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Abstract

Memory is typically thought of as enabling reminiscence about past experi-

ences. However, memory also informs and guides processing of future experi-

ences. These two functions of memory are inherently incompatible: remember-

ing specific experiences from the past requires storing idiosyncratic properties

that define particular moments in space and time, but by definition such prop-

erties will not be shared with similar situations in the future and thus are not

useful for prediction. We discovered that, when faced with this conflict, the

brain prioritizes prediction over encoding. Behavioral tests of recognition and

source recall showed that items allowing for prediction of what will appear next

based on learned regularities were less likely to be encoded into memory. Brain

imaging revealed that the hippocampus was responsible for this interference be-

tween statistical learning and episodic memory. The more that the hippocampus

predicted the category of an upcoming item, the worse the current item was en-

coded. This competition may serve an adaptive purpose, focusing encoding on

experiences for which we do not yet have a predictive model.

Introduction

Human memory contains two fundamentally different kinds of information

— episodic and statistical. Episodic memory refers to the encoding of specific
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details of individual experiences (e.g., what happened on your last birthday),5

whereas statistical learning refers to extracting what is common across multiple

experiences (e.g., what tends to happen at birthday parties). Episodic memory

allows for vivid recollection and nostalgia about past events, whereas statistical

learning leads to more generalized knowledge that affords predictions about new

situations. Episodic memory occurs rapidly and stores even related experiences10

distinctly in order to minimize interference, whereas statistical learning occurs

more slowly and overlays memories in order to represent their common elements

or regularities. Given these behavioral and computational differences, theories

of memory have argued that these two kinds of information must be processed

serially and stored separately in the brain (McClelland et al., 1995; Squire, 2004):15

episodic memories are formed first in the hippocampus and these memories in

turn provide the input for later statistical learning in the neocortex as a result of

consolidation (Frankland and Bontempi, 2005; Richards et al., 2014; Tompary

and Davachi, 2017).

Here we reveal a relationship between episodic memory and statistical learn-20

ing in the reverse direction, whereby learned regularities determine which mem-

ories are formed in the first place. Specifically, we examine whether the ability to

predict what will appear next — a signature of statistical learning — reduces en-

coding of the current experience into episodic memory. This hypothesis depends

on two theoretical commitments: first, that the adaptive function of memory is25

to guide future behavior by generating expectations based on prior experience

(Schacter et al., 2017); second, that memory resources are limited, because of

attentional bottlenecks that constrain encoding (Aly and Turk-Browne, 2017)

and/or because new encoding interferes with the storage or retrieval of existing

memories (Shiffrin and Atkinson, 1969). Accordingly, in allocating memory re-30

sources, we propose that it is less important to encode an ongoing experience

when it already generates strong expectations about future states of the world.

When the current experience affords no such expectations, however, encoding

it into memory provides the opportunity to extract new, unknown regularities
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that enable more accurate predictions in subsequent encounters. After demon-35

strating this role for statistical learning in episodic memory behaviorally, we

identify an underlying mechanism in the brain using fMRI, based on the recent

discovery that both processes depend upon the hippocampus and thus compete

to determine its representations and output (Schapiro et al., 2017).

We exposed human participants to a stream of pictures and later tested their40

memory (Figure 1A). The pictures consisted of outdoor scenes from 12 different

categories (e.g., beach, mountain, farm). Three of the categories (type A, pre-

dictive) were each reliably followed by one of three other categories (type B, pre-

dictable); the remaining six categories (type X, non-predictive, non-predictable)

were randomly inserted into the stream. That is, every time participants saw45

a picture from an A category, they always saw a picture from a specific B

category next; however, when a picture from an X category appeared, it was

variably preceded and followed by pictures from several other categories (Figure

1B). Participants were not informed about these predictive A → B category re-

lationships and learned them incidentally through exposure (Brady and Oliva,50

2008). Although each category was shown several times, every individual pic-

ture in the stream was a novel exemplar from the category and shown only once.

For example, whenever a picture from the beach category appeared, it was a

new beach that they had not seen before. After the stream, we tested memory

for these individual pictures amongst new exemplars from the same categories.55

The key hypothesis was that exemplars from predictive categories would be re-

membered worse than exemplars from non-predictive categories (Experiments

1 and 2), and that this deficit would be related to predictive processes in the

hippocampus (Experiment 3).
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Results60

Experiment 1

Encoding Phase

While viewing the stream, 30 participants performed a cover task in which

they judged whether or not there was a manmade object in the scene. Partic-

ipants performed quite well on this task (mean accuracy = 0.91). This perfor-65

mance level was reliably above chance (0.5; t(29) = 42.38, p <0.001). Assessing

response times over the course of the experiment, we found a significant main

effect of experiment quartile (F(3,87) = 8.30, p <0.001), a marginal main effect

of condition (F(2,58) = 3.09, p = 0.053), and an interaction between condition

and quartile (F(6,174) = 2.15, p = 0.050). This interaction reflected growing70

facilitation for the predictable B category, with marginally faster response times

by the fourth quartile relative to the X (t(29) = 2.02, p = 0.053) and A (t(29)

= 1.99, p = 0.056) categories, whose appearance could not be predicted (Hunt

and Aslin, 2001; Olson and Chun, 2001).

Test Phase75

To evaluate overall episodic memory performance, we calculated A′ for each

participant as a non-parametric measure of sensitivity. All participants had

memory performance numerically above the chance level of 0.5 (mean A′ =

0.72, t(29) = 20.02, p <0.001; mean hit rate = 0.50; mean false alarm rate =

0.23). We did not find a significant main effect of condition on A′ (F(2,58) =80

2.37, p = 0.10). However, A′ takes into account both the hit rate and the false

alarm rate. Given our hypothesis of worse encoding for the old exemplars from

the predictive A categories, we expected that hit rate would be a more sensitive

measure.

Indeed, there was a main effect of condition on hit rate (F(2,58) = 4.75, p85

= 0.012), with a lower hit rate for pictures from the A categories relative to

both B (t(29) = -2.79, p = 0.0092) and X (t(29) = -2.33, p = 0.027) categories

(Figure 1C). There was no difference in hit rate between B and X categories
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(t(29) = 1.19, p = 0.24), showing that the memory deficit is selective to whether

a category was predictive (A vs. X), not whether it was predictable (B vs. X).90

As hypothesized, this memory deficit reflected a failure to encode specific A

exemplars rather than a generic impairment for A categories (De Brigard et al.,

2017; Smith et al., 2013), as the false alarm rate for new exemplars from each

category at test did not differ by condition (F(2, 58) = 0.29, p = 0.75). Given

these findings, analyses in subsequent experiments consider hit rate and false95

alarm rate separately by condition.

This experiment demonstrated that episodic encoding is worse for predictive

vs. non-predictive pictures using a surprise recognition memory test. We inter-

pret this result as evidence of competition between prediction and encoding in

the hippocampus. However, recognition tests do not definitively probe aspects100

of episodic memory that critically depend on the hippocampus. Participants

could have relied upon a generic sense of familiarity with the pictures, which

can be supported by cortical areas (Brown and Aggleton, 2001; Davachi et al.,

2003; Norman and O’Reilly, 2003).

We thus designed Experiment 2 with a different, recall-based memory test.105

After encoding the same kind of picture stream, participants were unexpectedly

asked at test to indicate at what exact time (on the clock) they had seen each

picture in the stream. As before, encoding of the time was incidental as they

were not informed in advance that they would be tested. This kind of precise

temporal source memory requires the retrieval of details about the context in110

which each picture was encoded, a hallmark function of episodic memory (e.g.,

remembering who arrived first at a birthday party) that critically depends upon

the hippocampus (Davachi and DuBrow, 2015; Miller et al., 2013; Mitchell and

Johnson, 2009).

Experiment 2115

Encoding Phase

A group of 30 new participants performed quite well on the same manmade

cover task as Experiment 1 (mean accuracy = 0.93; relative to 0.5 chance: t(29)
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= 44.07, p <0.001). There was again a main effect of experiment quartile on

response times (F(3,87) = 7.82, p <0.001), but now no main effect of condition120

(F(2,58) = 0.22, p = 0.80) nor an interaction between condition and quartile

(F(6,174) = 0.69, p = 0.65). Despite the lack of a reliable interaction, the overall

pattern of results was similar to Experiment 1, with response times in the fourth

quartile numerically (though non-significantly) faster for B categories than A

(t(29) = 1.03, p = 0.31) and X (t(29) = 1.61, p = 0.12) categories.125

Test Phase

In the memory test, participants were presented with a picture and first

asked to indicate whether they thought it was old or new, i.e., whether it was

presented during the encoding stream. If they indicated that the picture was

old, they were then asked to recall when during the stream they had seen the130

picture. We included the initial old/new recognition judgment because we felt

that it would be awkward to ask participants to report the time of a picture they

did not remember seeing previously. Nevertheless, our primary hypothesis was

that precision of temporal source memory recall would be lower for exemplars

from predictive categories, resulting in greater deviation or error for A compared135

to X categories.

In terms of overall recognition memory from the initial old/new judgments,

all participants had an A′ numerically above the chance level of 0.5 (mean A′

= 0.75, t(29) = 23.31, p <0.001; mean hit rate = 0.38; mean false alarm rate

= 0.11). Neither the hit rate (F(2,58) = 0.74, p = 0.48) nor the false alarm140

rate (F(2,58) = 0.33, p = 0.72) differed by condition. The lack of a hit rate

effect differed from Experiment 1, but we suspect that this may be an artifact of

introducing the source memory task. Specifically, participants in Experiment 2

knew that responding ”old” would prompt a difficult follow-up question about

their temporal source memory. As a result, they may have strategically adopted145

a more conservative criterion to avoid the source judgment unless they had

a strong memory with high confidence. Consistent with this interpretation,

participants were less likely to respond ”old” in general in Experiment 2 (mean
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proportion ”old” responses = 0.33) than in Experiment 1 (0.45; t(58) = 4.76, p

<0.001).150

Regardless, our focus in this experiment was on temporal source memory

recall. We assessed overall source memory by computing the average absolute

deviation from the correct clock time for all hits. Higher absolute deviation

indicates lower precision in memory. The mean absolute deviation across par-

ticipants was 56.3 pictures, or 84.5 seconds. Using a permutation test, we155

determined that every participant performed numerically better than chance,

indicated by mean deviation less than 69.1 pictures. As hypothesized, there was

a main effect of condition on absolute deviation (Figure 1D; F(2,58) = 3.17, p

= 0.049). Pictures from the A categories had greater deviation (less precision)

than those from the X categories (t(29) = 2.26, p = 0.031), which differed only160

in that they were not predictive of the upcoming category. Precision as also

lower for A relative to B categories, but this difference did not reach signifi-

cance (t(29) = 1.45, p = 0.16); B and X categories also did not reliably differ

from each other (t(29) = 1.23, p = 0.23).

What explains the worse encoding of predictive pictures in Experiments 1165

and 2? We propose that this results from the co-dependence of statistical learn-

ing and episodic memory on the hippocampus (Schapiro et al., 2017). Specif-

ically, we hypothesize that the appearance of a picture from an A category

triggers the retrieval and predictive representation of the corresponding B cate-

gory in the hippocampus. This in turn prevents the hippocampus from encoding170

a new representation of the specific details of that particular A picture, which

would be needed for later recall from episodic memory. To evaluate this hypoth-

esis, Experiment 3 employed high-resolution fMRI during the encoding phase

to link hippocampal prediction to subsequent memory.

Experiment 3 (fMRI)175

Encoding Phase Behavior

A group of 36 new participants performed the same manmade cover task as

Experiments 1 and 2. Performance across all runs (including the templating
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phase; see Materials and Methods) remained quite high (mean accuracy = 0.94;

relative to 0.5 chance: t(35) = 18.75, p <0.001). Response times were examined180

across thirds of the encoding phase rather than quartiles because there were

three fMRI runs in this phase. We again found a pattern of growing facilitation

for the B categories. Although there were no main effects of experiment third

(F(2,68) = 0.44, p = 0.65) or condition (F(2,68) = 1.24, p = 0.29), nor an

interaction (F(4,136) = 1.17, p = 0.33), response times in the third run were185

significantly faster for B categories relative to X categories (t(34) = 2.23, p =

0.033); the difference for B relative to A categories was in the same direction

but not significant (t(34) = 1.39, p = 0.17).

Test Phase Behavior

In Experiment 3, we returned to the recognition memory task from Exper-190

iment 1. All participants exhibited A′ above the chance level of 0.5 except for

one, who was excluded from all other behavioral and fMRI analyses (all partic-

ipants: mean A′ = 0.68, t(36) = 14.63, p <0.001; mean hit rate = 0.61; mean

false alarm rate = 0.39). Neither hit rate (F(2,70) = 2.23, p = 0.12) nor false

alarm rate (F(2,70) = 0.83, p = 0.44) differed by condition. Although we did195

not replicate an overall deficit in recognition of A pictures in this experiment,

we will leverage variance in condition differences across participants to examine

the relationship between memory behavior and neural measures.

Neural Decoding of Perceived Information

The primary purpose of the fMRI experiment was to measure neural predic-200

tion during statistical learning in the encoding phase. We used a multivariate

pattern classification approach (Cohen et al., 2017), which quantified neural pre-

diction of B categories during the encoding of A pictures. Classification models

were trained for each category based on patterns of fMRI activity in a separate

phase of the experiment (“pre” templating phase; see Materials and Methods),205

during which participants were shown pictures from all categories in a random

order. These classifiers were then tested during viewing of the encoding stream

8
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containing category pairs, providing a continuous readout of neural evidence for

each category. We performed this analysis based on fMRI activity patterns from

the hippocampus, our primary region of the interest (ROI), as well as from con-210

trol ROIs in occipital and parahippocampal cortices. These control ROIs were

chosen because as visual areas we expected them to be sensitive to the category

of the current picture being viewed but not necessarily to predict the upcoming

B category given an A picture.

To validate this approach, we first trained and tested classifiers on the view-215

ing of pictures from the A (“Perception of A”) and B (“Perception of B”)

categories (Figure 2). Both types of perceptual categories could be decoded in

occipital (A: t(35) = 4.34, p <0.001; B: t(35) = 5.96, p <0.001) and parahip-

pocampal (A: t(35) = 3.83, p <0.001; B: t(35) = 3.52, p = 0.0012) ROIs.

Interestingly, the perception of B (t(35) = 2.26, p = 0.030) but not A (t(35) =220

-0.17, p = 0.87) categories could be decoded in the hippocampus.

Neural Decoding of Predicted Information

We next tested the hypothesis that the hippocampus predicts B categories

during viewing of the associated A categories. We trained classifiers on pictures

from each B category and tested on pictures from the corresponding A category225

(“Prediction of B”). Crucially, the upcoming B category could be decoded during

A in the hippocampus (t(35) = 2.73, p = 0.0098), but this was not possible in

occipital (t(35) = 0.94, p = 0.35) or parahippocampal (t(35) = 0.17, p = 0.87)

ROIs. Control analyses ruled out potential confounds related to the timing of

the fMRI signal: training classifiers on A and testing on B categories (“Lingering230

of A”), did not yield reliable decoding in the hippocampus (t(35) = 0.96, p =

0.34), nor occipital (t(35) = -0.38, p = 0.71) or parahippocampal (t(35) = 1.57,

p = 0.13) ROIs.

Combining these results, there was a trade-off in the hippocampus between

category evidence for A and B during the viewing of A, with reliable prediction235

of B (train on B, test on A) but not perception of A (train on A, test on A). This

trade-off was apparent at the individual level: participants with above-chance
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classification for the upcoming B category (vs. other B categories) had lower

classification accuracy for the current A category (vs. other A categories) (t(34)

= 2.23, p = 0.033). This suggests that prediction can interfere with the ability240

of the hippocampus to represent the current item.

The analyses above compared the average classification accuracy across par-

ticipants against an assumed binary chance level of 0.5. Chance classification

can deviate from hypothetical levels for a variety of reasons, so we also performed

a non-parametric analysis in which we compared classification accuracy against245

an empirical null distribution estimated for each participant (see Materials and

Methods). This analysis yielded nearly identical results (Figure S1).

To further assess the specificity of these results to the hippocampus, we

ran an exploratory whole-brain searchlight analysis. We again validated our

approach by decoding the perception of B categories (train on B, test on B).250

The resulting regions, which represented scene categories, were largely consistent

with our a priori control ROIs (Figure S2A). Notably, the prediction of B (train

on B, test on A) produced no significant clusters across the brain after correcting

for multiple comparisons (Figure S2B), consistent with this effect being specific

to the hippocampus ROI.255

Relation Between Neural Prediction and Memory Behavior

Finally, we tested our key hypothesis that prediction from statistical learning

in the hippocampus is related to impaired encoding of predictive items into

episodic memory. We quantified this brain-behavior relationship by correlating

(i) each participant’s decoding accuracy for prediction of B during A in the260

hippocampus with (ii) their difference in hit rate for A vs. X categories in

the memory test, which quantifies the relative deficit in memory for predictive

items (Figure 3). Consistent with our hypothesis, classification accuracy was

negatively correlated with this memory difference (r = -0.33, bootstrap p = .047,

two-tailed). That is, greater neural evidence for prediction of the upcoming265

category was associated with worse encoding of the current exemplar.

We included all participants in the correlation above, based on the fact that

10
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we observed reliable hippocampal prediction of B at the group level. However,

some individuals had decoding accuracy at or below chance, which we do not

interpret as meaningful variance. To ensure that these individuals were not270

driving the negative correlation, we re-ran the analysis limited to participants

with above-chance prediction of B. If anything, the correlation got stronger

(Figure S3; r = -0.63; bootstrap p <0.001, two-tailed).

Discussion

Our findings contribute to growing evidence that the hippocampus plays275

an important role in statistical learning (Schapiro et al., 2017; Davachi and

DuBrow, 2015), including the component processes of prediction (Hindy et al.,

2016; Kok and Turk-Browne, 2018) and generalization (Schlichting et al., 2017).

In linking these functions to episodic memory, we extend beyond prior work and

integrate statistical learning with a broader literature on the role of the hip-280

pocampus in memory encoding and retrieval. Specifically, our findings resonate

with the observation that encoding and retrieval have fundamentally different re-

quirements (Norman and O’Reilly, 2003; Hunsaker and Kesner, 2013; Neunuebel

and Knierim, 2014). Given a partial match between the current experience and

past experiences, encoding leverages pattern separation based on the unique285

features of the current experience and stores a new trace, but in doing so limits

access to related old traces. In contrast, retrieval invokes pattern completion

to fill out missing features from past experiences and access old traces, but in

doing so impedes the storage of a distinct, new trace. To resolve this incompat-

ibility, the hippocampus may toggle between encoding and retrieval states on290

the timescale of milliseconds to seconds (Hasselmo et al., 2002; Duncan et al.,

2012). In the present study, if seeing a picture from an A category triggers

pattern completion and activation of its associated B category, the hippocam-

pus may be pushed into a retrieval state that suppresses concurrent memory

encoding.295

How is this interaction between prediction and encoding implemented in the
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circuitry of the hippocampus? A recent biologically plausible neural network

model of the hippocampus (Schapiro et al., 2017) suggests that episodic memory

and statistical learning depend on different pathways, the trisynaptic pathway

(TSP) and monosynaptic pathway (MSP), respectively. The TSP consists of300

connections between entorhinal cortex (EC), dentate gyrus (DG), the CA3 sub-

field, and the CA1 subfield. In this pathway, DG and CA3 have sparse activity

because of high lateral inhibition, which allows them to form distinct represen-

tations of similar experiences (i.e., pattern separation) and avoid interference

between episodic memories. The MSP consists of a direct connection between305

EC and CA1. In this pathway, CA1 has lower inhibition and thus higher over-

all activity and less sparsity, which leads to overlap in the representations of

similar experiences, emphasizing their common elements or regularities. No-

tably, both the TSP and MSP converge on CA1, which is one potential locus of

conflict between episodic memory and statistical learning. As an initial explo-310

ration of this possibility, we conducted an exploratory functional connectivity

analysis (see Supplementary Information). Although our rapid event-related

task was not designed for this purpose, we did find some tentative evidence that

competition between MSP and TSP connections to CA1 may mediate the trade-

off between episodic memory and statistical learning (Figure S4). Specifically,315

participants with relatively greater MSP activity (as measured by connectiv-

ity between EC and CA1) — the pathway necessary for statistical learning in

the computational model referenced above (Schapiro et al., 2017) — exhibited

worse episodic memory. Future studies tailored for connectivity analysis and/or

employing time-resolved methods such as intracranial EEG are needed to better320

understand how the hippocampal circuit arbitrates between these two forms of

learning.

Our work also raises future questions about the nature of the competition

between prediction and encoding. After learning predictive relationships in clas-

sical conditioning, “blocking” can occur when new cues are introduced. After325

one conditioned stimulus (CS1) has been paired with an unconditioned stimulus

(US), no associative learning occurs when a second conditioned stimulus (CS2)
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is added (Kamin, 1969). This is interpreted as CS2 being redundant with CS1,

that is, not providing additional predictive value given that the US can be fully

explained by CS1. In the present study, the A pictures contain two kinds of fea-330

tures: those that are diagnostic of the category (e.g., sand and water for a beach)

and those that are idiosyncratic to each exemplar (e.g., particular people, um-

brellas, boats, etc.). If categorical features are sufficient to predict the upcoming

B category, idiosyncratic features may not be attended or represented (Mackin-

tosh, 1975; Kruschke, 2001), impeding the formation of episodic memories. Our335

findings are not fully consistent with this account, however. Blocking might

predict that the A pictures are represented more categorically, as this is what

enables prediction of the B category. Yet, during the presentation of A pictures

we found a trade-off in the hippocampus between neural evidence for perception

of the A category and prediction of the B category. Nevertheless, more work340

is needed to better characterize the deficit in memory for predictive items. Are

certain aspects of these memories lost while others are retained? Or are these

experiences encoded with less precision overall and/or subject to heightened in-

terference at retrieval? Characterizing associative memory between specific A

and B exemplars might be a fruitful avenue for future investigation.345

Stepping back, why are the computationally opposing functions of episodic

memory and statistical learning housed together in the hippocampus? We pro-

pose that this shared reliance might allow them to regulate each other. By

analogy, using your right foot to operate both the brake and gas pedals in a

car serves as an anatomical constraint that forces you to either accelerate or350

decelerate, but not both at the same time. A similarly adaptive constraint may

be present in the hippocampus, reflecting mutual inhibition between episodic

memory and statistical learning. When predictive information is available in

the environment, further encoding may be redundant with existing knowledge.

Moreover, encoding such experiences could risk over-fitting or improperly up-355

dating known, predictive regularities with idiosyncratic or noisy details. By

focusing on upcoming events, the hippocampus can better compare expecta-

tions and inputs (Kumaran and Maguire, 2006), prioritizing the encoding of
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novel and unexpected events (Greve et al., 2017; Henson and Gagnepain, 2010).
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Figure 1: Behavioral Experiments. A) Task design: participants viewed a continuous stream

of scene pictures, during which they made a judgment of whether or not there was a manmade

object in the scene. B) Example scene category pairings for one participant: 3 of 12 categories

were assigned to condition A; each was reliably followed by one of 3 different categories

assigned to condition B (illustrated by arrows). The remaining 6 categories were assigned to

condition X and were not consistently preceded or followed by any particular category. C)

Left: surprise recognition memory test. Right: proportion of old exemplars recognized as a

function of condition (higher hit rate is better memory). D) Left: temporal source memory

test. Right: absolute difference between reported and actual time of encoding as a function of

condition (higher deviation is worse memory). Error bars reflect within-participant standard

error of the mean. *p <0.05, **p <0.01.
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Figure 2: Category Decoding in fMRI Experiment. Top: Classification accuracy in occipital

cortex (OCC), parahippocampal cortex (PHC), and hippocampus (HIPP) for each of the four

combinations of training or testing on A or B categories. For every A/B combination and

ROI, each dot is one participant and the black line is the mean across participants. Bottom:

Regions of interest. HIPP and PHC were manually segmented in native participant space

(transformed into standard space for visualization); OCC was defined in standard space and

transformed into native participant space.

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 29, 2020. ; https://doi.org/10.1101/851147doi: bioRxiv preprint 

https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/


Relationship between hippocampal 
prediction of B during A and memory for A

Memory Difference 
(A Hit Rate - X Hit Rate)

Cl
as

sifi
ca

tio
n 

Ac
cu

ra
cy

-0.1 0.0 0.1 0.2

0.45

0.50

0.55

0.60

Figure 3: Brain-Behavior Relationship in fMRI Experiment. Pearson correlation between

“Prediction of B” classification accuracy in the hippocampus during the encoding phase and

the difference in hit rate between A and X. The negative relationship indicates that greater

hippocampal prediction from statistical learning was associated with worse episodic mem-

ory for the predictive item (see also Figure S3). Error shading indicates bootstrapped 95%

confidence intervals.
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Materials & Methods370

Experiment 1

Participants. Thirty individuals (19 female; age range: 18-31, mean age = 21.2)

were recruited from the Yale University community for either course credit or

$10 compensation. Informed consent was obtained in a manner approved by

the Yale University Human Subjects Committee.375

Stimuli and Apparatus. Participants were seated approximately 50cm away

from a 69cm monitor (1920 x 1080 pixel resolution; 60 Hz refresh rate). Scene

stimuli consisted of 300 unique scene images drawn from 12 scene categories

(25 images/category), collected from Google image searches. Each participant

viewed 22 scenes from each category, randomly selected from the set of 25. Six-380

teen of these images (per each category; 192 total) were used in the encoding

phase, two for the category pair test, and four as foils in the recognition test.

Scene stimuli were presented centrally and subtended 27.8 x 20.8 degrees of

visual angle. Stimuli were presented using MATLAB (The MathWorks, Nat-

ick, MA) with the Psychophysics Toolbox (Brainard and Vision, 1997; Pelli and385

Vision, 1997).

Procedure. Participants first completed an encoding phase. On each trial, they

viewed a photograph of a scene for 1000 ms, during which they had to respond

based on whether it contained a manmade object (Figure 1A). Participants

were instructed to respond as quickly and accurately as possible (response map-390

pings of ‘j’/’k’ onto ‘yes’/’no’ were counterbalanced across participants), and

we recorded response time and accuracy. The scene remained on the screen

for 1000 ms regardless of button press to equate encoding time, and trials were

separated by a 500-ms inter-stimulus interval (ISI) during which a fixation cross

appeared.395

Every scene was trial-unique, but was drawn from one of 12 outdoor scene

categories (beaches, bridges, canyons, deserts, fields, forests, lakes, lighthouses,

18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 29, 2020. ; https://doi.org/10.1101/851147doi: bioRxiv preprint 

https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/


marshes, mountains, parks, and waterfalls; Figure 1B). Each scene category ap-

peared 16 times over the course of the encoding phase, for a total of 192 trials.

The photographs for half of the scene categories always contained a manmade400

object, and thus all exemplars in a category required the same response, and the

responses were balanced overall. Unbeknownst to participants, and orthogonal

to the required response, half of the scene categories were assigned to pairs.

Given the first scene in a pair (A category scenes), the category of the second

scene (B category scenes) was predictable with a transition probability of 1.0.405

The other half of scene categories were neither predictive nor predictable (X

category scenes). Pictures from these categories were inserted on their own ran-

domly, with the constraint that they could not be placed between an A category

scene and a B category scene. The assignment of scene categories to A/B/X con-

ditions was itself randomized for each participant. The order of the photograph410

sequence was randomized with the following three constraints: category pairs

and pairs of category pairs could not repeat back-to-back (i.e., no A1B1A1B1

or A1B1A2B2A1B1A2B2, where 1 and 2 index different exemplars); repetitions

of each category were spread equally across quartiles of the encoding phase to

minimize differences in study-test lag between categories; and the overall transi-415

tion probability between “yes” and “no” responses on the manmade cover task

was forced to be statistically indistinguishable from 0.5.

After the encoding phase, participants performed five minutes of a distract-

ing math phase to minimize recency effects. Each of 60 math problems consisted

of division and subtraction, and the answer to the problem was always 1, 2, 3,420

or 4. Participants responded using the 1, 2, 3, and 4 keys on the keyboard,

with a maximum response window of 5 s. The ISI was adjusted based on the

response time (5 s minus response time), to ensure that this phase lasted exactly

5 min given the 60 trials. Participants were instructed to respond as accurately

as possible.425

Participants then underwent two surprise memory tests (category pair test

and episodic memory test), the order of which was counterbalanced across par-

ticipants. The category pair test involved explicit judgments of the category
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pairings from the encoding phase. Participants were presented with two pairs

of photographs on every test trial and were asked to indicate which pair felt430

more familiar based only what they had seen during the encoding phase. The

pairs were shown sequentially: the first scene from one pair appeared for 1000

ms, followed by a 500-ms blank interval, followed by the second scene of the

pair for 1000 ms; after a 1000 ms gap with a fixation cross, a second pair was

presented in the same manner. After both pairs, participants responded using435

the ‘1’ key to indicate if the first pair felt more familiar or the ‘2’ key if the

second pair felt more familiar. Participants had a maximum of 6 s to respond.

Each scene in the category pair test was a completely novel exemplar of its

category. Half of the test trials contained a true category pair (when it was

a trial testing a pair from the encoding phase); whether it appeared first or440

second was counterbalanced. The other half of the trials contained a “dummy

coded” pair of the X categories (there was no correct answer on these trials).

This was done to equate the frequency of categories, which was important for

participants who received the category pair test before the episodic memory

test. Each true/dummy-coded pair was tested twice against a scrambled pair of445

the same categories (e.g., if beach → field, mountain → bridge, canyon → forest

were category pairs from the encoding phase, the foils might be beach → bridge,

mountain → forest, canyon → field). Performance on this category pair test for

true pairs vs. scrambled pairs was not reliable in either Experiment 1 (mean

accuracy = 0.48; vs. 0.5 chance: t(29) = -0.72, p = 0.48) or Experiment 2450

(mean accuracy = 0.49; vs. 0.5 chance: t(29) = -0.61, p = 0.55), nor did the

order of the category pair test and episodic memory test affect episodic memory

behavior. Thus, the results of the category pair test are not reported further

and this test was not included in Experiment 3.

The episodic memory test was designed to assess episodic memory for the455

trial-unique scenes from the encoding phase. On each trial, one scene was pre-

sented and participants indicated whether it was “old” (i.e., presented during

the encoding phase) or “new” (i.e., not previously seen in the experiment). After

making an old/new response (using ‘j’/‘k’ keys on the keyboard), participants
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then rated their confidence in this response (“not confident”/“confident”, using460

‘d’/‘f’ keys). Participants had 6 s to make each response. All 192 scene pho-

tographs from the encoding phase were shown, in addition to 48 foils (4 novel

exemplars from each category). The order of the scenes was randomized.

Experiment 2

Participants. Thirty individuals (19 female; age range: 18-23, mean age = 19.3)465

were recruited from the Yale University community for either course credit or

$10 compensation. Informed consent was obtained in a manner approved by

the Yale University Human Subjects Committee.

Stimuli and Apparatus. Same as Experiment 1.

Procedure. The procedure was identical to that of Experiment 1, with the ad-470

dition of a temporal source memory judgment in the test phase. That is, par-

ticipants were presented with a scene and first asked to judge whether it was

“old” or “new” (using the ‘d’ and ‘f’ keys). Then, old responses were followed

by the presentation of a timeline, bound by the start and end clock times of the

encoding phase. Participants used the mouse to click along the timeline to in-475

dicate when they remembered seeing the scene. No temporal source judgments

were collected after new responses.

Experiment 3

Participants. Thirty-eight individuals (24 female; age range: 18-35, mean age =

23.1) were recruited from the Yale University community for $30 compensation.480

Informed consent was obtained in a manner approved by the Yale University

Human Investigation Committee. One participant was excluded to due a neu-

rological anomaly, and one participant was excluded for chance-level episodic

memory performance (overall A′ <0.5). Additionally, one participant was ex-

cluded from response time analyses because of a technical error that resulted in485

no responses being collected for part of the encoding phase.
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Stimuli and Apparatus. Stimuli were presented on a rear-projection screen using

a projector (1920 x 1068 pixel resolution; 60 Hz refresh rate). Participants

viewed the stimuli through a mirror mounted on the head coil. Scene stimuli

consisted of 480 unique images drawn from 12 categories (40 images/category),490

collected from Google image searches (180 additional stimuli were collected for

this experiment; the other 300 are identical to those used in Experiments 1 & 2).

Each participant viewed 39 scenes from every category, randomly selected from

the set of 40: 21 per category (252 total) for the encoding phase, 14 (168) for

the pre and post templating phases, and 4 (48) as foils in the episodic memory495

test.

Procedure. The procedure was identical to Experiment 1 other than the follow-

ing changes:

Instead of one continuous block of the encoding phase (with 16 repetitions

of each scene category), the stream was divided into three fMRI runs, each500

with seven repetitions/category (such that were 21 repetitions/category in total

across the encoding phase). As in Experiments 1 & 2, each image was presented

for 1 s, but the ISI varied between 2 s (39.3% of trials), 3.5 s (39.3% of trials),

and 5 s (21.4% of trials) to jitter onsets for deconvolving event-related fMRI

activity. For the manmade object cover task, participants responded using their505

right index and middle fingers on an MR-compatible button box.

Before and after the three runs of the encoding phase there were “pre”

and “post” templating phases (one fMRI run each). To participants, these

phases were identical to the encoding phase (e.g., stimulus timing and task were

identical). However, there were no category-level regularities in these two runs.510

Scenes from all categories were presented in a random order. To limit the impact

of this random presentation on subsequent learning, participants completed a

distracting math task between the “pre” templating run and the first encoding

phase run. Each of these five functional runs (three encoding phase runs and

pre/post runs) lasted 6.4 minutes.515

For the episodic memory test, as in Experiment 1, a scene was presented and
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participants indicated (with their index and pinky fingers) whether it was “old”

(i.e., presented during the encoding phase) or “new” (i.e., not previously seen

in the experiment). They then rated their confidence in this response (“very

unsure”,“unsure”,“sure”,“very sure”), using their index through pinky fingers,520

respectively. Participants had 6 s to respond to each of these questions. They

completed this task while in the scanner, but no fMRI data were collected. No

category pair test was administered in this experiment.

MRI Acquisition. Data were acquired on a Siemens Prisma 3T scanner using

a 64-channel head coil at the Magnetic Resonance Research Center at Yale525

University. Functional images were acquired using an EPI sequence with the

following parameters: TR = 1500 ms; TE = 32 ms; 90 axial slices; voxel size =

1.5 x 1.5 x 1.5 mm; flip angle = 64 degrees; multiband factor = 6. Additionally,

a pair of opposite phase-encode spin-echo volumes were collected for distortion

correction (TR = 11,220 ms; TE = 66 ms). One T1-weighted MPRAGE (TR530

= 1800 ms; TE = 2.26 ms; voxel size = 1 x 1 x 1 mm; 208 sagittal slices; flip

angle = 8 degrees) and two T2-weighted turbo spin echo (TR = 11,390 ms; TE

= 90 ms; 54 coronal slices; voxel size = 0.44 x 0.44 x 1.5 mm; distance factor =

20%; flip angle = 150 degrees) anatomical images were collected.

fMRI Preprocessing. fMRI data processing was carried out using FEAT (fMRI535

Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library,

www.fmrib.ox.ac.uk/fsl) version 5.0.10. EPI and anatomical images were skull-

stripped using the Brain Extraction Tool (Smith, 2002). Susceptibility-induced

distortions measured via the opposing-phase spin echo volumes were corrected

using FSL’s topup tool (Andersson et al., 2003). Each functional run was540

high-pass filtered with a 128 s period cut-off, corrected for head motion using

MCFLIRT (Jenkinson et al., 2002), and motion outliers were computed. Slice-

timing correction was performed. No spatial smoothing was applied. Lastly,

the six motion parameters, as well as motion outliers, were regressed against

the BOLD timecourse using a general linear model (GLM). The residuals from545
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this preprocessing model (which contain BOLD responses to the task after con-

trolling for motion) were then used for subsequent analyses.

Functional images were registered to each participant’s T1 anatomical scan

using boundary-based registration, as well as to a 2 mm MNI standard brain,

using 12 degrees of freedom. Lastly, the two T2 anatomical images collected550

were registered to one another and averaged; the resulting averaged image was

registered to the T1 anatomical image using FLIRT (Jenkinson and Smith,

2001).

Regions of Interest. Our primary region of interest (ROI) was the hippocam-

pus. Hippocampal subfields CA1, CA2/3/DG, and subiculum, as well as medial555

temporal lobe (MTL) cortical regions entorhinal cortex (EC), perirhinal cortex

(PRC), and parahippocampal cortex (PHC) were manually segmented on par-

ticipants’ averaged T2 anatomical scan (Figure S4A), using published criteria

on anatomical landmarks (Insausti et al., 1998; Pruessner et al., 2002; Duver-

noy, 2005; Aly and Turk-Browne, 2015). Corresponding ROIs from each hemi-560

sphere were concatenated to create one bilateral ROI per region, as we had no

hemisphere-specific hypotheses. A bilateral whole hippocampus ROI was cre-

ated by concatenating the three bilateral subfield ROIs. Individual ROIs were

transformed into each participant’s functional space for subsequent analyses.

The occipital cortex ROI was defined using the MNI structural atlas, thresh-565

olded at 25% probability. This standard space ROI was then transformed into

each participant’s functional space for subsequent analyses.

Category Decoding Analysis. A multivariate pattern classification approach was

used to assess evidence for a particular category during the encoding phase.

This approach involved training a classifier on fMRI activity patterns for each570

category from the “pre” templating run (when there were no regularities present

and none had been learned) and testing for classifier evidence of these categories

during the three (independent) runs of the encoding phase.

For each functional run, the residuals from the preprocessing GLM (with

known noise sources removed but still containing task responses) were aligned to575
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the final functional run and z-scored across time. The voxel x time matrices were

then masked to only include voxels within an ROI. The timepoints corresponding

to the presentation of each of two categories of interest were extracted and

shifted by 3 TRs (4.5 seconds) to account for the hemodynamic lag. The voxel

activity patterns from these shifted time points were then used as training or580

test data for the classifier. Timepoints that included a motion outlier were

excluded from the training/test sets.

Linear SVMs were trained on data and labels from the pre-learning templat-

ing run, using the SVC function in Python’s scikit-learn module, with a penalty

parameter of 1.00. Classifiers were then tested with data corresponding to the585

timepoints of the trained categories in the three runs of the encoding phase

(concatenated) and made guesses as to the category label of each test example.

Accuracy was computed as the proportion of correct guesses.

We ran the following comparisons: Perception of A (training on pre-learning

examples of A, testing for evidence of A during the presentation of A in the590

encoding phase), Perception of B (training on pre-learning examples of B, testing

for evidence of B during the presentation of B in the encoding phase), Lingering

of A (training on pre-learning examples of A, testing for evidence of A during

the presentation of B in the encoding phase), and Prediction of B (training on

pre-learning examples of B, testing for evidence of B during the presentation of595

A in the encoding phase).

Each participant encountered three A and three B categories over the course

of the experiment. Thus, for each of the four comparisons above, we built three

different binary classifiers and then averaged their accuracy. In other words,

a classifier was trained to distinguish between two scene categories from the600

same condition (e.g., B) based on the pre-learning templating run, and tested

for evidence of those two categories during the subsequent presentation of two

categories (e.g., their corresponding As for Prediction of B) in the encoding

phase. Accuracy (percent correct) was then computed for each of these three

classifiers (A1 vs. A2; A2 vs. A3; A1 vs. A3) and averaged, resulting in one605

mean accuracy value per comparison, per participant.
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To provide an example, if the category pairs were beach → field, mountain →

bridge, canyon → forest, then B classifiers would be trained for field vs. bridge,

bridge vs. forest, and field vs. forest. To calculate evidence for Prediction of B:

the field vs. bridge classifier would be applied to the beach and mountain trials610

— such that the classifier estimated evidence for field and bridge during each

beach or mountain trial — and accuracy was computed (such that, for example,

accuracy on a beach trial was 1 if the classifier outputted more evidence for field

than for bridge). This was repeated for the bridge vs. forest classifier (testing

for evidence of these categories during mountains and canyons) and the field615

vs. forest classifier (testing for evidence of these categories during beaches and

canyons). The accuracies of these three classifiers were averaged into a single

accuracy for each participant. This was repeated for the three other comparisons

above and for each ROI. To assess reliability at the group level, performance

was compared to a chance level of 0.50 across participants using a one-sample620

t-test.

To quantify classification accuracy non-parametrically, we performed ran-

domization tests in which we computed an empirical null distribution of classi-

fication accuracy values for each participant. The null distributions were gener-

ated from 1,000 iterations of shuffling the category labels at test prior to scoring625

the model. We then calculated a z-score for each participant’s true classification

accuracy relative to their own null distribution. To test reliability, we compared

these z-scores against 0 across participants (Figure S1).

Assessing Reliability of Correlations. To estimate correlations across partici-

pants robustly (e.g., as used in the Relation Between Neural Prediction and630

Memory Behavior section), we performed a random-effects bootstrap resam-

pling procedure (Efron and Tibshirani, 1986). For each of 10,000 iterations,

we randomly drew 36 participants from our sample with replacement, and re-

calculated the Pearson correlation between the two variables of interest. This

procedure operates under the assumption that if the effect is reliable across635

participants, then the participants are interchangeable and which subset is re-
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sampled in any given iteration will not affect the outcome. This approach also

helps mitigate the impact of outliers when calculating correlations from modest

sample sizes. The resulting sampling distribution can be used to generate confi-

dence intervals and perform null hypothesis testing. Specifically, we calculated640

the p value as the proportion of iterations in which the correlation value was of

the opposite sign from the true correlation, then multiplied by 2 for a two-tailed

significance.

Data Availability. fMRI data can be downloaded from OpenNeuro and behav-

ioral data can be downloaded from Dryad.645
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