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Abstract

Memory is typically thought of as enabling reminiscence about past experi-

ences. However, memory also informs and guides processing of future experi-

ences. These two functions of memory are often at odds: remembering specific

experiences from the past requires storing idiosyncratic properties that define

particular moments in space and time, but by definition such properties will

not be shared with similar situations in the future and thus may not be appli-

cable to future situations. We discovered that, when faced with this conflict,

the brain prioritizes prediction over encoding. Behavioral tests of recognition

and source recall showed that items allowing for prediction of what will appear

next based on learned regularities were less likely to be encoded into memory.

Brain imaging revealed that the hippocampus was responsible for this inter-

ference between statistical learning and episodic memory. The more that the

hippocampus predicted the category of an upcoming item, the worse the current

item was encoded. This competition may serve an adaptive purpose, focusing

encoding on experiences for which we do not yet have a predictive model.

Introduction

Human memory contains two fundamentally different kinds of information

— episodic and statistical. Episodic memory refers to the encoding of specific
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details of individual experiences (e.g., what happened on your last birthday),5

whereas statistical learning refers to extracting what is common across multiple

experiences (e.g., what tends to happen at birthday parties). Episodic memory

allows for vivid recollection and nostalgia about past events, whereas statistical

learning leads to more generalized knowledge that affords predictions about new

situations. Episodic memory occurs rapidly and stores even related experiences10

distinctly in order to minimize interference, whereas statistical learning occurs

more slowly and overlays memories in order to represent their common elements

or regularities. Given these behavioral and computational differences, theories

of memory have argued that these two kinds of information must be processed

serially and stored separately in the brain (McClelland et al., 1995; Squire, 2004):15

episodic memories are formed first in the hippocampus and these memories in

turn provide the input for later statistical learning in the neocortex as a result of

consolidation (Frankland and Bontempi, 2005; Richards et al., 2014; Tompary

and Davachi, 2017).

Here we reveal a relationship between episodic memory and statistical learn-20

ing in the reverse direction, whereby learned regularities determine which mem-

ories are formed in the first place. Specifically, we examine whether the ability to

predict what will appear next — a signature of statistical learning — reduces en-

coding of the current experience into episodic memory. This hypothesis depends

on two theoretical commitments: first, that the adaptive function of memory is25

to guide future behavior by generating expectations based on prior experience

(Schacter et al., 2017); second, that memory resources are limited, because of

attentional bottlenecks that constrain encoding (Aly and Turk-Browne, 2017)

and/or because new encoding interferes with the storage or retrieval of existing

memories (Shiffrin and Atkinson, 1969). Accordingly, in allocating memory re-30

sources, we propose that it is less important to encode an ongoing experience

when it already generates strong expectations about future states of the world.

When the current experience affords no such expectations, however, encoding

it into memory provides the opportunity to extract new, unknown regularities
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that enable more accurate predictions in subsequent encounters. After demon-35

strating this role for statistical learning in episodic memory behaviorally, we

identify an underlying mechanism in the brain using fMRI, based on the recent

discovery that both processes depend upon the hippocampus and thus compete

to determine its representations and output (Schapiro et al., 2017).

Results40

Experiment 1a

We exposed human participants to a stream of pictures and later tested their

memory (Figure 1A). The pictures consisted of outdoor scenes from 12 different

categories (e.g., beach, mountain, farm). Three of the categories (type A, pre-

dictive) were each reliably followed by one of three other categories (type B, pre-45

dictable); the remaining six categories (type X, non-predictive, non-predictable)

were randomly inserted into the stream. That is, every time participants saw

a picture from an A category, they always saw a picture from a specific B

category next; however, when a picture from an X category appeared, it was

variably preceded and followed by pictures from several other categories (Figure50

1B). Participants were not informed about these predictive A → B category re-

lationships and learned them incidentally through exposure (Brady and Oliva,

2008). Although each category was shown several times, every individual pic-

ture in the stream was a novel exemplar from the category and shown only

once. For example, whenever a picture from the beach category appeared, it55

was a new beach that they had not seen before. After the stream, we tested

memory for these individual pictures amongst new exemplars from the same

categories. The key hypothesis was that exemplars from predictive categories

would be remembered worse than exemplars from non-predictive categories.

Encoding Phase60

While viewing the stream, 30 participants performed a cover task in which

they judged whether or not there was a manmade object in the scene. Partic-
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ipants performed quite well on this task (mean accuracy = 0.91). This perfor-

mance level was reliably above chance (0.5; t(29) = 42.38, p <0.001). Assessing

response times over the course of the experiment, we found a reliable main ef-65

fect of experiment quartile (F(3,87) = 8.30, p <0.001), a marginal main effect

of condition (F(2,58) = 3.09, p = 0.053), and a marginal interaction between

condition and quartile (F(6,174) = 2.15, p = 0.050). This interaction reflected

growing facilitation for the predictable B category, with marginally faster re-

sponse times by the fourth quartile relative to the X (t(29) = 2.02, p = 0.053)70

and A (t(29) = 1.99, p = 0.056) categories, whose appearance could not be

predicted (Hunt and Aslin, 2001; Olson and Chun, 2001).

Test Phase

To evaluate overall episodic memory performance, we calculated A′ for each

participant as a non-parametric measure of sensitivity. All participants had75

memory performance numerically above the chance level of 0.5 (mean A′ =

0.72, t(29) = 20.02, p <0.001; mean hit rate = 0.50; mean false alarm rate =

0.23). We did not find a reliable main effect of condition on A′ (F(2,58) = 2.37,

p = 0.10). However, A′ takes into account both the hit rate and the false alarm

rate. Given our hypothesis of worse encoding for the old exemplars from the80

predictive A categories, we expected that hit rate would be a more sensitive

measure.

Indeed, there was a main effect of condition on hit rate (F(2,58) = 4.75, p =

0.012), with a lower hit rate for pictures from the A categories relative to both B

(t(29) = -2.79, p = 0.0092) and X (t(29) = -2.33, p = 0.027) categories (Figure85

1C, middle. There was no difference in hit rate between B and X categories

(t(29) = 1.19, p = 0.24), showing that the memory deficit is selective to whether

a category was predictive (A vs. X), not whether it was predictable (B vs. X).

As hypothesized, this memory deficit reflected a failure to encode specific A

exemplars rather than a generic impairment for A categories (De Brigard et al.,90

2017; Smith et al., 2013), as the false alarm rate for new exemplars from each

category at test did not differ by condition (F(2, 58) = 0.29, p = 0.75). Given
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these findings, analyses in subsequent experiments consider hit rate and false

alarm rate separately by condition.

If prediction from statistical learning interferes with episodic memory encod-95

ing, we might expect the memory deficit for predictive A items to increase as

learning progresses. We thus analyzed hit rate across conditions as a function

of the encoding phase quartile in which a picture was presented (Figure S1A).

We found main effects of both quartile (F(3, 87) = 3.49, p = 0.019) and con-

dition (F(2, 58) = 4.75, p = 0.012), but no interaction (F(6, 174) = 0.74, p =100

0.62). Focusing later within the encoding phase, we found reliable main effects

of condition in the third (F(2, 58) = 4.09, p = 0.022) and fourth quartiles (F(2,

58) = 4.12, p = 0.021). In the third quartile, memory for A was reliably worse

than for B (t(29) = -2.73, p = 0.011), but not X (t(29) = -0.40, p = 0.69). In

the fourth quartile, memory for A was reliably worse than for both B (t(29) =105

-2.55, p = 0.016) and X (t(29) = -2.48, p = 0.019). In contrast, we did not find

any reliable main effects or pairwise differences between conditions in the first

or second quartiles. These results are consistent with the deficit for predictive

A items emerging over time during statistical learning.

Experiment 1b110

Experiment 1a suggested that prediction from statistical learning can impair

episodic memory. Most critically, A items that were predictive of an upcom-

ing B item were remembered worse than non-predictive X items. To establish

the robustness of these results, here we performed a pre-registered and highly

powered online replication study.115

Encoding Phase

A group of 64 participants on the online data collection platform Prolific par-

ticipated in the same encoding task as Experiment 1a. Participants performed

quite well on the cover task (mean accuracy = 0.92; relative to 0.5 chance: t(63)

= 67.32, p <0.001). Examining response times over the course of learning, we120

again found a reliable main effect of quartile (F(3,189) = 15.13, p <0.001), but
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no main effect of condition (F(2,126) = 0.018, p = 0.98), nor an interaction

between condition and quartile (F(6,378) = 0.73, p = 0.63).

Test Phase

To examine overall memory performance we again measured A′ for each125

participant and verified that memory performance at the group level was above

chance (mean A′ = 0.69, t(63) = 19.77, p <0.001; mean hit rate = 0.57; mean

false alarm rate = 0.35).

As in Experiment 1a, we did not find a reliable main effect of condition on

A′ (F(2,126) = 1.59, p = 0.21) or false alarm rate (F(2,126) = 0.060, p = 0.94).130

However, we did find a marginal main effect of condition on hit rate (F(2,126)

= 2.76, p = 0.067; Figure 1C, right). Critically, we robustly replicated the

key pairwise difference in hit rate between A and X categories (t(63) = -3.03,

p = 0.0036), the comparison that isolates the effect of predictiveness. Unlike

Experiment 1a, the difference in hit rate between A and B categories was not135

reliable (t(63) = -0.68, p = 0.50), though memory for A was still numerically

lower than B. The B and X categories again did not differ in hit rate (t(63) =

-1.46, p = 0.15).

We again considered whether the pattern of results changed over the course

of learning (Figure S1B). Assessing hit rate as a function of encoding quartile,140

we found a reliable main effect of quartile (F(3, 189) = 4.95, p = 0.0025), a

marginal main effect of condition (F(2, 126) = 2.76, p = 0.067) and a marginal

interaction (F(6, 378) = 1.79, p = 0.099). The main effect of condition was

reliable only within the fourth quartile (F(2, 126) = 5.60, p = 0.0047), with

memory for A reliably worse than for both B (t(63) = -2.20, p = 0.031) and X145

(t(63) = -3.67, p <0.001).

Experiment 2

Together, Experiments 1a and 1b demonstrated that episodic encoding is

worse for predictive vs. non-predictive pictures using a surprise recognition

memory test. We interpret this result as evidence of competition between pre-150
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diction and encoding in the hippocampus. However, recognition tests do not

definitively probe aspects of episodic memory that specifically depend on the

hippocampus. Participants could have relied upon a generic sense of familiar-

ity with the pictures, which can be supported by cortical areas (Brown and

Aggleton, 2001; Davachi et al., 2003; Norman and O’Reilly, 2003). We thus155

designed Experiment 2 with a different, recall-based memory test. After encod-

ing the same kind of picture stream, participants were unexpectedly asked at

test to indicate at what exact time (on the clock) they had seen each picture

in the stream. As before, encoding of the time was incidental as they were not

informed in advance that they would be tested. This kind of precise tempo-160

ral source memory requires the retrieval of details about the context in which

each picture was encoded, a hallmark function of episodic memory (e.g., re-

membering who arrived first at a birthday party) that critically depends upon

the hippocampus (Davachi and DuBrow, 2015; Miller et al., 2013; Mitchell and

Johnson, 2009).165

Encoding Phase

A group of 30 new participants performed quite well on the same manmade

cover task as Experiment 1a (mean accuracy = 0.93; relative to 0.5 chance:

t(29) = 44.07, p <0.001). There was again a main effect of experiment quartile

on response times (F(3,87) = 7.82, p <0.001), but no main effect of condition170

(F(2,58) = 0.22, p = 0.80) nor an interaction between condition and quartile

(F(6,174) = 0.69, p = 0.65).

Test Phase

In the memory test, participants were presented with a picture and first

asked to indicate whether they thought it was old or new, i.e., whether it was175

presented during the encoding stream. If they indicated that the picture was

old, they were then asked to recall when during the stream they had seen the

picture. We included the initial old/new recognition judgment because we felt

that it would be awkward to ask participants to report the time of a picture they
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did not remember seeing previously. Nevertheless, our primary hypothesis was180

that precision of temporal source memory recall would be lower for exemplars

from predictive categories, resulting in greater deviation or error for A compared

to X categories.

In terms of overall recognition memory from the initial old/new judgments,

all participants had an A′ numerically above the chance level of 0.5 (mean A′185

= 0.75, t(29) = 23.31, p <0.001; mean hit rate = 0.38; mean false alarm rate

= 0.11). Neither the hit rate (F(2,58) = 0.74, p = 0.48) nor the false alarm

rate (F(2,58) = 0.33, p = 0.72) differed by condition. The lack of a hit rate

effect differed from Experiment 1, but we suspect that this may be an artifact of

introducing the source memory task. Specifically, participants in Experiment 2190

knew that responding ”old” would prompt a difficult follow-up question about

their temporal source memory. As a result, they may have strategically adopted

a more conservative criterion to avoid the source judgment unless they had

a strong memory with high confidence. Consistent with this interpretation,

participants were less likely to respond ”old” in general in Experiment 2 (mean195

proportion ”old” responses = 0.33) than in Experiment 1a (0.45; t(58) = 4.76,

p <0.001).

Regardless, our focus in this experiment was on temporal source memory

recall. We assessed overall source memory by computing the average absolute

deviation from the correct clock time for all hits. Higher absolute deviation200

indicates lower precision in memory. The mean absolute deviation across par-

ticipants was 56.3 pictures, or 84.5 seconds. Twenty-six of the 30 participants

had a mean deviation numerically lower than chance (determined via permu-

tation test to be 63.8 pictures), and thus performance at the group level was

reliably above chance (t(29) = -7.04, p <0.001). As hypothesized, there was205

a main effect of condition on absolute deviation (Figure 1D; F(2,58) = 3.17, p

= 0.049). Pictures from the A categories had greater deviation (less precision)

than those from the X categories (t(29) = 2.26, p = 0.031), which differed only

in that they were not predictive of the upcoming category. Precision was also

lower for A relative to B categories, but this difference did not reach significance210
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(t(29) = 1.45, p = 0.16); B and X categories also did not reliably differ from

each other (t(29) = 1.23, p = 0.23).

Examining how memory changed over the course of learning, as we did in the

preceding experiments, is difficult here because of the use of a temporal source

memory measure. Namely, because the range of possible deviations changes over215

time (i.e., by chance, pictures from the middle of encoding would have lower

average deviation than from the beginning and end), examining how source

memory changes over time is confounded. Moreover, because of the lower hit

rate in this experiment, there are fewer responses per quartile and in fact three

participants did not have any responses in at least one quartile. We performed220

the analysis nevertheless, for completeness, and found a main effect of quartile

(F(3, 78) = 41.9, p <0.001), a marginal main effect of condition (F(2, 52) =

2.73, p = 0.075), but no interaction (F(6, 156) = 1.5, p = 0.18). Follow-up tests

did not reveal any reliable effects within individual quartiles.

Experiment 3 (fMRI)225

Across Experiments 1a, 1b, and 2, we found robust and consistent evidence

that memory for predictive A items is reduced relative to the non-predictive,

non-predictable control X items. What explains this worse encoding of predic-

tive pictures? We propose that this results from the co-dependence of statisti-

cal learning and episodic memory on the hippocampus (Schapiro et al., 2017).230

Specifically, we hypothesize that the appearance of a picture from an A cate-

gory triggers the retrieval and predictive representation of the corresponding B

category in the hippocampus. This in turn prevents the hippocampus from en-

coding a new representation of the specific details of that particular A picture,

which would be needed for later recall from episodic memory. To evaluate this235

hypothesis, Experiment 3 employed high-resolution fMRI during the encoding

phase to link hippocampal prediction to subsequent memory.
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Encoding Phase Behavior

A group of 36 new participants performed the same manmade cover task

as the Experiments 1a, 1b, and 2. Performance across all runs (including the240

templating phases; see Materials and Methods) remained quite high (mean ac-

curacy = 0.94; relative to 0.5 chance: t(35) = 18.75, p <0.001). Response times

were examined across thirds of the encoding phase rather than quartiles because

there were three fMRI runs in this phase. As in Experiment 1a, we found a pat-

tern of growing facilitation for the B categories. Although there were no main245

effects of experiment third (F(2,68) = 0.44, p = 0.65) or condition (F(2,68) =

1.24, p = 0.29), nor an interaction (F(4,136) = 1.17, p = 0.33), response times

in the third run were reliably faster for B categories relative to X categories

(t(34) = 2.23, p = 0.033); the difference for B relative to A categories was in

the same direction but not reliable (t(34) = 1.39, p = 0.17).250

Test Phase Behavior

In Experiment 3, we returned to the recognition memory task from Exper-

iments 1a and 1b. All participants exhibited A′ above the chance level of 0.5

except for one, who was excluded from all other behavioral and fMRI analyses

(all participants: mean A′ = 0.68, t(36) = 14.63, p <0.001; mean hit rate = 0.61;255

mean false alarm rate = 0.39). Neither hit rate (F(2,70) = 2.23, p = 0.12) nor

false alarm rate (F(2,70) = 0.83, p = 0.44) differed by condition. Notably, this

experiment differed from the behavioral experiments in that participants first

completed a “pre” templating phase (necessary for the fMRI decoding analyses;

see Materials and Methods), in which they viewed pictures from scene categories260

— that would subsequently be paired in the encoding phase — in a random or-

der. Exposure to randomness prior to structure can impede statistical learning

(Jungé et al., 2007), which might help to explain the diminished memory effect

in this experiment. This is consistent with weakened behavioral evidence of

statistical learning in other multivariate fMRI studies with templating phases265

(Schapiro et al., 2012). More generally, it is not uncommon for behavioral ef-

fects to be smaller in fMRI studies, including in prior statistical learning studies
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(Turk-Browne et al., 2009). Although we did not observe an overall memory

effect at the group level, we followed precedent (Wimmer and Shohamy, 2012;

Schlichting et al., 2015) in leveraging individual differences in learning to ex-270

amine the relationship between memory behavior and neural measures across

participants.

Neural Decoding of Perceived Information

The primary purpose of the fMRI experiment was to measure neural predic-

tion during statistical learning in the encoding phase. We used a multivariate275

pattern classification approach (Cohen et al., 2017), which quantified neural pre-

diction of B categories during the encoding of A pictures. Classification models

were trained for each category based on patterns of fMRI activity in a separate

phase of the experiment (“pre” templating phase; see Materials and Methods),

during which participants were shown pictures from all categories in a random280

order. These classifiers were then tested during viewing of the encoding stream

containing category pairs, providing a continuous readout of neural evidence for

each category. We performed this analysis based on fMRI activity patterns from

the hippocampus, our primary region of the interest (ROI), as well as from con-

trol ROIs in occipital and parahippocampal cortices. These control ROIs were285

chosen because as visual areas we expected them to be sensitive to the category

of the current picture being viewed but not necessarily to predict the upcoming

B category given an A picture.

To validate this approach, we first trained and tested classifiers on the view-

ing of pictures from the A categories (“Perception of A”) and B categories290

(“Perception of B”) (Figure 2). A categories could be reliably decoded in the

occipital (t(35) = 4.34, p <0.001) and parahippocampal (t(35) = 3.83, p <0.001)

cortices, but not in the hippocampus (t(35) = -0.17, p = 0.87; main effect of

region: F(2,70) = 7.47, p = 0.0012). In contrast, B categories could be reliably

decoded in all three regions (occipital: t(35) = 5.96, p <0.001, parahippocam-295

pal: t(35) = 3.52, p = 0.0012, hippocampus: t(35) = 2.26, p = 0.030; main

effect of region: F(2,70) = 6.73, p = 0.0021). Combining both perception con-
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ditions, there was a reliable main effect of region (F(2,70) = 14.89, p <0.001),

but no main effect of condition (F(1,35) = 2.06, p = 0.16) and no interaction

between region and condition (F(2,70) = 0.94, p = 0.39).300

The hippocampus was unique in showing reliable decoding during the Per-

ception of B but not Perception of A. Although this difference did not reach

not significance (t(35) = -1.63, p = 0.11), we sought to determine whether it

reflected a diminished representation of A or an enhanced representation of B.

To establish a baseline, we trained and tested classifiers on the viewing of pic-305

tures from the control X categories (Figure S2). Mirroring the Perception of A

results, X categories could be reliably decoded in the occipital (t(35) = 7.16, p

<0.001) and parahippocampal (t(35) = 2.47, p = 0.019) cortices, but not in the

hippocampus (t(35) = -0.49, p = 0.63; main effect of region: F(2,70) = 34.61, p

<0.001). Within the hippocampus, we found a marginal main effect of condition310

(F(2,70) = 2.58, p = 0.083), with X lower than B (t(35) = -2.14, p = 0.039)

but not A (t(35) = -0.10, p = 0.92). These results suggest that prediction may

enhance the representation of predictable items in the hippocampus.

Neural Decoding of Predicted Information

We next tested the hypothesis that the hippocampus predicts B categories315

during viewing of the associated A categories. We trained classifiers on pictures

from each B category and tested on pictures from the corresponding A category

(“Prediction of B”). Crucially, the upcoming B category could be decoded during

A in the hippocampus (t(35) = 2.73, p = 0.0098), but this was not possible in

occipital (t(35) = 0.94, p = 0.35) or parahippocampal (t(35) = 0.17, p = 0.87)320

cortices (main effect of region: F(2,70) = 1.76, p = 0.18). Control analyses

ruled out potential confounds related to the timing of the fMRI signal: training

classifiers on A and testing on B categories (“Lingering of A”), did not yield

reliable decoding in the hippocampus (t(35) = 0.96, p = 0.34), nor occipital

(t(35) = -0.38, p = 0.71) or parahippocampal (t(35) = 1.57, p = 0.13) cortices325

(main effect of region: F(2,70) = 1.31, p = 0.28).

Although the hippocampus was the only region that exhibited reliable decod-
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ing for Prediction of B, there was no main effect of region. To better understand

differences between prediction and perception across regions, we ran two tar-

geted region x comparison ANOVAs. First, we compared Prediction of B and330

Perception of B, which holds the classifier training data constant (train on B

categories, test on A and B trials, respectively). There was no main effect of

region (F(2,70) = 2.02, p = 0.14), but there was a reliable main effect of condi-

tion (F(1,35) = 7.42, p = 0.010) and a reliable interaction between region and

condition (F(2,70) = 7.45, p = 0.0012). Second, we compared Perception of A335

and Prediction of B, which holds the classifier test data constant (train on A

and B categories, respectively, test on A trials). There was again no main effect

of region (F(2,70) = 1.23, p = 0.30), but there was a marginal main effect of

condition (F(1,35) = 2.96, p = 0.094) and a reliable interaction between region

and condition (F(2,70) = 9.85, p <0.001). These results suggest a dissociation340

whereby occipital and parahippocampal cortices more strongly represent per-

ceived information, whereas the hippocampus represents predicted information.

Given that A categories could not be reliably decoded in the hippocampus,

we examined whether there was a trade-off in the hippocampus between cate-

gory evidence for A and B during the viewing of A, with reliable Prediction of345

B (train on B, test on A) but not Perception of A (train on A, test on A). We

assessed this by grouping participants based on whether they exhibited above-

chance or chance-level Prediction of B decoding and then comparing Perception

of A decoding between these subgroups. We performed this categorical analysis

rather than a correlation to account for the fact that we expect variance at350

or below chance to be noise. We found evidence for a trade-off: participants

with above-chance classification for the upcoming B category (vs. other B cat-

egories) had lower classification accuracy for the current A category (vs. other

A categories) (t(34) = 2.23, p = 0.033). Importantly, we did not find the same

relationship between Prediction of B and Perception of X (t(34) = 1.07, p =355

0.29). This suggests that prediction can specifically interfere with the ability of

the hippocampus to represent the current item.

The analyses above compared the average classification accuracy across par-
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ticipants against an assumed binary chance level of 0.5. Chance classification

can deviate from hypothetical levels for a variety of reasons, so we also performed360

a non-parametric analysis in which we compared classification accuracy against

an empirical null distribution estimated for each participant (see Materials and

Methods). This analysis yielded nearly identical results (Figure S3).

Given that many regions of the brain have been implicated in predictive

processing (Kveraga et al., 2007), we ran an exploratory whole-brain search-365

light analysis to assess whether regions outside the hippocampus also exhibited

Prediction of B decoding (train on B, test on A). No clusters survived correc-

tion for multiple comparisons (Figure S4A), consistent with this effect being

relatively specific to the hippocampus ROI. To validate the sensitivity of our

approach, we repeated the analysis on Perception of B decoding (train on B,370

test on B). Several regions emerged consistent with our a priori ROIs in visual

cortex (Figure S4B).

Relation Between Neural Prediction and Memory Behavior

Finally, we tested our key hypothesis that prediction from statistical learn-

ing in the hippocampus is related to impaired encoding of predictive items into375

episodic memory. We quantified this brain-behavior relationship by correlating

(i) each participant’s decoding accuracy for prediction of B during A in the

hippocampus with (ii) their difference in hit rate for A vs. X categories in the

memory test, which quantifies the relative deficit in memory for predictive items

(Figure 3). Consistent with our hypothesis, classification accuracy was nega-380

tively correlated with this memory difference (r = -0.33, bootstrap p = 0.047,

two-tailed). That is, greater neural evidence for prediction of the upcoming

category was associated with worse encoding of the current exemplar.

We included all participants in the correlation above, based on the fact that

we observed reliable hippocampal prediction of B at the group level. However,385

some individuals had decoding accuracy at or below chance, which we do not

interpret as meaningful variance. To ensure that these individuals were not

driving the negative correlation, we re-ran the analysis limited to participants
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with above-chance prediction of B. If anything, the correlation got stronger

(Figure S5; r = -0.63; bootstrap p <0.001, two-tailed).390

Discussion

Our findings suggest that prediction from statistical learning can interfere

with encoding into episodic memory, a process that may be mediated by the

hippocampus. Across our behavioral studies (Experiments 1a, 1b, 2), we demon-

strated a novel competitive interaction between prediction and memory, such395

that items which afford an accurate prediction of the upcoming category were

remembered worse than items which were unrelated to prediction. In a sub-

sequent fMRI study (Experiment 3), the magnitude of impaired memory for

predictive items was associated with neural evidence for the upcoming category

in the hippocampus during these items.400

Relation to other studies of the hippocampus

Our findings contribute to growing evidence that the hippocampus plays

an important role in statistical learning (Schapiro et al., 2017; Davachi and

DuBrow, 2015), including the component processes of prediction (Hindy et al.,

2016; Kok and Turk-Browne, 2018) and generalization (Schlichting et al., 2017).405

In linking these functions to episodic memory, we integrate statistical learning

with a broader literature on the role of the hippocampus in memory encoding

and retrieval. Specifically, our findings resonate with the observation that en-

coding and retrieval have fundamentally different requirements (Norman and

O’Reilly, 2003; Hunsaker and Kesner, 2013; Neunuebel and Knierim, 2014).410

Given a partial match between the current experience and past experiences,

encoding leverages pattern separation based on the unique features of the cur-

rent experience and stores a new trace, but in doing so limits access to related

old traces. In contrast, retrieval invokes pattern completion to fill out missing

features from past experiences and access old traces, but in doing so impedes415

the storage of a distinct, new trace. To resolve this incompatibility, the hip-

pocampus may toggle between encoding and retrieval states on the timescale
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of milliseconds to seconds (Hasselmo et al., 2002; Duncan et al., 2012). In the

present study, if seeing a picture from an A category triggers pattern completion

and activation of its associated B category, the hippocampus may be pushed420

into a retrieval state that suppresses concurrent memory encoding.

Our findings also resonate with recent findings that the hippocampus repre-

sents retrieved information more robustly than perceived information, whereas

the visual cortex stably represents both perceived and retrieved information

(Lee et al., 2019). These findings are useful to consider in light of the pat-425

tern of decoding results that we see across prediction and perception. First,

our hippocampal results are consistent with a preference of the hippocampus

in representing retrieved information. For example, we found that during the

presentation of A, the predicted B information but not the perceived A infor-

mation could be decoded in the hippocampus. Such a finding could arise from430

a bias of the hippocampus to represent retrieved information, given a conflict

between perception and retrieval. This might also shed light on why only the

perception of (predictable) B items, but not A or X items, could be reliably

decoded in the hippocampus. Namely, B items may have benefited from re-

trieval of their category during A. However, this stronger representation of B435

items in the hippocampus did not translate to consistent evidence for enhanced

subsequent memory of B items. This raises intriguing questions about potential

differences between prediction and retrieval (Barron et al., 2020).

Second, the pattern of results we find across ROIs are in line with the pro-

posed dissociation between hippocampus and visual cortex in perception and440

retrieval. Although we did not find strong evidence for a dissociation among

ROIs during prediction, the effects were only reliable within the hippocampus.

To the extent that the visual cortex is biased toward perceived information and

the hippocampus toward retrieved information (Lee et al., 2019), these regions

may prioritize different representations during the predictive A items. Whereas445

the hippocampus may prioritize the predicted B category (as discussed above),

and this information may be reinstated in parahippocampal and occipital cor-

tices, the concurrent perceptual information about the A category may dominate
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and obscure any evidence for B. Indeed, prior studies demonstrating memory-

based reinstatement from the hippocampus in visual cortex (Bosch et al., 2014;450

Tanaka et al., 2014; Hindy et al., 2016; Danker et al., 2017; Kok and Turk-

Browne, 2018) were careful to ensure that no conflicting sensory information

was present.

Lastly, the findings that the hippocampus preferentially represents retrieved

information (Lee et al., 2019) suggest that perceived and retrieved information455

are coded distinctly in the hippocampus, and thus raise questions about the

nature of hippocampal representations during prediction and perception in our

task. In particular, the finding that the predicted B category, but not the per-

ceived A category itself could be decoded during A, is especially notable because

all of the classifiers were trained on the perception of these categories prior to460

any learning. Because the categories were counterbalanced across participants,

a classifier trained on the perception of a category worked better during A when

that category was one of the predicted B categories than when it was one of

the perceived A categories. That is, the classifiers generalized from perception

to prediction better than from perception to perception, at least in cases where465

prediction and perception conflicted (i.e., during A). These findings suggest that

the format of perceived and predicted information in the hippocampus is similar,

consistent with evidence of item-specific reinstatement of perceived information

in the hippocampus during retrieval (Mack and Preston, 2016; Tompary et al.,

2016).470

Relation to models of learning and memory

How is this interaction between prediction and encoding implemented in the

circuitry of the hippocampus? A recent biologically plausible neural network

model of the hippocampus (Schapiro et al., 2017) suggests that episodic memory

and statistical learning depend on different pathways, the trisynaptic pathway475

(TSP) and monosynaptic pathway (MSP), respectively. The TSP consists of

connections between entorhinal cortex (EC), dentate gyrus (DG), the CA3 sub-

field, and the CA1 subfield. In this pathway, DG and CA3 have sparse activity
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because of high lateral inhibition, which allows them to form distinct represen-

tations of similar experiences (i.e., pattern separation) and avoid interference480

between episodic memories. The MSP consists of a direct connection between

EC and CA1. In this pathway, CA1 has lower inhibition and thus higher over-

all activity and less sparsity, which leads to overlap in the representations of

similar experiences, emphasizing their common elements or regularities. No-

tably, both the TSP and MSP converge on CA1, which is one potential locus485

of conflict between episodic memory and statistical learning. Future studies

tailored for connectivity analysis and/or employing time-resolved and spatially

precise methods such as microelectrode intracranial EEG in humans or cellular

imaging or recording in animal models are needed to better understand how the

hippocampal circuit arbitrates between these two forms of learning.490

Importantly, prior models of how the brain processes both episodic memo-

ries and statistical regularities have focused on a division of labor between the

hippocampus and neocortex, respectively (McClelland et al., 1995). A key dis-

tinction between this traditional view and more recent incarnations (Schapiro

et al., 2017) is the timescale of statistical learning: the MSP of the hippocampus495

is well-suited to learning regularities on the order of minutes to hours, whereas

the neocortex has a slower learning rate, better suited to extracting regularities

over days and weeks. Thus, the neocortex may be important for extracting

regularities that span repeated experiences that are spaced out in time in the

service of long timescale semantic memory, whereas the hippocampus may be500

preferentially important for regularities experienced repeatedly within the cur-

rent environment. If true, the hippocampus may consolidate not only discrete

episodes into cortex but also these short timescale regularities. The relation-

ship between short and long timescale regularities remains an interesting area

for future research. This framework also raises questions about predictions from505

semantic memory and whether they would interfere with episodic encoding. A

key distinction from the kind of rapid statistical learning tasks employed here is

that such semantic memory-based predictions may emanate through spreading

activation within neocortex, anatomically shielding them from interference by
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episodic encoding in the hippocampus. However, whether semantic and episodic510

memories can be fully dissociated remains unclear (Renoult et al., 2019), sug-

gesting a potential interaction of prediction from semantic memory with episodic

memory.

In considering the role of the hippocampus in mediating between prediction

and encoding, it is important to note that episodic memories can themselves be515

used to form predictions about the future (Szpunar et al., 2014). This may be

particularly useful when regularities are sparsely distributed in time or space

and may enable learning via prediction error (Kim et al., 2014) and hypothesis

testing (Berens et al., 2018). The extent to which our finding that prediction

interferes with episodic encoding reflects a domain-general effect of prediction520

on memory or is limited to prediction from statistical learning is an exciting

question for future research.

Characterizing the role of prediction in memory

Our work also raises future questions about the nature of the competition

between prediction and encoding. After learning predictive relationships in clas-525

sical conditioning, “blocking” can occur when new cues are introduced. After

one conditioned stimulus (CS1) has been paired with an unconditioned stimulus

(US), no associative learning occurs when a second conditioned stimulus (CS2)

is added (Kamin, 1969). This is interpreted as CS2 being redundant with CS1,

that is, not providing additional predictive value given that the US can be fully530

explained by CS1. In the present study, the A pictures contain two kinds of fea-

tures: those that are diagnostic of the category (e.g., sand and water for a beach)

and those that are idiosyncratic to each exemplar (e.g., particular people, um-

brellas, boats, etc.). If categorical features are sufficient to predict the upcoming

B category, idiosyncratic features may not be attended or represented (Mackin-535

tosh, 1975; Kruschke, 2001), impeding the formation of episodic memories. Our

findings are not fully consistent with this account, however. Blocking might

predict that the A pictures are represented more categorically, as this is what

enables prediction of the B category. Yet, during the presentation of A pictures
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we found a trade-off in the hippocampus between neural evidence for perception540

of the A category and prediction of the B category. Nevertheless, more work

is needed to better characterize the deficit in memory for predictive items. Are

certain aspects of these memories lost while others are retained? Or are these

experiences encoded with less precision overall and/or subject to heightened in-

terference at retrieval? Characterizing associative memory between specific A545

and B exemplars might be a fruitful avenue for future investigation.

Limitations of the current study

The fMRI study supports and extends the behavioral studies, but has two

primary limitations. First, although individual differences in the key memory

effect (lower hit rate for predictive vs. control items) were related to neural550

evidence of hippocampal prediction in Experiment 3, this behavioral effect was

not reliable at the group level, as it was in Experiment 1a and replicated in

Experiment 1b. Future studies could improve the design to strengthen learning

in the scanner environment, including by training the classifier models in a way

that does not require pre-learning templates which may have reduced learning555

(e.g., based on training data from different participants or sessions). Second, a

strong version of our hypothesis would suggest that the amount of evidence for

the predicted B category on any given A trial should be related to subsequent

memory for that specific A item, namely a negative correlation across trials

within participant. However, we only found evidence for this relationship by560

first averaging classifier evidence and subsequent memory within participant

and then computing the correlation across participants. Methods that provide

cleaner and more time-resolved measurements, such as intracranial EEG, may

be better able to resolve neural evidence on single trials in order to examine

item-specific relationships.565

Conclusions

Stepping back, why are the computationally opposing functions of episodic

memory and statistical learning housed together in the hippocampus? We pro-

pose that this shared reliance might allow them to regulate each other. By
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analogy, using your right foot to operate both the brake and gas pedals in a570

car serves as an anatomical constraint that forces you to either accelerate or

decelerate, but not both at the same time. A similarly adaptive constraint may

be present in the hippocampus, reflecting mutual inhibition between episodic

memory and statistical learning. When predictive information is available in

the environment, further encoding may be redundant with existing knowledge.575

Moreover, encoding such experiences could risk over-fitting or improperly up-

dating known, predictive regularities with idiosyncratic or noisy details. By

focusing on upcoming events, the hippocampus can better compare expecta-

tions and inputs (Kumaran and Maguire, 2006), prioritizing the encoding of

novel and unexpected events (Greve et al., 2017; Henson and Gagnepain, 2010).580
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Figure 1: Behavioral Experiments. A) Task design: participants viewed a continuous stream

of scene pictures, during which they made a judgment of whether or not there was a manmade

object in the scene. B) Example scene category pairings for one participant: 3 of 12 categories

were assigned to condition A; each was reliably followed by one of 3 different categories

assigned to condition B (illustrated by arrows). The remaining 6 categories were assigned to

condition X and were not consistently preceded or followed by any particular category. C)

Left: surprise recognition memory test. Middle: proportion of old exemplars recognized (hit

rate) as a function of condition (higher hit rate is better memory) for Experiment 1a. Right:

hit rate for Experiment 1b. D) Left: temporal source memory test. Right: absolute difference

between reported and actual time of encoding as a function of condition (higher deviation is

worse memory). Error bars reflect within-participant standard error of the mean. *p <0.05,

**p <0.01.
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Figure 2: Category Decoding in fMRI Experiment. Top: Classification accuracy in occipital

cortex (OCC), parahippocampal cortex (PHC), and hippocampus (HIPP) for each of the four

combinations of training or testing on A or B categories. For every A/B combination and

ROI, each dot is one participant and the black line is the mean across participants. Bottom:

Regions of interest. HIPP and PHC were manually segmented in native participant space

(transformed into standard space for visualization); OCC was defined in standard space and

transformed into native participant space.
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Figure 3: Brain-Behavior Relationship in fMRI Experiment. Pearson correlation between

“Prediction of B” classification accuracy in the hippocampus during the encoding phase and

the difference in hit rate between A and X. The negative relationship indicates that greater

hippocampal prediction from statistical learning was associated with worse episodic mem-

ory for the predictive item (see also Figure S5). Error shading indicates bootstrapped 95%

confidence intervals.
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Materials & Methods

Experiment 1a

Participants. Thirty individuals (19 female; age range: 18-31, mean age = 21.2)

were recruited from the Yale University community for either course credit or

$10 compensation. Informed consent was obtained in a manner approved by595

the Yale University Human Subjects Committee.

Stimuli and Apparatus. Participants were seated approximately 50cm away

from a 69cm monitor (1920 x 1080 pixel resolution; 60 Hz refresh rate). Scene

stimuli consisted of 300 unique scene images drawn from 12 scene categories

(25 images/category), collected from Google image searches. Each participant600

viewed 22 scenes from each category, randomly selected from the set of 25. Six-

teen of these images (per each category; 192 total) were used in the encoding

phase, two for the category pair test, and four as foils in the recognition test.

Scene stimuli were presented centrally and subtended 27.8 x 20.8 degrees of

visual angle. Stimuli were presented using MATLAB (The MathWorks, Nat-605

ick, MA) with the Psychophysics Toolbox (Brainard and Vision, 1997; Pelli and

Vision, 1997).

Procedure. Participants first completed an encoding phase. On each trial, they

viewed a photograph of a scene for 1000 ms, during which they had to respond

based on whether it contained a manmade object (Figure 1A). Participants610

were instructed to respond as quickly and accurately as possible (response map-

pings of ‘j’/’k’ onto ‘yes’/’no’ were counterbalanced across participants), and

we recorded response time and accuracy. The scene remained on the screen

for 1000 ms regardless of button press to equate encoding time, and trials were

separated by a 500-ms inter-stimulus interval (ISI) during which a fixation cross615

appeared.

Every scene was trial-unique, but was drawn from one of 12 outdoor scene

categories (beaches, bridges, canyons, deserts, fields, forests, lakes, lighthouses,
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marshes, mountains, parks, and waterfalls; Figure 1B). Each scene category ap-

peared 16 times over the course of the encoding phase, for a total of 192 trials.620

The photographs for half of the scene categories always contained a manmade

object, and thus all exemplars in a category required the same response, and the

responses were balanced overall. Unbeknownst to participants, and orthogonal

to the required response, half of the scene categories were assigned to pairs.

Given the first scene in a pair (A category scenes), the category of the second625

scene (B category scenes) was predictable with a transition probability of 1.0.

The other half of scene categories were neither predictive nor predictable (X

category scenes). Pictures from these categories were inserted on their own ran-

domly, with the constraint that they could not be placed between an A category

scene and a B category scene. The assignment of scene categories to A/B/X con-630

ditions was itself randomized for each participant. The order of the photograph

sequence was randomized with the following three constraints: category pairs

and pairs of category pairs could not repeat back-to-back (i.e., no A1B1A1B1

or A1B1A2B2A1B1A2B2, where 1 and 2 index different exemplars); repetitions

of each category were spread equally across quartiles of the encoding phase to635

minimize differences in study-test lag between categories; and the overall transi-

tion probability between “yes” and “no” responses on the manmade cover task

was forced to be statistically indistinguishable from 0.5.

After the encoding phase, participants performed five minutes of a distract-

ing math phase to minimize recency effects. Each of 60 math problems consisted640

of division and subtraction, and the answer to the problem was always 1, 2, 3,

or 4. Participants responded using the 1, 2, 3, and 4 keys on the keyboard,

with a maximum response window of 5 s. The ISI was adjusted based on the

response time (5 s minus response time), to ensure that this phase lasted exactly

5 min given the 60 trials. Participants were instructed to respond as accurately645

as possible.

Participants then underwent two surprise memory tests (category pair test

and episodic memory test), the order of which was counterbalanced across par-

ticipants. The category pair test involved explicit judgments of the category
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pairings from the encoding phase. Participants were presented with two pairs650

of photographs on every test trial and were asked to indicate which pair felt

more familiar based only what they had seen during the encoding phase. The

pairs were shown sequentially: the first scene from one pair appeared for 1000

ms, followed by a 500-ms blank interval, followed by the second scene of the

pair for 1000 ms; after a 1000 ms gap with a fixation cross, a second pair was655

presented in the same manner. After both pairs, participants responded using

the ‘1’ key to indicate if the first pair felt more familiar or the ‘2’ key if the

second pair felt more familiar. Participants had a maximum of 6 s to respond.

Each scene in the category pair test was a completely novel exemplar of its

category. Half of the test trials contained a true category pair (when it was660

a trial testing a pair from the encoding phase); whether it appeared first or

second was counterbalanced. The other half of the trials contained a “dummy

coded” pair of the X categories (there was no correct answer on these trials).

This was done to equate the frequency of categories, which was important for

participants who received the category pair test before the episodic memory665

test. Each true/dummy-coded pair was tested twice against a scrambled pair of

the same categories (e.g., if beach → field, mountain → bridge, canyon → forest

were category pairs from the encoding phase, the foils might be beach → bridge,

mountain → forest, canyon → field). Performance on this category pair test for

true pairs vs. scrambled pairs was not reliable in either Experiment 1a (mean670

accuracy = 0.48; vs. 0.5 chance: t(29) = -0.72, p = 0.48) or Experiment 2

(mean accuracy = 0.49; vs. 0.5 chance: t(29) = -0.61, p = 0.55), nor did the

order of the category pair test and episodic memory test affect episodic memory

behavior. Thus, the results of the category pair test are not reported further

and this test was not included in Experiment 1b and Experiment 3.675

The episodic memory test was designed to assess episodic memory for the

trial-unique scenes from the encoding phase. On each trial, one scene was pre-

sented and participants indicated whether it was “old” (i.e., presented during

the encoding phase) or “new” (i.e., not previously seen in the experiment). After

making an old/new response (using ‘j’/‘k’ keys on the keyboard), participants680
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then rated their confidence in this response (“not confident”/“confident”, using

‘d’/‘f’ keys). Participants had 6 s to make each response. All 192 scene pho-

tographs from the encoding phase were shown, in addition to 48 foils (4 novel

exemplars from each category). The order of the scenes was randomized.

Experiment 1b685

Participants. Eighty-three individuals were recruited from the online data col-

lection platform Prolific. All participants self-reported that they were between

the ages of 18 and 35, had normal or corrected-to-normal vision, and lived in

the U.S. or the U.K. Informed consent was obtained in a manner approved by

the Yale University Human Subjects Committee. Nineteen participants were690

excluded based on pre-registered criteria, resulting in 64 usable participants, in

line with our pre-registered sample size. The full pre-registration for this study

can be found here: https://aspredicted.org/blind.php?x=my8ky2.

Stimuli and Apparatus. Scene stimuli were the same as in Experiment 1a. Stim-

uli were presented using custom Javascript code for online testing.695

Procedure. The procedure was identical to Experiment 1a, except for the follow-

ing changes: during the encoding phase, all participants responded with ‘j’ key

for yes and ‘k’ key for no; the math distractor task was simplified to contain only

subtraction problems (no division); and no category pair test was administered.

Experiment 2700

Participants. Thirty individuals (19 female; age range: 18-23, mean age = 19.3)

were recruited from the Yale University community for either course credit or

$10 compensation. Informed consent was obtained in a manner approved by

the Yale University Human Subjects Committee.

Stimuli and Apparatus. Same as Experiment 1a.705
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Procedure. The procedure was identical to that of Experiment 1a, with the

addition of a temporal source memory judgment in the test phase. That is,

participants were presented with a scene and first asked to judge whether it was

“old” or “new” (using the ‘d’ and ‘f’ keys). Then, old responses were followed

by the presentation of a timeline, bound by the start and end clock times of710

the encoding phase. Participants used the mouse to click along the timeline to

indicate when they remembered seeing the scene. No temporal source judgments

were collected after new responses.

Experiment 3

Participants. Thirty-eight individuals (24 female; age range: 18-35, mean age =715

23.1) were recruited from the Yale University community for $30 compensation.

We chose this slightly higher sample size than the in-person behavioral studies

(Experiments 1a and 2) under the assumption of a 20% attrition rate in MRI

studies, aiming for the same sample size of 30 participants. One participant

was excluded to due a neurological anomaly and one participant was excluded720

for chance-level episodic memory performance (overall A′ <0.5). Additionally,

one participant was excluded from response time analyses because of a technical

error that resulted in no responses being collected for part of the encoding phase.

Thus, the final sample size for fMRI analysis and memory performance was 36

participants. Informed consent was obtained in a manner approved by the Yale725

University Human Investigation Committee.

Stimuli and Apparatus. Stimuli were presented on a rear-projection screen using

a projector (1920 x 1068 pixel resolution; 60 Hz refresh rate). Participants

viewed the stimuli through a mirror mounted on the head coil. Scene stimuli

consisted of 480 unique images drawn from 12 categories (40 images/category),730

collected from Google image searches (180 additional stimuli were collected for

this experiment; the other 300 are identical to those used in Experiments 1 & 2).

Each participant viewed 39 scenes from every category, randomly selected from

the set of 40: 21 per category (252 total) for the encoding phase, 14 (168) for
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the pre and post templating phases, and 4 (48) as foils in the episodic memory735

test.

Procedure. The procedure was identical to Experiment 1a other than the fol-

lowing changes:

Instead of one continuous block of the encoding phase (with 16 repetitions

of each scene category), the stream was divided into three fMRI runs, each740

with seven repetitions/category (such that were 21 repetitions/category in total

across the encoding phase). As in Experiments 1a, 1b, and 2, each image was

presented for 1 s, but the ISI varied between 2 s (39.3% of trials), 3.5 s (39.3%

of trials), and 5 s (21.4% of trials) to jitter onsets for deconvolving event-related

fMRI activity. For the manmade object cover task, participants responded using745

their right index and middle fingers on an MR-compatible button box.

Before and after the three runs of the encoding phase there were “pre”

and “post” templating phases (one fMRI run each). To participants, these

phases were identical to the encoding phase (e.g., stimulus timing and task were

identical). However, there were no category-level regularities in these two runs.750

Scenes from all categories were presented in a random order. To limit the impact

of this random presentation on subsequent learning, participants completed a

distracting math task between the “pre” templating run and the first encoding

phase run. Each of these five functional runs (three encoding phase runs and

pre/post runs) lasted 6.4 minutes.755

For the episodic memory test, as in Experiment 1a and 1b, a scene was pre-

sented and participants indicated (with their index and pinky fingers) whether

it was “old” (i.e., presented during the encoding phase) or “new” (i.e., not previ-

ously seen in the experiment). They then rated their confidence in this response

(“very unsure”,“unsure”,“sure”,“very sure”), using their index through pinky760

fingers, respectively. Participants had 6 s to respond to each of these questions.

They completed this task while in the scanner, but no fMRI data were collected.

No category pair test was administered in this experiment.
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MRI Acquisition. Data were acquired on a Siemens Prisma 3T scanner using

a 64-channel head coil at the Magnetic Resonance Research Center at Yale765

University. Functional images were acquired using an EPI sequence with the

following parameters: TR = 1500 ms; TE = 32 ms; 90 axial slices; voxel size =

1.5 x 1.5 x 1.5 mm; flip angle = 64 degrees; multiband factor = 6. Additionally,

a pair of opposite phase-encode spin-echo volumes were collected for distortion

correction (TR = 11,220 ms; TE = 66 ms). One T1-weighted MPRAGE (TR770

= 1800 ms; TE = 2.26 ms; voxel size = 1 x 1 x 1 mm; 208 sagittal slices; flip

angle = 8 degrees) and two T2-weighted turbo spin echo (TR = 11,390 ms; TE

= 90 ms; 54 coronal slices; voxel size = 0.44 x 0.44 x 1.5 mm; distance factor =

20%; flip angle = 150 degrees) anatomical images were collected.

fMRI Preprocessing. fMRI data processing was carried out using FEAT (fMRI775

Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library,

www.fmrib.ox.ac.uk/fsl) version 5.0.10. EPI and anatomical images were skull-

stripped using the Brain Extraction Tool (Smith, 2002). Susceptibility-induced

distortions measured via the opposing-phase spin echo volumes were corrected

using FSL’s topup tool (Andersson et al., 2003). Each functional run was780

high-pass filtered with a 128 s period cut-off, corrected for head motion using

MCFLIRT (Jenkinson et al., 2002), and motion outliers were computed. Slice-

timing correction was performed. No spatial smoothing was applied. Lastly,

the six motion parameters, as well as motion outliers, were regressed against

the BOLD timecourse using a general linear model (GLM). The residuals from785

this preprocessing model (which contain BOLD responses to the task after con-

trolling for motion) were then used for subsequent analyses.

Functional images were registered to each participant’s T1 anatomical scan

using boundary-based registration, as well as to a 2 mm MNI standard brain,

using 12 degrees of freedom. Lastly, the two T2 anatomical images collected790

were registered to one another and averaged; the resulting averaged image was

registered to the T1 anatomical image using FLIRT (Jenkinson and Smith,

2001).
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Regions of Interest. The hippocampus region of interest (ROI) was defined

anatomically by concatenating subfields CA1, CA2/3/DG, and subiculum. These795

hippocampal subfields, as well as surrounding medial temporal lobe (MTL) cor-

tical regions including the parahippocampal cortex (PHC) ROI, were manually

segmented on each participant’s averaged T2 anatomical scan using published

anatomical landmarks (Insausti et al., 1998; Pruessner et al., 2002; Duvernoy,

2005; Aly and Turk-Browne, 2015). The occipital cortex ROI was defined using800

the MNI structural atlas, thresholded at 25% probability. For each region, we

concatenated across left and right hemispheres to create one bilateral ROI, as

we had no hemisphere-specific hypotheses. These ROIs were then transformed

into the participant’s functional space for subsequent analyses.

Category Decoding Analysis. A multivariate pattern classification approach was805

used to assess evidence for a particular category during the encoding phase. This

approach involved training a classifier on fMRI activity patterns for each cat-

egory from the “pre” templating run (when there were no regularities present

and none had been learned) and testing for classifier evidence of these cate-

gories during the three (independent) runs of the encoding phase. We tested810

for category evidence during all three runs of the encoding phase, given prior

work demonstrating that neural evidence of statistical learning can occur quite

rapidly (Turk-Browne et al., 2009, 2010). Although the beginning of the first

run may contribute noise (as no learning can possibly have occurred), we erred

on the side of including more data.815

For each functional run, the residuals from the preprocessing GLM (with

known noise sources removed but still containing task responses) were aligned to

the final functional run and z-scored across time. The voxel x time matrices were

then masked to only include voxels within an ROI. The timepoints corresponding

to the presentation of each of two categories of interest were extracted and820

shifted by 3 TRs (4.5 seconds) to account for the hemodynamic lag. The voxel

activity patterns from these shifted time points were then used as training or

test data for the classifier. Timepoints that included a motion outlier were
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excluded from the training/test sets.

Linear SVMs were trained on data and labels from the pre-learning templat-825

ing run, using the SVC function in Python’s scikit-learn module, with a penalty

parameter of 1.00. Classifiers were then tested with data corresponding to the

timepoints of the trained categories in the three runs of the encoding phase

(concatenated) and made guesses as to the category label of each test example.

Accuracy was computed as the proportion of correct guesses.830

We ran the following comparisons: Perception of A (training on pre-learning

examples of A, testing for evidence of A during the presentation of A in the

encoding phase), Perception of B (training on pre-learning examples of B, testing

for evidence of B during the presentation of B in the encoding phase), Lingering

of A (training on pre-learning examples of A, testing for evidence of A during835

the presentation of B in the encoding phase), Prediction of B (training on pre-

learning examples of B, testing for evidence of B during the presentation of A

in the encoding phase), and Perception of X (training on pre-learning examples

of X, testing for evidence of X during the presentation of X in the encoding

phase).840

Each participant encountered three A and three B categories over the course

of the experiment. Thus, for each of the four comparisons above, we built three

different binary classifiers and then averaged their accuracy. In other words,

a classifier was trained to distinguish between two scene categories from the

same condition (e.g., B) based on the pre-learning templating run, and tested845

for evidence of those two categories during the subsequent presentation of two

categories (e.g., their corresponding As for Prediction of B) in the encoding

phase. Accuracy (percent correct) was then computed for each of these three

classifiers (A1 vs. A2; A2 vs. A3; A1 vs. A3) and averaged, resulting in one

mean accuracy value per comparison, per participant.850

To provide an example, if the category pairs were beach → field, mountain →

bridge, canyon → forest, then B classifiers would be trained for field vs. bridge,

bridge vs. forest, and field vs. forest. To calculate evidence for Prediction of B:

the field vs. bridge classifier would be applied to the beach and mountain trials
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— such that the classifier estimated evidence for field and bridge during each855

beach or mountain trial — and accuracy was computed (such that, for example,

accuracy on a beach trial was 1 if the classifier outputted more evidence for field

than for bridge). This was repeated for the bridge vs. forest classifier (testing

for evidence of these categories during mountains and canyons) and the field

vs. forest classifier (testing for evidence of these categories during beaches and860

canyons). The accuracies of these three classifiers were averaged into a single

accuracy for each participant. This was repeated for the three other comparisons

above and for each ROI. To assess reliability at the group level, performance

was compared to a chance level of 0.50 across participants using a one-sample

t-test.865

To quantify classification accuracy non-parametrically, we performed ran-

domization tests in which we computed an empirical null distribution of classi-

fication accuracy values for each participant. The null distributions were gener-

ated from 1,000 iterations of shuffling the category labels at test prior to scoring

the model. We then calculated a z-score for each participant’s true classification870

accuracy relative to their own null distribution. To test reliability, we compared

these z-scores against 0 across participants (Figure S3).

Assessing Reliability of Correlations. To estimate correlations across partici-

pants robustly (e.g., as used in the Relation Between Neural Prediction and

Memory Behavior section), we performed a random-effects bootstrap resam-875

pling procedure (Efron and Tibshirani, 1986). For each of 10,000 iterations,

we randomly drew 36 participants from our sample with replacement, and re-

calculated the Pearson correlation between the two variables of interest. This

procedure operates under the assumption that if the effect is reliable across

participants, then the participants are interchangeable and which subset is re-880

sampled in any given iteration will not affect the outcome. This approach also

helps mitigate the impact of outliers when calculating correlations from modest

sample sizes. The resulting sampling distribution can be used to generate confi-

dence intervals and perform null hypothesis testing. Specifically, we calculated

34

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2020. ; https://doi.org/10.1101/851147doi: bioRxiv preprint 

https://doi.org/10.1101/851147
http://creativecommons.org/licenses/by-nc-nd/4.0/


the p value as the proportion of iterations in which the correlation value was of885

the opposite sign from the true correlation, then multiplied by 2 for a two-tailed

significance.

Data Availability. fMRI data can be downloaded from OpenNeuro and behav-

ioral data can be downloaded from Dryad.
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