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! Regularities in species niches reveal the World’s climatic regions

Joaquin Calatayud,* Magnus Neuman, Alexis Rojas, Anton Eriksson, and Martin Rosvall
Integrated Science Lab, Department of Physics, Umea University.
(Dated: November 21, 2019)

Although classifications of the Earth’s climates date back to the ancient Greeks, the climatic
regions shaping the distribution of animals remain poorly resolved. Here we present a classification
of global climates based on regularities in realised niches of 3657 amphibians, 7204 reptiles, 10684
birds and 4574 mammals. We found 16 main climatic regions that are mostly consistent across
groups and previous plant expert-based classifications, confirming the existence of major climatic
restrictions for life. The results also suggest that differences among groups likely relate to their
particular adaptations and dispersal capabilities. We further show how the integration of species
niche classifications with geographical information provides valuable information on potential mech-
anisms shaping the climatic regions. Our climate classification has applications in several disciplines,
including conservation planning and ecological and evolutionary studies.

5 INTRODUCTION

s Climate governs the basis for life on Earth. Besides
7 historical contingencies and geographical barriers, abiotic
conditions determine species ranges [1-3] and derived di-
versity patterns [4, 5]. On a global scale, distinctive cli-
matic regimes impose generalised restrictions, leading to
the formation of species pools adapted to them and ul-
timately to the generation of biomes [6]. Identifying the
boundaries of these climate regimes is, therefore, a fun-
damental challenge to understand how life organizes on
s Barth.

Already Pythagoras proposed a classification of cli-
mate regimes of the known world in the sixth century
BC [7]. However, it was not until the 19th century when
geographers laid the foundations for such classifications
[8]. By that time, researchers noticed the close rela-
tionship between the distribution of various life forms,
especially vegetation types, and climate [8]. For in-
stance, Koppen built his long-standing climate classifi-
cation from pioneer plant classifications, assuming that
vegetation forms carry information about climatic con-
ditions [9, 10]. This assumption has received consider-
able support [11], and the Koppen classification system
is widely used nowadays as the standard classification
of climates in a range of disciplines, including climatol-
ogy [12], geography [13], conservation planning [14], and
ecology [15]. However, the fact that plant species are
good indicators of general climatic conditions does not
necessarily imply that such conditions restrict the dis-
tribution of other organisms in the same manner. If
different taxa have different climatic adaptations, the
boundaries defining climate types will vary among them.
Following Thornthwaite [10], the “truly active factors”
describing a climate type may vary among organisms.
Thus, while K6ppen’s climate classification can indicate
the active climatic factors for plants, it remains unknown
whether they are also appropriate for other organisms.
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Despite several attempts to refine or propose alternative
climatic regions [16-19], quantitative studies defining cli-
matic regions for other organisms are still lacking.

The current information on species distributions and
global climatic variables, together with recent advances
in niche modelling and classification techniques provide
an unprecedented opportunity to identify the climatic
boundaries shaping the distribution of faunas and flo-
ras across the globe. The last decades have witnessed
a tremendous collective effort to record occurrences of
a large number of species [20], which has resulted in
comprehensive datasets with the distributional ranges of
several groups [21-23]. Also, data on climatic variables
at a global scale have been developed at high spatial
resolutions [24, 25]. This information allows to charac-
terise the realised climatic niches of diverse species and
to find regularities among them. For example, project-
ing these realised climate niches into a climatic space [26]
should, if climatic boundaries exist, reveal co-occurring
groups of species across particular portions of the cli-
matic space. Thus, identifying these portions, or niche
domains, should uncover the main climatic boundaries
shaping the organization of life (Fig. 1).

Besides climate shaping niche domains, dispersal bar-
riers and historical contingencies may also influence their
shape [3, 27, 28]. Therefore, similar climates may have
different effects across geographic regions [29]. For in-
stance, while a given climate may lead to specific species
pools in some parts of the Earth, the same climate in
other parts of the Earth may not hold specific species
pools. Such lack of specific species can occur, for ex-
ample, because the required adaptations have not ap-
peared [30], the adapted species have been not able to
disperse [31], or the area is too small to hold large species
pools [32]. Thus, studying the signature of these histor-
ical and geographical processes, the geographical signal
for short, in niche domains can provide valuable informa-
tion about the potential mechanisms behind them and
their associated climatic regions.

Here we explore the global climate regions of
Tetrapoda by characterising the climatic niche domains
of amphibians, birds, mammals and reptiles. Tetrapoda
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1) Raw data 2) Species niches 3) Network modules 4) Niche domains and
climatic regions
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FIG. 1: Workflow to identify niche domains and climatic regions. Using the climatic conditions a given
species experiences within its range (1), we project the species’s niche into a climatic space discretised in an optimal
number of bins (Appendix S1) (2). We translate the binned data into a weighted bipartite network, where climatic
bins and species form the nodes and the probabilities of finding the species in the bins form the weighted links (3).
Using a network community detection algorithm, we identify domains of the climatic space with similar species (4,
upper). The climatic conditions defining these domains delineate the corresponding climatic regions of the Earth (4,
lower).The striped climatic bin is linked to species classified in both climatic domains and, therefore, it represents a
diffuse transition with low specificity.

is a well-suited group for our purpose. First, comprehen- 16 of Tetrapoda in particular and animals in general.
sive databases are available, including the distributional

ranges of most species in the group [21-23]. Second,

the different classes within Tetrapoda possess diverse ca- ,;, RESULTS

pabilities to disperse and withstand abiotic conditions.
Therefore, we can investigate if various capabilities influ-
ence climatic niche domains, and possibly generalise the
climatic regions to other groups. Third, there is accumu-
lated evidence on the main climatic factors controlling
the distribution of these species, which simplifies the se-
lection of appropriate climatic variables. In particular,
the distribution of tetrapods is strongly determined by
water and energy aspects of climate [4, 33-37]. Finally,
researchers study Tetrapoda species in several disparate
fields — from animal husbandry [38] to ecological [39] and
evolutionary studies [40] — where a description of their
climatic regions can be especially useful.

118 Major climatic niche domains of Tetrapoda

une  We first identified the niche domains of each Tetrapoda
120 class independently. We calculated the proportion of ob-
121 servations of each species within each bin of a climatic
122 space defined by potential evapotranspiration (PET) and
13 annual precipitation (AP; Fig. 1, Methods and Appendix
e S1). We represented this data as a weighted bipartite
125 network where climatic bins and species form two dis-
126 junct sets of nodes, and the probabilities of finding the
127 species in the bins form the link weights. Using a hierar-
s chical network clustering algorithm [41, 42], we obtained
In our classification approach, we first approximate the 120 groups of climatic bins holding similar species (i.e. niche
realised niche of each species as the probability of finding 10 domains) and the species most associated with them.
the species across a two-dimensional space that repre- 1 We found similarities among Tetrapoda classes in the
senting water and energy aspects of climate (Fig. 1). We 1 detected niche domains, but also observed some differ-
then use a community-detection algorithm from network 1 ences (Fig. 2). For instance, the number of major do-
theory to simultaneously find portions of the climatic 1+ mains with 50 or more species in the lower hierarchical
niche space holding similar species, the niche domains, 1 level is similar across Tetrapoda classes, ranging from 13
and the species grouped into these domains. Mapping 136 to 15. However, mammals and birds show a domain of
back to the Earth’s surface gives for each climatic niche 17 low energy, whereas reptiles present some domains across
domain a climatic region. We then examine the transi- s arid conditions, that is with elevated energy inputs and
tion zones and the geographical signal in the climatic re- 10 low water availability (Fig. 2). These differences seem
gions. The novel climatic regions confirm the existence of 10 to be related to the particular adaptations of each group
generalised climatic constraints across life forms. There- 1 to withstand climatic conditions. Nevertheless, the clas-
fore, the climatic regions provide valuable information i sification of most domains was largely congruent across
for conservation and ecological and evolutionary studies 3 classes, and hence we classified the climatic space of the
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FIG. 2: Tetrapoda niche domains across the climatic space. The climatic niche domains of each group shown
across a space defined by potential evapotranspiration (PET) as a surrogate of energy and annual precipitation
(AP) as a surrogate of water inputs. Tetrapoda superclass domains labelled so that E and W represent energy and
water, respectively, and superscripts H, M and L. mean high, medium and low, respectively. Numerical subscripts
differentiate domains of similar climates. Bootstrap support between 0 and 1. The dotted line represents the
domains at the highest hierarchical level. Domains formed of less than 50 species coloured in dark grey.

Tetrapoda superclass by using all species jointly. The s Moreover, the regions based on the niche domains of the
niche space of Tetrapoda divided into 16 main domains s superclass Tetrapoda were mostly congruent with the re-
that were similar to those of the independent classes, and 10 gions of its independent classes (mean AMI = 0.71, rang-
some of the above-explained particularities did not ap- m ing from 0.66 to 0.77). Képpen’s regions were more dis-
pear (Fig. 2). w2 similar both to the regions of Tetrapoda (AMI = 0.44)
Since uncertainties related to the ranges of species ex- 173 and the ones of Tetrapoda classes (mean AMI = 0.44,
ist, we employed a bootstrap and a significance clustering 1+ ranging from 0.40 to 0.47).
procedure [43, 44] to asses the domain robustness (Ap-
pendix S2). While several domains were well supported,
we found that the niche domains corresponding to inter-
mediate energy (between approximately 1000 and 1500
PET units; EM climates in Fig. 2) and low to moderate
water (up to approximately 800 m.m.lL; W& to WM)
were among the least supported. This robustness analy-
sis shows that these niche domains are more challenging
to classify.

N

s Focusing on particular regions, we saw that climates
176 of high energy (EM) were consistent among groups and
wr Képpen’s classification. Desert climates (high energy and
s low water, EBW!, BWh and BWk according to Képpen’s
o system) were the most similar across all classifications.
10 Tropical savanna and steppe climates (high energy and
1 medium water, EFWM_ Aw and BSh respectively follow-
182 ing K&ppen) were also consistently defined, though both
183 of these Koppen regions were often classified together
e in all groups but reptiles (Fig. 3). Similarly, Képpen’s
185 tropical rainforest (Af) and tropical monsoon (Am) cli-
16 mates were for the most part well recovered. However,
157 we found three different tropical-humid regions, each one

With delineated niche domains, we studied the geo- 1 mostly corresponding to one of the three largest masses of
graphic location of their climatic conditions, the climatic 1 tropical rainforests: Amazonian, African and Southeast
regions in Fig. 1 and 3, which allowed for a more pre- 10 Asian rainforests; ERWH,, EFWH, and ERWH;, respec-
cise comparison between groups and Koppen’s regions. 1w tively (Fig. 3). Regarding regions of low energy (conti-
The similarities among the regions of Tetrapoda classes 12 nental, E, and polar climates, D, corresponding to the
measured as Adjusted Mutual Information (AMI) ranged 10 highest hierarchical level in Képpen’s system), we found
from 0.57 to 0.68, with mean AMI = 0.62 (Table S1). 1 a slightly higher level of disagreement between Koppen’s

Tetrapoda vs Koppen’s climatic regions
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and Tetrapoda classifications (Fig. 3). Finally, temper-
ate climates (medium energy EM) were the least congru-
ent between groups and Koppen’s regions. Regions of
medium energy were at the same time the least congru-
ent among the different classifications and the least sup-
ported by the bootstrap analyses, suggesting that these
climates impose less restrictive conditions.

Climatic transition zones

A complete understanding of niche domains and their
associated climatic regions entails exploring whether the
domains have hard or diffuse transitions. Climatic condi-
tions corresponding to diffuse transitions should present
low specificity levels to the domain where they belong
(Fig. 1). Our network approach allows to calculate this
specificity by the dual classification of climatic bins and
species into same niche domains (Fig. 1). We com-
puted the specificity of each climatic bin as the ratio
between the link weights of the species classified in the
same domain and the total link weights [3, 45]. Then,
we projected these values geographically. As expected,
lower specificity values were in general associated with
the boundaries of the climatic regions (Fig. 4a and S1).
Our results also revealed that harsh conditions, such
as desert and continental-polar climates (EXWY and
EYWL), present the highest specificity levels, regardless
of the group (Fig. 4a and S1), reflecting the difficulties
to colonise these climates. Contrarily, temperate regions
showed the lowest levels of specificity. These regions were
also weakly supported in the bootstrap analysis; we found
that bootstrap p-values and mean specificity were signif-
icantly correlated (stand. Glmm. coeff. 6.21; P < 0.001;
R? conditional = 0.29, see Material and Methods). To-
gether with the higher variability of these regions across
groups, this result further supports the idea that these
climatic conditions could impose less restrictive condi-
tions to Tetrapoda.

Geographical signal in climatic regions

Historical and geographical processes can produce the
detection of climates leading to specific species pools in
some regions of the Earth but not in others. Thus,
to explore for this geographical signal, we first com-
pared the distribution of the climatic conditions and
species grouped within the same niche domain. A ge-
ographic mismatch between species and climate distri-
butions would point to portions of the climatic regions
that are defined by species occurring in other geographic
areas. Exploring these patterns for each niche domain
revealed notable geographic agreement between species
and climatic conditions of the same domain (Figs. 4b
and S2-6). Nevertheless, we found some differences across
groups and regions. More extreme climates showed larger
mismatches between species and climates distributions.
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For instance, for all groups but reptiles, desert climate
(EHWT) was mostly defined by species inhabiting Aus-
tralia and to a lesser extent by species from the Namib-
ian desert and The horn of Africa, with few or none
species inhabiting the Sahara desert (Figs. 4c and S2-
S6). Similarly, the northern climatic regions of amphib-
ians and reptiles were defined by species at lower lat-
itudes (Figs. S2-3). Approaching the geographical sig-
nal more quantitatively (see Material and Methods), we
found a stronger signal for the worse dispersers amphib-
ians and reptiles than for mammals and birds (Fig. 4d),
suggesting that dispersal capabilities can contribute to
the geographical signal in the niche domains. Finally,
the Tetrapoda superclass showed the lowest geograph-
ical signal, which suggests that, beyond dispersion, an
increased evolutionary time can reduce the geographical
signal.

DISCUSSION

We detected 16 climatic regions governing the distri-
bution of Tetrapoda. Despite the substantial physiolog-
ical and functional differences among the groups, most
of their niche domains and climatic regions are consis-
tent. Some of these climatic regions resemble Koppen’s
regions, which supports the idea that general climatic
constraints organise the distribution of life on Earth.

While we found a high general congruence across
groups, some niche domains and climatic regions were
more consistent than others. In general, more extreme
climates, such as arid or low-energy continental areas,
were well defined in all groups. These climates also
presented high levels of specificity, showing that species
adapted to other climates have more difficulties to with-
stand these conditions. Both of these results suggest that
extreme climates impose strong adaptive barriers [46, 47],
even across distinctive evolutionary lineages.

Contrarily, milder climatic conditions, especially tem-
perate climates, showed the lowest specificity, statisti-
cal support, and congruence across groups. These cli-
mates are more difficult to classify due to the overlap
in the climatic space of species pools with different cli-
matic optima. Two complementary reasons can explain
this ambiguity: First, while we used two variables widely
recognised to shape Tetrapoda distributions, alternative
variables, such as seasonal changes of energy and precip-
itation [48], may also influence species inhabiting tem-
perate regions. Including these variables might help to
further separate temperate species pools across the cli-
matic space. Second, the climatic conditions of these do-
mains may not prevent the colonisation of species with
other realised optima or preferences, which would gen-
erate the observed overlap in the climatic space across
milder conditions. Questions remain about the relative
contribution of each factor.

We also found some domains that were well supported
but unique for each group. These differences between
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Amphibians Reptiles

Koppen Tetrapods Mammals Birds Reptiles Amphibians

FIG. 3: Tetrapoda groups and Koppen’s climatic regions are largely congruent. a Geographic location of
Tetrapoda niche domains and K&ppen’s climatic regions. b Alluvial diagram showing the similarities among the
climatic regions. Colours according to Fig. 2.
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groups seem to relate to the particular physiological
adaptations of each group. For instance, homeothermic
birds and mammals defined a region of low energy, con-
sistent with Koppen’s polar climates, that reptiles and
amphibians lacked. Similarly, reptiles, a group holding
several species adapted to arid environments [36], de-
fined some regions of low precipitation and high PET.
Hence, despite the high similarities among groups, our
results stress that caution is needed when generalising
the climatic regions to other groups of organisms.

Beyond niche domains, our results also show differ-
ences in the geographical signal across groups. That
amphibians — species with the lowest dispersal capac-
ity — showed the highest geographical signal suggests
that dispersal processes play an essential role: worse dis-
perser species have more difficulties tracking their pre-
ferred climates [49], limiting the colonisation of disjoint
areas with similar climates. Moreover, the Tetrapoda
superclass shows the lowest geographical signal, which
suggests that a increased evolutionary time can reduce
this effect. Thus, evolutionary history — through the ap-
pearance of convergent adaptations to similar climates in
different geographic regions[50] — may also influence the
geographical signal in niche domains. In any case, the
ultimate causes and consequences of this signal require
further attention. Why are some amphibians able to in-
habit arid conditions in the Australian desert but not
in the Sahara desert (Fig. S2)? Why can some reptiles
withstand cold climates in and around the Himalayan
mountains but not at the high latitudes of the northern
hemisphere (Fig. S3)? These are some of the emerging
fundamental questions whose answers require historical
biogeographical and evolutionary approaches.

Our results bring us closer to a definition of climatic
regions that represent active factors for the organisation
and evolution of life. Nevertheless, it would be interesting
to improve some aspects in future studies. First, while
we used a large number of species (about 26,000), they
are taxonomically biased and only represent a small frac-
tion of the terrestrial organisms. Similarly, we used two
climatic variables widely known to affect the distribution
and diversity patterns of animals and plants in general
[4, 33], but other climatic variables might refine some of
the least supported regions. Finally, our domains repre-
sent portions of the realised climatic niche space, and this
space may be influenced by historical, geographical, and
biotic factors beyond pure climate [3, 27, 51]. Although
the geographical signal was rather low, identifying po-
tential niches may also improve the accuracy of climatic
regions. At the current pace of biological data accumula-
tion and computational development, it is reasonable to
expect that some of these limitations will soon be over-
come. Meanwhile, the considerable congruence of several
climatic regions across the studied groups and Koppen’s
system provides confidence in their robustness. Hence, it
is likely that using more and better data would not pro-
duce regions substantially different from those presented
here.
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Regardless of how generalisable the results are, the
niche domains and their associated species pools and cli-
matic regions can be used as a basis for ecological and
evolutionary studies, as well as for conservation planning
concerning Tetrapoda. Some of the many questions that
the results reported here (data available in Appendix S3)
can help to answer include : Are all the climatic regions
similarly conserved and/or protected? Do the species
forming each niche domain differ functionally or phy-
logenetically? Is the adaptation to niche domains evo-
lutionary constrained? Do diversification, extinction or
speciation rates differ among the species associated with
different domains?

In conclusion, our data-driven climate classification re-
veals major climatic boundaries organising the distribu-
tion of life on Earth. Questions remain regarding the
mechanism underlying differences between groups in the
climatic regions and the geographical signal. Neverthe-
less, the regions that are consistent across groups can
help answer questions in a diverse array of fields, includ-
ing climatology, geography, ecology, evolution and con-
servation.

MATERIAL AND METHODS
Data

We obtained the distribution ranges of mammals and
amphibians from The TUCN Red List of Threatened
Species [21], of birds from Bird species distribution maps
of the world [22] and of reptiles from ref. [23]. We in-
cluded only the native range of terrestrial species in the
analyses in all instances. In the case of birds, we only
used the breeding ranges. Moreover, since there is a
higher uncertainty when determining the realised niches
of narrow-ranging species [52], we removed the species
whose ranges were less than 5 grid cells of 0.5 degrees.
After this cleaning of the data, we used 3657 amphibians,
7204 reptiles, 4574 mammals and 10684 birds, for a total
of 26119 Tetrapoda species.

We approximated the species’ Grinnellian niches[51]
with two climatic variables that represent energy and wa-
ter inputs. While we could have used several other vari-
ables, we chose energy and water since they best explain
climatic effects on species distributions [4]. As surrogates
of energy and water inputs, we used mean annual poten-
tial evapotranspiration (PET) and annual precipitation,
respectively. Both variables have been shown to be im-
portant factors for Tetrapoda species distributions [33—
35]. Moreover, they have also been used in previous cli-
mate classifications [18] and are regularly used to derive
other drivers of species distributions such as the UNEP
aridity index [53, 54]. We obtained PET from ref. [25]
and annual precipitation from ref. [24], both at a 0.08°
resolution. Finally, we obtained K&ppen’s climatic re-
gions from refs. [9, 55].
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FIG. 4: The geographic location of climatic domains and their associated species provide insights into

the mechanism underlying the climatic regions. a Geographic projection of the specificity of climatic bins to

their niche domain. b An example showing a bird’s niche domain with a low geographical signal. The distribution of
the climatic conditions (black line) and the species (coloured richness values) belonging to the same niche domain

were mostly congruent. ¢ An example of an amphibian’s niche domain showing a high geographical signal, reflected

in a substantial mismatch between the distribution of climatic conditions and species belonging to the same domain.
d A quantitative approximation of the geographical signal, ranging between 0 and 1, for the different taxonomic

groups (see Materials and Methods).
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Niche characterisation

We characterised the realised climatic niche of each
species using an approach similar to the one proposed in
ref.[26]. We divided the climatic space formed by PET
and annual precipitation into bins and calculated the pro-
portion of occurrences a given species has in each climatic
bin. Both the shape of the divisions and the number of
divisions of each climatic axis affect the result. For in-
stance, dividing the axis into regular intervals can destroy
critical information if the climatic values more restrictive
are skewed toward any extreme of the distribution or if
the climatic values are represented non-uniformly across
the globe (as for annual precipitation, Fig. S7). Also
dividing the space into too few intervals destroys infor-
mation, whereas using too many divisions can generate
niche domains with only a few species. To overcome the
first issue, we divided the axes in quantiles based on the
distribution of climatic values across the Earth. By do-
ing so, we obtained an almost uniformly divided PET
axis (Fig. S7). Contrarily, the number of divisions of the
annual precipitation axis was skewed towards low values,
which resulted in a higher resolution over the presumably
more relevant low-precipitation conditions (Fig. S7). To
solve the second issue, we selected the lowest number of
divisions that maximised the gain in information (see Ap-
pendix S1). The optimal number of axis divisions was 17
in all cases but amphibians, where it was 18 (Fig. S8).

Next we accounted for potential commission errors,
which may affect the different climates a species expe-
riences. Specifically, range maps can overestimate the
area occupied by a species, which directly influences the
niche characterisation [56]. Extracting the climatic val-
ues that a species range covers from a high-resolution
climatic raster (such as 0.08°) may reduce commission
errors at the borders of the species range, but increases
this error otherwise. Extracting climatic values from a
coarser raster can reduce the influence of commission er-
rors over the areas inside of a range but increases them
over the borders. To alleviate the effects of these poten-
tial errors, we first extracted the climatic values from the
high-resolution rasters (0.08°). Then, we computed the
average climatic values among selected raster pixels lo-
cated within cells of 0.5 degrees. In this way, we reduced
the effects of commission errors both at the borders of
and inside species ranges. Moreover, we also conducted
a bootstrap significance test that takes uncertainty of
species ranges into account (see below).

Niche domains and climatic regions identification

We employed a network community detection ap-
proach to identify the niche domains and the species
mainly associated with them. For each group of species,
we first generated a weighted bipartite network where
species and climatic bins formed the disjoint sets of
nodes, and the proportion of occurrences of species in
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intervals of the climatic values corresponding to the cli-
matic bins formed the weighted links. We then used
the hierarchical version of the community detection al-
gorithm known as Infomap [41, 42] to identify the niche
domains. We ran the algorithm 1000 times, selecting the
network partition with the best quality.

To consider the uncertainty associated with both the
species ranges and the community detection, we con-
ducted a bootstrap analysis. For each species, we resam-
pled with replacement from the distribution of climatic
values within species ranges at a resolution of 0.08°. We
averaged climatic values laying within 0.5° cells and cal-
culated the proportion of occurrences in each climatic
bin. With resampled data from all species, we generated
a bootstrapped network and ran Infomap 1000 times us-
ing this network. Given the high computational cost of
this analysis, we only generated 100 bootstrap networks.
We followed the approach proposed in ref. [44] to calcu-
late the support of the niche domains. For each identified
domain, we calculated the proportion of bootstrap net-
works with a domain more similar than Jaccard index
0.5 [44].

With obtained niche domains, we detected the climatic
regions by identifying areas across the Earth’s surface
that hold the climatic conditions grouped within each
niche domain. Finally, to compare climatic regions across
Tetrapoda groups and with Koppe’s classification, we cal-
culated the adjusted mutual information (AMI) [57].

Climatic transition zones

The joint classification of climatic bins into domains
and the species most associated to them allowed us to
calculate the specificity of the bins to the domain where
they belong, which indicates zones of transitions between
domains (Fig. 1). That is, a bin acting as a transition
between two domains should contain species from both
domain and, therefore, a low specificity to the domain
where it is classified [3, 45]. To consider the link weights,
we calculated this specificity S of a climatic bin i in
domain D as the sum of link weights w; ; of the species j
present in the bin and also belonging to the same domain
as the bin, divided by the sum of link weights of all the
species present in the bin, such that

ob _ > jep Wi

! > Wi

This index is 1 when the bin has only species of the
same domain as the bin, and tends to 0 otherwise. We
then projected these specificity values into the geographic
space by assigning these values to the geographical raster
cells ¢ that hold the climatic conditions represented by
the bins, thus obtaining the projected specificity Sf . Fi-
nally, we explored the relationship between average S
and bootstrap support. We fitted a logistic GLMM of
bootstrap p-values as function of mean S as fixed term

(1)
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and the taxonomic group as a random intercept term.
GLMM was conducted using the lme4 [58] package in
R [59].

519
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Geographical signal

521

To investigate the geographical signal, we first ob-
served the match between the geographic location of the
species and the climatic conditions associated with the
corresponding niche domain. Then, we quantified the
geographical signal by comparing the geographically pro-
s jected specificity S¥ with a measure of specificity based
on the actual pool of species co-occurring geographically.
That is, the specificity of a climatic bin S” is based on
the species that co-occur in the climatic space and then
it is projected geographically to obtain ST (see above).
Hence, ST does not considered the actual pool of species
co-occurring in the geographic space. In case of a large
geographical signal, we would expect large differences be-
tween the species co-occurring in the climatic and geo-
graphic spaces. For instance, the geographic mismatch
between species and climates belonging to the same do-
main is produced by species co-occurring in a given por-
tion of the climatic space but not in all geographical areas
with the climate represented in such portion of the cli-
matic space. In this sense, in case of geographical signal
we would expect differences between the projected speci-
ficity S* and a value of specificity based on the species
pool occurring in given geographical areas, for short the
actual specificity S4. A higher actual specificity than the
projected indicates areas that host most of the species
sa7 associated with a niche domain, while the opposite in-
ss dicates areas not, or only scarcely, colonised by these
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Using Eq. 1, we calculated the actual specificity of a
geographical raster cell ¢, whose corresponding climatic
bin 7 is in domain D, as the ratio between the link weights
of species in raster cell ¢ that belong to its associated

domain and the total link weights of species in g,
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(2)

sss 1o calculate the geographical signal G, we computed
the projected and actual specificity for each climatic
raster cell ¢ at 0.5° resolution. Then, we calculated the
average differences between projected and actual speci-

ficity in absolute terms, such that

55

>

55

g
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©
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©

N
1
G=52_ 15" - 57 (3)
qg=1

where N is the total number of raster cells. This index
is 0 when there is no geographical signal and tends to 1
for high signals.

Competing interests. The authors declare no com-
peting interests. Author contribution. J.C. and M.N.
conceived the ideas with inputs from all authors; J.C.
analysed the data with assistance from all authors; J.C.
wrote the manuscript in collaboration with all authors.
Acknowledgements. We are thankful to Andrea Br-
iega and Miguel A. Rodriguez for discussion on early
ideas. We are very grateful to Fernanda Alves-Martins,
sn Rafaél Molina-Venegas, Cristina Roquillo and Rubén
s Bernardo-Madrid for critical reviews. J.C. is supported
si3 by the Carl Tryggers Foundation for Scientific Research
st (CTS 16:384).

560

561

562

563

564

56!

o

56

>

567

568

569

570

ss (1] F. 1. Woodward, Climate and plant distribution (Cam-
bridge University Press, 1987).
[2] A. A. Hoffmann and P. A. Parsons, Extreme environmen-
tal change and evolution (Cambridge University Press,
1997).
J. Calatayud, M. A. Rodriguez, R. Molina-Venegas,
M. Leo, J. L. Horreo, and J. Hortal, Proceedings of the
Royal Society B 286, 20190291 (2019).
B. A. Hawkins, R. Field, H. V. Cornell, D. J. Currie, J.-F.
Guégan, D. M. Kaufman, J. T. Kerr, G. G. Mittelbach,
T. Oberdorff, E. M. O’Brien, et al., Ecology 84, 3105
(2003).
[5] H. Kreft and W. Jetz, Proceedings of the National
Academy of Sciences 104, 5925 (2007).
[6] R. H. Whittaker, The Botanical Review 28, 1 (1962).
[7] M. Sanderson, Bulletin of the American Meteorological
Society 80, 669 (1999).
[8] J. E. Oliver, Physical Geography 12, 231 (1991).
[9] M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel,
Meteorologische Zeitschrift 15, 259 (2006).
[10] C. W. Thornthwaite, Geographical Review 33, 233
(1943).

576
577
578
579
ss0  [3]
581
582
ses (4]
584
585
586
587
588
580
500
501
502
503
504
505
506

so7 [11] R. V. Rohli, T. A. Joyner, S. J. Reynolds, and T. J.
Ballinger, Physical Geography 36, 158 (2015).

se0 [12] J. Spinoni, J. Vogt, G. Naumann, H. Carrao, and
P. Barbosa, International Journal of Climatology 35,
601 2210 (2015).

02 [13] P. Gentine, P. D’Odorico, B. R. Lintner, G. Sivandran,
603 and G. Salvucci, Geophysical Research Letters 39 (2012).
604 [14] P. C. Tobin, J. M. Kean, D. M. Suckling, D. G. Mc-
Cullough, D. A. Herms, and L. D. Stringer, Biological
606 Invasions 16, 401 (2014).

o7 [15] R. A. Garcia, M. Cabeza, C. Rahbek, and M. B. Araujo,
ws  Science 344, 1247579 (2014).

0o [16] G. T. Trewartha, An introduction to climate (McGRAW-
HILL. BOOK COMPANY, INC. NEW YORK
611 TORONTO LONDON, 1954).

612 [17] L. R. Holdridge, Science 105, 367 (1947).

613 [18] C. W. Thornthwaite, An approach toward a rational clas-
614 sification of climate, Vol. 66 (LWW, 1948).

615 [19] P. Netzel and T. Stepinski, Journal of Climate 29, 3387
616 (2016).

617 [20] GBIF: The Global Biodiversity Information Facility,
What is GBIF? (2019).

598

600

605

610

618


https://doi.org/10.1101/851030
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/851030; this version posted November 22, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

619 [21] IUCN, The IUCN Red List of Threatened Species (2015).
620 [22] BirdLife, Bird species distribution maps of the world
621 (2015).

622 [23] U. Roll, A. Feldman, M. Novosolov, A. Allison, A. M.
Bauer, R. Bernard, M. Boéhm, F. Castro-Herrera,
L. Chirio, B. Collen, et al., Nature Ecology & Evolution
1, 1677 (2017).

o6 [24] S. E. Fick and R. J. Hijmans, International journal of
627 climatology 37, 4302 (2017).

e2s [25] A. Trabucco and R. J. Zomer, CGIAR Consortium for
629 Spatial Information (2009).

630 [26] O. Broennimann, M. C. Fitzpatrick, P. B. Pearman,
B. Petitpierre, L. Pellissier, N. G. Yoccoz, W. Thuiller,
M.-J. Fortin, C. Randin, N. E. Zimmermann, et al.,
633 Global ecology and biogeography 21, 481 (2012).

6 [27] D. L. Warren, M. Cardillo, D. F. Rosauer, and D. L
635 Bolnick, Trends in Ecology & Evolution 29, 572 (2014).
636 [28] J. Calatayud, J. L. Hérreo, J. Madrigal-Gonzdalez, A. Mi-
geon, M. A. Rodriguez, S. Magalhdes, and J. Hortal,
Proceedings of the National Academy of Sciences 113,
639 9840 (2016).

&0 [29] R. E. Ricklefs, Science 235, 167 (1987).

e [30] R. C. Flohr, C. J. Blom, P. B. Rainey, and H. J. Beau-
mont, Proceedings of the National Academy of Sciences
ws 110, 20663 (2013).

64 [31] H. Tuomisto, K. Ruokolainen, and M. Yli-Halla, Science
ws 299, 241 (2003).

&6 [32] E. F. Connor and E. D. McCoy, The American Naturalist
647 113, 791 (1979).

s [33] D. J. Currie, The American Naturalist 137, 27 (1991).
69 [34] M. W. Tingley, W. B. Monahan, S. R. Beissinger, and
C. Moritz, Proceedings of the National Academy of Sci-
651 ences 106, 19637 (2009).

es2 [35] S. F. Gouveia, J. Hortal, M. Tejedo, H. Duarte, F. A.
Cassemiro, C. A. Navas, and J. A. F. Diniz-Filho, Global
654 Ecology and Biogeography 23, 446 (2014).

o5 [36] M. R. Pie, L. L. Campos, A. L. Meyer, and A. Duran,
Proceedings of the Royal Society B: Biological Sciences
657 284, 20170268 (2017).

e [37] N. Cooper, R. P. Freckleton, and W. Jetz, Proceedings
of the Royal Society B: Biological Sciences 278, 2384
660 (2011).

o1 [38] J. Abecia, J. Mdfiez, A. Macias, A. Lavifia, C. Palacios,
662 et al., J Anim Behav Biometeorol 5, 124 (2017).

663 [39] D. Englert Duursma, R. V. Gallagher, and S. C. Griffith,

623
624
625

631
632

637
638

642

650

653

656

659

10

664 Ecography 42, 535 (2019).

665 [40] J. Rolland, F. L. Condamine, F. Jiguet, and H. Morlon,
666 PLoS Biology 12, 1001775 (2014).

es7 [41] M. Rosvall and C. T. Bergstrom, Proceedings of the Na-
668 tional Academy of Sciences 105, 1118 (2008).

o0 [42] M. Rosvall and C. T. Bergstrom, PloS one 6, 18209
670 (2011).

o1 [43] M. Rosvall and C. T. Bergstrom, PloS one 5, ¢8694
672 (2010).

o3 [44] J. Calatayud, R. Bernardo-Madrid, M. Neuman, A. Ro-
jas, and M. Rosvall, arXiv preprint arXiv:1905.11230
675 (2019).

o6 [45] R. Bernardo-Madrid, J. Calatayud, M. Gonzdlez-Suarez,
M. Rosvall, P. M. Lucas, M. Rueda, A. Antonelli, and
678 E. Revilla, Ecology Letters (2019).

o9 [46] B. J. Butterfield, Oikos 124, 1374 (2015).

es0 [47] M. W. Cadotte and C. M. Tucker, Trends in ecology &
681 evolution 32, 429 (2017).

62 [48] W. Koppen and R. Geiger, Handbuch der klimatologie,
683 Vol. 1 (Gebriider Borntraeger Berlin, 1930).

s [49] M. B. Aradjo and R. G. Pearson, Ecography 28, 693
685 (2005).

ess [50] F. Mazel, R. O. Wiiest, M. Gueguen, J. Renaud, G. F.
Ficetola, S. Lavergne, and W. Thuiller, Current Biology
w27, 1369 (2017).

eso [51] J. Soberén, Ecology letters 10, 1115 (2007).

60 [52] A. Lehmann, J. Leathwick, and J. M. Overton, Biodi-
691 versity & Conservation 11, 2217 (2002).

602 [53] N. M. UNEP and D. Thomas, Edward Arnold, London ,
693 15 (1992).

s [54] A. Fuller, D. Mitchell, S. K. Maloney, and R. S. Hetem,
695 Climate Change Responses 3, 10 (2016).

s [55] F. Rubel, K. Brugger, K. Haslinger, and I. Auer, Mete-
697 orologische Zeitschrift 26, 115 (2017).

s [56] C. Rondinini, K. A. Wilson, L. Boitani, H. Grantham,
699 and H. P. Possingham, Ecology letters 9, 1136 (2006).
700 [57] N. X. Vinh, J. Epps, and J. Bailey, Journal of Machine
701 Learning Research 11, 2837 (2010).

702 [58] D. Bates, M. Mé&chler, B. Bolker, and S. Walker, Journal
703 of Statistical Software 67, 1 (2015).

704 [59] R Core Team, R: A Language and Environment for Sta-
tistical Computing, R Foundation for Statistical Comput-
ing, Vienna, Austria (2018).

674

677

687

705
706


https://doi.org/10.1101/851030
http://creativecommons.org/licenses/by-nc/4.0/

