

species using an approach similar to the one proposed in415

ref.[26]. We divided the climatic space formed by PET416

and annual precipitation into bins and calculated the pro-417

portion of occurrences a given species has in each climatic418

bin. Both the shape of the divisions and the number of419

divisions of each climatic axis affect the result. For in-420

stance, dividing the axis into regular intervals can destroy421

critical information if the climatic values more restrictive422

are skewed toward any extreme of the distribution or if423

the climatic values are represented non-uniformly across424

the globe (as for annual precipitation, Fig. S7). Also425

dividing the space into too few intervals destroys infor-426

mation, whereas using too many divisions can generate427

niche domains with only a few species. To overcome the428

first issue, we divided the axes in quantiles based on the429

distribution of climatic values across the Earth. By do-430

ing so, we obtained an almost uniformly divided PET431

axis (Fig. S7). Contrarily, the number of divisions of the432

annual precipitation axis was skewed towards low values,433

which resulted in a higher resolution over the presumably434

more relevant low-precipitation conditions (Fig. S7). To435

solve the second issue, we selected the lowest number of436

divisions that maximised the gain in information (see Ap-437

pendix S1). The optimal number of axis divisions was 17438

in all cases but amphibians, where it was 18 (Fig. S8).439

Next we accounted for potential commission errors,440

which may affect the different climates a species expe-441

riences. Specifically, range maps can overestimate the442

area occupied by a species, which directly influences the443

niche characterisation [56]. Extracting the climatic val-444

ues that a species range covers from a high-resolution445

climatic raster (such as 0.08◦) may reduce commission446

errors at the borders of the species range, but increases447

this error otherwise. Extracting climatic values from a448

coarser raster can reduce the influence of commission er-449

rors over the areas inside of a range but increases them450

over the borders. To alleviate the effects of these poten-451

tial errors, we first extracted the climatic values from the452

high-resolution rasters (0.08◦). Then, we computed the453

average climatic values among selected raster pixels lo-454

cated within cells of 0.5 degrees. In this way, we reduced455

the effects of commission errors both at the borders of456

and inside species ranges. Moreover, we also conducted457

a bootstrap significance test that takes uncertainty of458

species ranges into account (see below).459

Niche domains and climatic regions identification460

We employed a network community detection ap-461

proach to identify the niche domains and the species462

mainly associated with them. For each group of species,463

we first generated a weighted bipartite network where464

species and climatic bins formed the disjoint sets of465

nodes, and the proportion of occurrences of species in466

intervals of the climatic values corresponding to the cli-467

matic bins formed the weighted links. We then used468

the hierarchical version of the community detection al-469

gorithm known as Infomap [41, 42] to identify the niche470

domains. We ran the algorithm 1000 times, selecting the471

network partition with the best quality.472

To consider the uncertainty associated with both the473

species ranges and the community detection, we con-474

ducted a bootstrap analysis. For each species, we resam-475

pled with replacement from the distribution of climatic476

values within species ranges at a resolution of 0.08◦. We477

averaged climatic values laying within 0.5◦ cells and cal-478

culated the proportion of occurrences in each climatic479

bin. With resampled data from all species, we generated480

a bootstrapped network and ran Infomap 1000 times us-481

ing this network. Given the high computational cost of482

this analysis, we only generated 100 bootstrap networks.483

We followed the approach proposed in ref. [44] to calcu-484

late the support of the niche domains. For each identified485

domain, we calculated the proportion of bootstrap net-486

works with a domain more similar than Jaccard index487

0.5 [44].488

With obtained niche domains, we detected the climatic489

regions by identifying areas across the Earth’s surface490

that hold the climatic conditions grouped within each491

niche domain. Finally, to compare climatic regions across492

Tetrapoda groups and with Köppe’s classification, we cal-493

culated the adjusted mutual information (AMI) [57].494

Climatic transition zones495

The joint classification of climatic bins into domains496

and the species most associated to them allowed us to497

calculate the specificity of the bins to the domain where498

they belong, which indicates zones of transitions between499

domains (Fig. 1). That is, a bin acting as a transition500

between two domains should contain species from both501

domain and, therefore, a low specificity to the domain502

where it is classified [3, 45]. To consider the link weights,503

we calculated this specificity SD
i of a climatic bin i in504

domain D as the sum of link weights wi,j of the species j505

present in the bin and also belonging to the same domain506

as the bin, divided by the sum of link weights of all the507

species present in the bin, such that508

SD
i =

∑
j∈D wi,j∑
j wi,j

. (1)

This index is 1 when the bin has only species of the509

same domain as the bin, and tends to 0 otherwise. We510

then projected these specificity values into the geographic511

space by assigning these values to the geographical raster512

cells q that hold the climatic conditions represented by513

the bins, thus obtaining the projected specificity SP
q . Fi-514

nally, we explored the relationship between average SD
515

and bootstrap support. We fitted a logistic GLMM of516

bootstrap p-values as function of mean SD as fixed term517
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and the taxonomic group as a random intercept term.518

GLMM was conducted using the lme4 [58] package in519

R [59].520

Geographical signal521

To investigate the geographical signal, we first ob-522

served the match between the geographic location of the523

species and the climatic conditions associated with the524

corresponding niche domain. Then, we quantified the525

geographical signal by comparing the geographically pro-526

jected specificity SP with a measure of specificity based527

on the actual pool of species co-occurring geographically.528

That is, the specificity of a climatic bin SD is based on529

the species that co-occur in the climatic space and then530

it is projected geographically to obtain SP (see above).531

Hence, SP does not considered the actual pool of species532

co-occurring in the geographic space. In case of a large533

geographical signal, we would expect large differences be-534

tween the species co-occurring in the climatic and geo-535

graphic spaces. For instance, the geographic mismatch536

between species and climates belonging to the same do-537

main is produced by species co-occurring in a given por-538

tion of the climatic space but not in all geographical areas539

with the climate represented in such portion of the cli-540

matic space. In this sense, in case of geographical signal541

we would expect differences between the projected speci-542

ficity SP and a value of specificity based on the species543

pool occurring in given geographical areas, for short the544

actual specificity SA. A higher actual specificity than the545

projected indicates areas that host most of the species546

associated with a niche domain, while the opposite in-547

dicates areas not, or only scarcely, colonised by these548

species.549

Using Eq. 1, we calculated the actual specificity of a550

geographical raster cell q, whose corresponding climatic551

bin i is in domain D, as the ratio between the link weights552

of species in raster cell q that belong to its associated553

domain and the total link weights of species in q,554

SA
q,i =

∑
j∈D,q wi,j∑
j∈q wi,j

. (2)

To calculate the geographical signal G, we computed555

the projected and actual specificity for each climatic556

raster cell q at 0.5◦ resolution. Then, we calculated the557

average differences between projected and actual speci-558

ficity in absolute terms, such that559

G =
1

N

N∑
q=1

|SA
q − SP

q |, (3)

where N is the total number of raster cells. This index560

is 0 when there is no geographical signal and tends to 1561

for high signals.562
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