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Abstract

Controlling cells endowed with the genetic toggle switch has been suggested as a

benchmark problem in synthetic biology. It has been shown that a carefully selected

periodic forcing can balance a population of such cells in an undifferentiated state.

The effectiveness of these control strategies, however, can be mined by the presence

of stochastic perturbations and uncertainties typically observed in biological systems

and is therefore not robust. Here, we propose the use of feedback control strategies

to enhance robustness and performance of the balancing action by selecting in real-

time both the amplitude and the duty-cycle of the inducer molecular signals affecting

the toggle switch behavior. We show, via in-silico experiments and realistic agent-based

simulations, the effectiveness of the proposed strategies even in presence of uncertainties

and stochastic effects. In so doing, we confirm previous observations made in the

literature about coherence of the population when pulsatile forcing inputs are used but,

contrary to what proposed in the past, we leverage feedback control techniques to endow
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the balancing strategy with unprecedented robustness and stability properties. We

compare via in-silico experiments different control solutions and show their advantages

and limitations from an in-vivo implementation viewpoint.
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Introduction

The Genetic Toggle Switch, implemented in-vivo for the first time by Gardner and Collins

(1 ), has been highlighted as a fundamental synthetic circuit to endow cells with memory-

like features (2 ) or to differentiate mono-strain cultures into different populations (3–6 ). A

crucial problem in all reversible bistable systems is to reset their state by means of appro-

priate inputs to balance the system in an indeterminate state located in between the two

stable states. A striking example is dedifferentiation in stem cells applications (7 , 8 ) where

a terminally differentiated cell reverts and is maintained into an undifferentiated stem cell

type.

As a paradigmatic example, we consider here the problem of balancing the genetic toggle

switch (1 ) in a region surrounding its unstable equilibrium by manipulating two external

inputs, the inducer molecules aTc and IPTG, that can affect its dynamics, see Fig. 1a).

Solving this problem was highlighted as an important benchmark (9 ) in the applications

of control theory to synthetic biology, similar to that represented by the classical inverted

pendulum stabilization in control engineering (10 ).

Recently, it was shown that pulsatile periodic inputs with carefully selected periods,

duty-cycle and amplitudes can be used to effectively balance a population of cells endowed

with a genetic toggle switch (9 ) so that cells remain in a region where neither of the two

genes is fully expressed. Moreover, when such forcing is used, high coherence was observed
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both in-silico and in-vivo across cells in the population.

The problem is that such desirable effects were only observed for certain forcing inputs

whose characteristics (amplitudes, period, and duty-cycle – see Fig. 1c)) had to be carefully

selected off-line by trial-and-error in order to achieve the desired balancing goal. Therefore,

it was noted that when different periods and amplitudes were tested in-vivo, often coherence

and control were lost with many cells in the population falling towards one of the two

stable equilibria characterizing the switch rather than remaining balanced onto the desired

undifferentiated state. Moreover, cell growth, cell-to-cell variability, uncertainties and noise

can render any off-line choice of the period and amplitude unable to reach the control goal in

practice. Therefore, there is the need of synthesizing a closed-loop action able to compensate

against these effects by adapting inputs’ features in real-time to cope dynamically with

changing environmental conditions, growth, diffusion and other unmodelled effects.

Previous studies about the time-scale of the filtering properties of the cell membrane

(11 , 12 ) suggest that an appropriate choice of period of the forcing inputs is about 240

minutes. The goal of this paper is, then, to propose a new strategy based on feedback control

to select and adapt in real-time the features of the input signals (amplitudes and duty-cycle)

while maintaining their periodic nature. This allows us to exploit the beneficial effects of

periodic forcing inputs (9 ) while endowing the population with stability, coherence and

robustness (13 ) that cannot be achieved with open-loop approaches such as those previously

presented in the Literature. The challenge from a theoretical view point is to achieve this

goal by means of two mutually exclusive inducer molecular inputs that can be provided to

all the cells, whose duty-cycle can be varied in real-time as a function of the measured cell

population behavior.

Other control approaches to steer the behavior of a genetic toggle switch include Pulse-

Shaping Control (14–16 ) and Reinforcement Learning (17 ) to drive the switch from one

stable state to the other, or Stochastic Motion Planning (18 ) and Piecewise Linear Switched

Control (19 , 20 ) that were used in-silico to stabilize a toggle switch about its unstable
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equilibrium. Differently from previous results in the Literature, our theoretical approach

is strongly oriented to the assessment of a possible in-vivo implementation of the control

strategies being presented, taking into account for their validation realistic constraints on

the inputs and other phenomena such as cell growth and diffusion, as described later in this

work. Our results complement and integrate those presented by Lugagne et al. (9 ) that

were the first to report in-vivo control experiments involving a population of cells endowed

with the genetic toggle switch.

Results and Discussion

We focus on designing control strategies to stabilize the toggle switch implementation shown

in Fig. 1a), using the model equations parametrized from experimental data that were derived

recently in (9 ) and further analyzed in our previous work (11 ) (see Sec. 1 of the SI for more

information and details). From a control viewpoint, the effect of the control inputs can be

summarized as in Fig. 1b) where we see that the inducer molecules are filtered by the cell

membrane and then act onto the switch dynamics through nonlinear (Hill-like) time-varying

input functions in the model.

Firstly, we tested the effect of applying the inputs in an open-loop fashion by using

pre-computed amplitudes, say ūaTc, ūIPTG, and duty-cycle, say dk, as in the implementation

proposed by Lugagne et al. (9 ). We found that, as shown in Fig. 2, the strategy fails

to achieve the balancing goal in the presence of diffusion, cell-to-cell variability and noise.

Therefore, to balance the toggle switch population, we then synthesized a feedback (closed-

loop) control approach that is still based on using two mutually exclusive periodic inputs but

is able to adapt and change their duty-cycle and select their amplitudes to better achieve

the desired control goal.

In particular, we adopted an external control strategy (21 ) that can be implemented in

microfluidics via a fluorescence microscope and actuated syringes as depicted in Fig. 3a).
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The core of the strategy is the feedback control algorithm that is summarized in Fig. 3b).

The strategy is based on two control actions: 1. A feedforward action that pre-computes the

value of the input amplitudes and duty-cycle ideally required to achieve the control goal in

the absence of perturbations and diffusion effects (this is done by inverting the simplified,

average nonlinear model of the toggle switch subject to periodic inputs we derived in earlier

work (11 ) – for further details see Methods); 2. A feedback action that adapts the duty-cycle

dk of the periodic inputs as a dynamic function of the current cell behavior, measured via

the fluorescence microscope.

We compare the effectiveness of two feedback control strategies: a proportional-integral

(PI) controller that drives a pulse width modulation block (PI-PWM, see Sec. 4 of the SI

for further information and details) and a Model Predictive Controller (MPC) that solves

the problem by optimizing a desired cost function to select the input duty-cycle dynamically

(see Sec. 5 of the SI).

Figure 4 and Figure 5 show the results of the deterministic and stochastic in-silico experi-

ments we conducted. We see that both strategies are effective in controlling the toggle switch

to the desired output value despite the presence of perturbations and uncertainties that ren-

der other approaches unreliable such as the open-loop strategy (9 ), shown in Figure 2, where

the inputs are pre-computed off-line.

In general, we find that in the deterministic case the MPC – often used in control ap-

plications in synthetic biology (22 ) – guarantees better performance in terms of dynamic

regulation; the overshoot and transient duration being significantly lower than those observed

with the other strategy. Moreover, the MPC achieves also better steady-state regulation of

the setpoint with respect to the PI-PWM controller over the 18 periods considered as realistic

for the achievement in-vivo of the control goal. This is essentially due to the approximations

made by the analytical average model and the projector on the (pre-computed) curves of

equilibria used to compute the control inputs of the PI-PWM, which cause a residual error

at steady-state (see Sec. 4 of the SI for further details). A quantitative assessment of the
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controllers’ performance is reported in Tab. S2 in Sec. 7 of the SI and confirms the qualitative

observations made above. The stochastic simulations in Figure 5 show that, qualitatively,

the results of the in-silico experiments conducted via deterministic numerical simulations

still hold. However, the gap in performance between the strategies assessed quantitatively

in Table 3 in the SI is reduced when stochastic effects are included in the simulation, with

the MPC still showing better performance than the PI-PWM.

As a further validation of the effectiveness of these control strategies, we carried out

robustness tests by introducing parametric variations in the cell population to model cell-to-

cell variability. Specifically, the parameters of each cell in the population were independently

drawn from Gaussian distributions centered on their nominal values given in Table 1 in the SI

with a standard deviation of 5% and 10%, respectively. Quantitative metrics are reported in

Table 4 in the SI. The results confirm that PI-PWM is more robust to small perturbations as

it does not rely on exact knowledge of the model. In contrast, larger parameter perturbations

worsen considerably the PI-PWM performance, making the adoption of MPC preferable for

in-vivo implementation.

The effects of the same perturbations in open-loop is also reported and discussed in Sec. 7

of the SI for the sake of comparison.

With a view towards the in-vivo implementation, we assessed via agent-based simulations

the performance of both control strategies. To this aim we conducted in-silico experiments

with BSim 2.0, an advanced agent-based simulator of bacterial populations (23 , 24 ) that

is able to replicate realistic phenomena such as cell growth, spatial diffusion, cell-to-cell

variability, and flush-out of the cells from the microfluidic chamber (see Methods for further

details).

Figure 6 shows the results of the agent-based simulations confirming the effectiveness and

viability of the strategies for in-vivo experiments. Supplementary videos MOV1 and MOV2

are available online and show the simulations of the experiments adopting the two different

control strategies, PI-PWM and MPC respectively.
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Finally, as previously done with stochastic simulations, we introduced a 10% variation

of all parameters of each cell in the agent-abased model to reproduce cell-to-cell variability.

The quantitative analysis reported in Tab. 5 of the SI confirms that the adoption of the

MPC control strategy is to be preferred in the presence of such uncertainties.

To conclude, Model Predictive Control has been shown to guarantee consistently better

control performance in all in-silico experiments carried out. However, its main limitation is

the higher computational cost required to solve the optimization problem at the beginning of

each control cycle and therefore requires an experimental platform with adequate computing

power for its in-vivo implementation.

Discussion Starting from the observations that pulsatile periodic inputs can balance a

toggle switch population in a region where neither of the two genes is fully expressed (9 ),

we presented a suite of feedback control strategies that can be used to change and adapt

the duty-cycle of the inputs in real-time and select their amplitudes to achieve robust stabi-

lization of the population even in the presence of noise and other unavoidable effects which

render previous open-loop approaches unviable. We demonstrated the ability of the proposed

strategies to solve the balancing problem by a combination of deterministic and stochastic

in-silico experiments and agent-based simulations under realistic assumptions on physical

and technological constraints of a possible microfluidics experimental platform.

Our results show that using pulsatile inputs computed online by means of a feedback

control strategy is a viable approach to achieve the robust stabilization of a toggle switch

population about its undifferentiated state. Our findings are further supported by recent ob-

servations that pulsatile inputs are often exploited in place of constant ones in the regulation

of biological processes (25 , 26 ).

We wish to emphasize that the control strategies we propose can be of practical relevance

to “reset” other bistable, or multi-stable, cellular systems by balancing them in an unsta-

ble region corresponding to some undifferentiated state of interest. This is important, for
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example, in multicellular control experiments (5 ) where it has been proposed that mono-

strain populations can be differentiated into multiple subpopulations by flipping the state of

a synthetic toggle switch associated to different functions, or in stem cell applications where

dedifferentiation (7 , 8 ) aims precisely at “resetting” a differentiated cell.

From a theoretical viewpoint, we wish also to highlight that nonlinear average models

capturing the system behavior under external pulsing stimuli could be useful for the design

of feedback control strategies for future applications in synthetic biology.

Methods

In-silico Control Experiments

Deterministic Simulations have been conducted in MATLAB using the model derived

by Lugagne et al. described in Sec. 1 of the SI. The numerical integration of the model has

been carried out using an event-driven algorithm we developed. Each event is associated

with the change of the inputs given to the system; therefore, an event is determined by

the duty-cycle dk and the period TPWM of the PWM inputs which is set to 240 min. The

solver ode45 generates 100 non uniformly distributed time samples in each time period of

the inputs TPWM , leading to 1800 time samples in a total simulation time of 18 periods,

corresponding to 4,320 min.

Stochastic Simulations have been conducted in MATLAB using the well-known Gillespie’s

Stochastic Simulation Algorithm1. The solver is set at a fixed time step of 5 minutes. Using

this setup, we obtain 48 time samples in each period TPWM , leading to 864 samples in a total

simulation time of 18 periods. Multiple cells stochastic simulations have been conducted in

parallel, using the MATLAB Parallel toolbox to speed up the computation.

Agent-Based Simulations have been conducted in BSim 2.0, an advanced bacteria simula-

tor developed in Java (23 , 24 ). Inspired by the so-called mother machine (27 ), we designed

1https://it.mathworks.com/matlabcentral/fileexchange/34707-gillespie-stochastic-simulation-algorithm
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a 1 × 30 × 1 µm rectangular chamber that hosts a single layer cell population where cells

are lined up. The chamber is open on the top (short side), from where the inducers diffuses

and cells are flushed out due to their own growth and medium flow. The solver is based on

the Euler-Maruyama (28 ) method and generates samples at a fixed time step of 5 minutes,

leading to 48 samples per period and 864 samples in the total simulation time of 18 periods

(Supplementary Videos 1 & 2 available online).

Feedforward Model Based Inversion

To select the amplitude of the PWM inputs (and the nominal value of the duty-cycle for

the PI-PMW strategy), we calculated a database of 60 curves of equilibria for our system

(see Sec. 3 of the SI), using the time-averaged model of the circuit under periodic inputs we

previously derived in (11 ). The average model is reported and described in Sec. 2 of the SI.

Using the model, we computed each curve of equilibria in the database considering 18

points per curve each representing the steady-state behavior of the time-averaged model of

the toggle switch when the amplitudes of the two inputs ūaTc and ūIPTG, and the nominal

value of the duty-cycle dref are varied. Given the desired setpoint x̄ref we query the database

to find the equilibrium point x̄av(ūaTc, ūIPTG, dref ) closest to it in terms of Euclidean distance.

The values of the amplitudes – ūaTc and ūIPTG – and the duty-cycle dref that correspond to

the closest equilibrium point x̄ref
av are then selected and used to implement the feedforward

action in the control experiment.

Feedback control strategies implementation

PI-PWM. The PI-PWM control technique evaluates the correction δdk, at every time

instant tk = k TPWM , that has to be added to the nominal duty-cycle dref . Thus, the
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duty-cycle is evaluated online as follows:















dk = dref + δdk

δdk = kP e
π
k + kI

∑k
j=0 e

π
j

where kP and kI are the gains of the PI controller and eπk is the error measure computed

using a nonlinear projector. For further information see Sec. 4 of the SI.

MPC. Model Predictive Control explicitly evaluates the duty-cycle dk that minimizes the

following cost function:

J(dk) =

∫ (k+1)T

kT

KLacI

(

LacI(dk, t)− LacIref

LacIref

)2

+KTetR

(

TetR(dk, t)− TetRref

TetRref

)2

dt.

The optimization problem takes into account the constraints on the duty-cycle – whose

value is bounded between 0 and 1 – and on the dynamics of the system. At the beginning of

each period tk = k TPWM , the states LacI and TetR of the system evolve according to the

deterministic model (see Sec. 1) until the end of the prediction horizon tf = (k+nph)TPWM ,

where nph ∈ N represents the number of periods TPWM in the prediction horizon.

The optimization problem described above was solved using the genetic algorithms toolbox

available in MATLAB2. The genetic algorithm is initialized with a random population of 50

individuals. The maximum number of stall generations was set to 30.

More details on the control strategy are available in Sec. 5 of the SI.

Figures

2https://it.mathworks.com/help/gads/ga.html
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Figure 1: Panel a) Schematic of the Genetic Toggle Switch network structure. The two
genes (LacI and TetR) –respectively bound with RFP(mKate2) and GFP(mEGFP)–
mutually repress each other; the external inducers, IPTG and aTc, modulate the
strengths of the repression exerted by LacI and TetR on each other. Panel
b) The toggle switch as a multi-input, multi-output (MIMO) control system. The con-
trol inputs are first filtered because of diffusion through the cell membrane and
then enter the toggle switch nonlinearly through Hill-like functions. Panel c)
Sketch of one of the pulsatile inputs applied to control the toggle switch. Being mutually
exclusive, the other input is chosen as its mirror image. TPWM is the period of the in-
puts, while dk represents the fraction of the k-th period during which the input is switched
ON (the other being OFF).
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Figure 2: Open-loop periodic forcing. The evolution of TetR and LacI is shown when cells
are subject to mutually exclusive pulsing inputs whose amplitude and duty-cycle were pre-
computed off-line to be ūaTc = 35, ūIPTG = 0.35, dk = dref = 0.4. The period was fixed to
TPWM = 240 min. Total simulation time shown is 72 hours. Population size: 17 cells. Top
panel: Dashed red and green lines are the desired setpoints, set respectively to LacIref = 750
and TetRref = 300. Solid dark red and green lines are the evolution of the average values
over the population of LacI and TetR as expressed by the cells during the experiment.
Shaded areas represent the value of the standard deviation from each mean value, computed
at each time instant. Solid light red and green lines are the evolution of the mean value
of the oscillations evaluated with a moving window of period equal to TPWM . The lack of
convergence to the desired set-point clearly shows the limits of open-loop, pre-computed
inputs in achieving the control objective when diffusion and other effects are appropriately
modeled. Middle panels show the evolution of the pulsing inputs applied to the system.
Bottom panel shows the the duty-cycle that is kept constant over time.
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Figure 3: Panel a) External Control Architecture. A population of E. coli endowed with
the Genetic Toggle Switch is hosted in a microfluidic device. A fluorescence microscope
takes pictures of the cells, whose average RFP and GFP values are evaluated through seg-
mentation algorithms. This information, together with the setpoint of the experiment, is
sent to the controller that computes online the inputs to be applied to the cells. The ac-
tuators, a system of motorized syringes, receive the control signal and produce the action
needed to feed the population of cells in the chamber with the required inputs. Panel b)
Block diagram of the proposed closed-loop hybrid control strategy. The population of cells,
together with the PWM inputs, evolve in continuous-time. The controller is instead designed
in discrete-time, computing the control input at each time period TPWM . A feedforward
Model Based Inversion block evaluates the amplitudes ūaTc and ūIPTG of the pulse wave
inputs, on the basis of the setpoint [LacIref TetRref ]. The feedback controller evaluates and
adapts in real time the duty-cycle of the inputs as a function of the desired setpoints and
the (sampled) outputs of the system. The Zero-Order Holder (ZOH) keeps the duty-cycle,
computed by the compensator at the beginning of each period, constant during the rest of
the period TPWM .
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Figure 4: In-silico deterministic experiment: comparison of the performance of the PI-PWM
(panel a)) and MPC (panel b)) control strategies via deterministic simulations. The value
of the input amplitudes are set to ūaTc = 35, ūIPTG = 0.35. For the PI-PWM, the duty-
cycle starts from dref = 0.4 and is then adapted by the controller after the first period,
while the MPC computes the duty-cycle from the start (solving the optimization problem).
PI gains were set to kP = 0.0101 and kI = 0.0401. The parameters of the MPC cost
function parameters were set to KLacI = 1, KTetR = 4, while the prediction horizon is equal
to 3TPWM . Total simulation time is 72 hours. Top panels: dashed red and green lines
represent the setpoint of the experiment, respectively LacIref and TetRref . Solid lines show
the evolution of promoter proteins for LacI (red) and TetR (green). Dark solid lines, starting
from t = TPWM , are the mean values of the state in the time period, evaluated with a moving
window of period TPWM . Middle panels show the evolution of the pulsing inputs applied to
the system. Bottom panels show the evolution of the duty-cycle over time.
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Figure 5: In-silico stochastic experiment: comparison of the performance of the PI-PWM
(top panel) and MPC (central panel) control strategies. Inputs amplitudes are set to: ūaTc =
35, ūIPTG = 0.35 while dref = 0.4 (for the PI-PWM), TPWM = 240 min. PI gains were set to
kP = 0.0101 and kI = 0.0401. MPC’s cost function parameters have been set to KLacI = 1,
KTetR = 4, while the prediction horizon is 3TPWM . Total simulation time is 72 hours.
Population size: 17 cells. Dashed lines are the setpoint of the experiment, for LacIref (red)
and TetRref (green). Solid red and green lines are the average evolution of LacI and TetR
over the population. Darker solid lines represent the evolution of the mean trajectory in the
period, evaluated with a moving window as in the deterministic case. Shaded areas represent
the values of the standard deviation from the means, at each time instant. Bottom panel:
Duty-cycle evolution over time when the MPC (blue) or the PI-PWM (yellow) strategies are
used.
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Figure 6: Agent-based simulation in BSim 2.0 of the PI-PWM (panel a)) and MPC (panel
b)) control strategies. The pulsatile inputs’ amplitudes were set to ūaTc = 35, ūIPTG = 0.35,
while dref = 0.4 and TPWM = 240 min. Total simulation time is 72 hours. We considered E.
coli cells growing in a single chamber of a “mother machine”-like microfluidic device (27 ): the
simulations start with a single cell located at the bottom of the chamber; as the cell grows and
duplicates, it pushes outside of the chamber new cells that exceed the maximum capacity
of the chamber (around 10 cells). The top panel shows the evolution over time of LacI;
the dashed line representing the setpoint LacIref = 750, while lighter lines the evolution
of the state for each cell in the simulation, and the darker solid line the mean trajectory
computed over the population, evaluated through a moving window of period TPWM . The
middle panel shows the evolution over time of TetR; the dashed line representing the setpoint
TetRref = 300, lighter lines are the evolution of the state for each cell in the simulation, while
the dark solid line represents the evolution of the mean trajectory across the population in
the period, evaluated using a moving window of period TPWM . The bottom panel shows the
evolution of the duty-cycle over time.
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Supplementary Information

1 Model

The model of the synthetic toggle switch we considered in our analysis was originally devel-

oped in Lugagne et al. (9 ). The model captures the pseudo-reactions describing transcription

∅
fm
L (TetR,aTc)
−−−−−−−−→ mRNAL,

∅
fm
T (LacI,IPTG)
−−−−−−−−−→ mRNAT ,

those describing translation

mRNAL

(kp
L
)

−−→ mRNAL + LacI,

mRNAT

(kp
T
)

−−→ mRNAT + TetR,

and those related to dilution/degradation

mRNALL

gmL−→ ∅, mRNALT

gmT−→ ∅,

LacI
gPL−→ ∅, T etR

gPT−→ ∅.

The pseudo-reactions listed above can be put together to obtain the following model:

dmRNALacI

dt
= κm0

L +
κm
L

1 +
(

TetR
θTetR

· 1
1+(aTc/θaTC)

ηaTc

)ηTetR
− gmL ·mRNALacI (1)

dmRNATetR

dt
= κm0

T +
κm
T

1 +
(

LacI
θLacI

· 1
1+(IPTG/θIPTG)ηIPTG

)ηLacI
− gmT ·mRNATetR (2)

dLacI

dt
= κp

L ·mRNALacI − gpL · LacI (3)
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d TetR

dt
= κp

T ·mRNATetR − gpT · TetR (4)

d aTc

dt
=















kin
aTc(uaTc − aTc), if uaTc > aTc

kout
aTc(uaTc − aTc), if uaTc ≤ aTc

(5)

d IPTG

dt
=















kin
IPTG(uIPTG − IPTG), if uIPTG > IPTG

kout
IPTG(uIPTG − IPTG), if uIPTG ≤ IPTG.

(6)

The parameters of the model are listed in Table 1.

Table 1: Value of the parameters of the Model (1)-(6) taken from (9 ).

κm0
L 3.20e-2 mRNAmin−1 gmL , g

m
T 1.386e-1 min−1

κm0
T 1.19e-1 mRNAmin−1 gpL, g

p
T 1.65e-2 min−1

κm
L 8.30 mRNAmin−1 θLacI 31.94 a.u.

κm
T 2.06 mRNAmin−1 ηLacI 2.00
κp
L 9.726e-1 a.u.mRNAmin−1 θTetR 30.00 a.u.

κp
L 9.726e-1 a.u.mRNAmin−1 ηTetR 2.00

kin
IPTG 2.75e-2 min−1 θIPTG 9.06e-2 mM

kout
IPTG 1.11e-1 min−1 ηIPTG 2.00
kin
aTc 1.62e-1 min−1 θaTc 11.65 ng/ml

kout
aTc 2.00e-2 min−1 ηaTc 2.00

2 Average Model

Since the time scales of the mRNA dynamics is notably faster than that of the proteins (11 ),

by using quasi-steady state arguments, we can obtain the non-dimensional Quasi-Steady

State Model:

dx1

dt′
= k0

1 +
k1

1 + x2
2 · w1(t′/gp)

− x1

dx2

dt′
= k0

2 +
k2

1 + x2
1 · w2(t′/gp)

− x2

(7)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2019. ; https://doi.org/10.1101/851212doi: bioRxiv preprint 

https://doi.org/10.1101/851212
http://creativecommons.org/licenses/by-nc-nd/4.0/


where

t′ = gp t, x1 =
LacI

θLacI
, x2 =

TetR

θTetR
, (8)

and the dimensionless parameters are defined as

k0
1 =

κm0
L κp

L

gmL θLacI gp
, k1 =

κm
L κp

L

gmL θLacI gp
,

k0
2 =

κm0
T κp

T

gmT θTetR gp
, k2 =

κm
T κp

T

gmT θTetR gp
.

The inputs to the system are modeled by the nonlinear functions w1 and w2 whose expression

was derived in our previous work (11 ).

When subject to mutually exclusive pulsatile inputs, of the form

uaTc(t) = ūaTc · (1− sq(t/T ))

uIPTG(t) = ūIPTG · sq(t/T )
(9)

where sq(t/T ) is a periodic square wave of period T and duty-cycle d that assumes values

in [0, 1], model (7) yields the following average vector field:

dx1

dτ
= ǫ

[

k0
1 + k1

(

d

1 + x2
2

+
1− d

1 + x2
2 · w̄1(ūaTc)

)

− x1

]

dx2

dτ
= ǫ

[

k0
2 + k2

(

d

1 + x2
1 · w̄2(ūIPTG)

+
1− d

1 + x2
1

)

− x2

] (10)

where τ = t′/gpT .

3 Curves of equilibria of the average model

The number and position in state space of the equilibrium points x̄av = [x̄1, x̄2] of the

average vector field (10) depend on the specific choice of the amplitudes ūaTc and ūIPTG of

the mutually exclusive pulsatile inputs, and on the value of the duty-cycle d. For example,
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for the reference values ūaTc = 50 ng/ml and ūIPTG = 0.5 mM, system (10) is monostable

and the position of the equilibrium point x̄av varies monotonically with d as reported in

Figure 7 (blue dots). Hence, given certain values of ūaTc and ūIPTG, it is possible to move

the position of x̄av on the corresponding curve by varying d, as reported in Figure 8.

These curves of equilibria are exploited in the design of our control strategies, as it is

explained later int this text in Sec. 4 and in Sec. 5. For this purpose, we used the average

model in Sec. 2 to assemble a database of 60 curves of equilibria, Γi(ūaTc, ūIPTG) with

i = 1, . . . , 60, parametrized in d. The curves were obtained by considering 20 uniformly

spaced values of ūaTc ∈ [0, 100] and 20 values of ūIPTG ∈ [0, 1]. Specifically, 20 curves were

obtained by varying ūIPTG while keeping constant ūaTc = 100, 20 curves by varying ūaTc

with ūIPTG = 1 and 20 by varying simultaneously ūaTc and ūIPTG while keeping their ratio

constant.

Figure 7: Equilibrium points x̄av of (10) as a function of duty-cycle d re-scaled in arbitrary fluorescence
units using (8). Each dot represents the location of the unique stable equilibrium point of system (10)
evaluated for d taking values in the interval [0, 1] with increments of 0.01.
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a) b)

Figure 8: Equilibrium points x̄av of (10) as a function of duty-cycle d re-scaled in arbitrary fluorescence
units using (8). Each dot represents the location of the unique stable equilibrium point of system (10)
evaluated for d taking values in the interval [0; 1] with increments of 0.01. Panel a): Equilibrium points
for ūaTc = 100 ng/ml and different values of ūIPTG. Panel b): Equilibrium points for ¯uIPTG = 1 mM and
different values of ūaTc.
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4 PI-PWM

eπk δdk dk

dref

〈x(k)〉

x̄ref
av

T

ūaTc
ūIPTG

uaTc(t)

uIPTG(t)

LacI

TetR

Figure 9: PI-PWM block diagram: Given the setpoint for the average model x̄ref
av , two actions regulate

the parameters of the PWM inputs that feed the system. The feedforward action is composed by the Model
Based Inversion that evaluates the amplitudes ūaTc and ūIPTG and the nominal value of the duty-cycle dref .
The nonlinear projector Π and a proportional-integral controller compose the feedback loop. At each time
period tk = k TPWM , the nonlinear projector Π evaluates the projection error eπk that is minimized by a PI
controller that evaluates the correction δdk to be added to dref .

The PI-PWM control strategy (11 , 12 ) evaluates the duty-cycle dk as the sum of dref

and δdk. The first term, dref , is the nominal duty-cycle evaluated by using the average model

– that neglects the diffusion effects – and depends only on the setpoint value. The second

term, δdk, is computed dynamically online by a PI controller whose output is such that the

error measure eπk , evaluated at the time instant tk = k TPWM with a nonlinear projector,

decreases.

The feedforward Model Based Inversion works by interrogating a database of 60 curves

of equilibria obtained for different values of ūaTc and ūIPTG (see Sec. 3). Given the setpoint

x̄ref
av , it computes its closest point in the database of equilibria. That point is associated to

the values of ūaTc and ūIPTG and to a value of the duty-cycle dref that are used to initiate

the control. This value of the duty-cycle is, then, adapted through the feedback loop, that

selects δdk in real-time.
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The core of the PI-PWM algorithm is the nonlinear projector Π that, given the measure-

ments of the mean state value over a time period T = TPWM , computed as

〈xk〉 =
1

T

∫ (k+1)T

kT

x(τ) dτ,

evaluates how far its projection on the closest curve of equilibria 〈x̂k〉 is from the projection

x̂ref
av of the setpoint x̄ref

av . More specifically, as depicted in Figure 10, considering the target

equilibrium point of the average model, say x̄ref
av , and its current state at time instant tk =

k TPWM , 〈xk〉, the projector Π evaluates their projections on the equilibrium curve ΓūaTc,ūIPTG
,

respectively x̂av
ref and 〈x̂k〉. The error eπk is computed as the arclength between x̂ref

av and 〈x̂k〉

on the curve.

Note that the projected error eπk being equal to 0 does not necessarily correspond to zero

regulation error of the mean state value 〈xk〉, that is 〈xk〉 = x̄ref
av . Indeed, at steady-state

the line connecting these two points will be orthogonal to the curve ΓūaTc,ūIPTG
but its length

may not be zero. This residual error at steady-state can be made smaller by increasing the

number of curves ΓūaTc,ūIPTG
in the database.

The error eπk , then, is used by a discrete-time proportional-integral PI controller that

evaluates the correction δdk to the duty-cycle at each period as:

δdk = kP e
π
k + kI

k
∑

j=0

eπj ,

so that the duty-cycle dk is then set to dk = dref + δdk, starting from d0 = dref . This value

dk is then kept constant until the next time instant tk+1 = (k + 1)TPWM .

Tuning of the PI gains was carried heuristically via numerical simulations in MATLAB.

Specifically, the closed loop system was simulated for 50 periods for 40,000 pairs of gain

values kP and kI selected uniformly in the ranges kP ∈ [10−4, 1] and kI ∈ [10−5, 0.1]; both

intervals were divided in 200 uniformly distributed samples. Fig. 11 shows the value of the

settling time of the duty-cycle dk and the norm of steady-state projected error e∞π for each
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TetR

x̄av
ref

x̂av
ref

eπk

LacI

〈x̂k〉

〈xk〉

0

ΓūaTc,ūIPTG

Figure 10: Working principle of the nonlinear projector block. Given the setpoint x̄av
ref , the red curve

represents the closest one ΓūaTc,ūIPTG
; black curves are other equilibrium curves that are further from it.

The setpoint x̄av
ref and the mean value of the state in the k-th period 〈xk〉 are respectively projected onto

the curve on the points x̂av
ref and 〈x̂k〉. The length of the curve between x̂av

ref and 〈x̂〉, highlighted in blue, is
the projection error eπk at the time instant k.

pair of gain values. The values of kP = 0.0101 and kI = 0.0401 were selected as those giving

the best compromise between speed of the transient and residual steady-state error.
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Figure 11: Tuning of the PI controller. Panel a) shows the settling time, as a number of periods, of

the duty-cycle at the 10% of its final value, for all pairs (kP, kI) ∈ [10−4, 1] × [10−5, 0.1]. Note that the
performance have been evaluated over simulation time of 50 periods and yellow colored squares denote a
settling time ≥ 50 periods. Panel b) shows a zoom in the most significant part of panel a) (lower values
are better); panel c) shows the norm of the steady-state projected error e∞π for the same range of values of
control gains (lower values are better). The red box indicates the values of PI gains we selected and used in
all in-silico control experiments.
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5 Model Predictive Control

LacI

TetR

uaTc(t)

uIPTG(t)

T

ūaTc(t)

ūIPTG(t)

dkx̄ref

LacIk
TetRk

Figure 12: Model predictive control block diagram

MPC strategies have been widely applied in the field of synthetic biology (29 ), demon-

strating their effectiveness also for in-vivo experiments (22 ). A Model Predictive Controller

repeatedly solves an online optimization problem (on a finite prediction horizon interval) to

directly evaluate the duty-cycle dk as the quantity that minimizes a given cost function; in

our case the cost function was selected as:

J(dk) =

∫ (k+1)T

kT

KLacI

(

LacI(dk, t)− LacIref

LacIref

)2

+KTetR

(

TetR(dk, t)− TetRref

TetRref

)2

dt.

(11)

The optimization problem is formulated taking into account the 6th order model of the system

(see Sec. 1 of the SI, equations (1)-(6)) to predict its state evolution over an horizon that is

multiple of TPWM , that is Tp = nph · TPWM with nph ∈ N. Other constraints, as the upper

and the lower admissible bounds of the duty-cycle, were considered in the formulation of the

problem. Genetic algorithms (30 ) were used to numerically find the (sub)optimal solution

at each step.
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The control parameters KLacI and KTetR in (11) were selected heuristically to KLacI = 1

and KTetR = 4, after an extensive numerical search in MATLAB. Specifically, the control

evolution was simulated for 18 periods fixing KLacI = 1 and varying KTetR over 37 values

chosen uniformly in the interval [0.01, 100], so as to vary the ratio between the two gains.

The best values given above were selected for the in-silico experiments reported in the main

text.
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6 Comparison Metrics

To conduct a quantitative comparative analysis between different control approaches, we

evaluated three different control error metrics as done in (22 ). The Integral Square Error

(ISE) is defined as

ISE =

∫ tf

t0

e(τ)2 dτ.

By integrating the square error over time, ISE tends to penalize large errors much more

than smaller ones. Thus, this index can be used to compare performance during transients,

in which the presence of the overshoot or a long settling time could give rise to significant

errors. Small errors, even if persistent, do not affect this metric in a very significant way.

The Integral Absolute Error (IAE) is defined as

IAE =

∫ tf

t0

|e(τ)| dτ.

IAE integrates the absolute error without adding any weight. This index allows a trade-off

between transient dynamics and steady-state errors.

The Integral Time-weighted Absolute Error (ITAE) is defined as

ITAE =

∫ tf

t0

τ |e(τ)| dτ.

By integrating the absolute error multiplied by the time, ITAE tends to penalize much

more small errors that occur after a long time than significant errors at the beginning of

the experiment. For this reason, it is the best index to summarize the performance of a

controller in a regulation task.

In the above equations, t0 and tf are, respectively, the time instants at the beginning and

at the end of the in-silico experiments.
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7 Quantitative analysis of the in-silico experiments

Performance indices of the deterministic in-silico experiments are reported in Table 2. The

comparison metrics, presented in the previous Sec. 6, have been evaluated by using the

relative error signal e(t) defined as

e(t) =

∥

∥

∥

∥

∥

[

LacI(t)MW − LacIref

LacIref
;
TetR(t)MW − TetRref

TetRref

]

∥

∥

∥

∥

∥

2

(12)

where

LacI(t)MW =
1

TPWM

∫ t

t−TPWM

LacI(τ) dτ, (13)

TetR(t)MW =
1

TPWM

∫ t

t−TPWM

TetR(τ) dτ. (14)

They confirm the qualitative analysis reported in the main text. Generally, MPC leads to

better performance than PI-PWM in the deterministic case, i.e. where stochastic perturba-

tions are not taken into account.

Table 2: Control Error Metrics in the deterministic case. The two strategies are compared in terms
of Integral Square Error (ISE), Integral Absolute Error (IAE), and Integral Time-weighted Absolute Error

(ITAE). The error signal is computed according to (12).

Strategy ISE IAE ITAE
PI-PWM 876.71 1304.32 2.068673 E06

MPC 47.58 382.04 0.811109 E06

In the stochastic experiments, we find very similar results as in the deterministic case.

MPC still globally guarantees better performances, even if its indices worsened more than

those computed for the PI-PWM (Table 3).

Parametric variations. To test robustness of the strategies, control error metrics were

computed in stochastic simulations with parametric variations and are reported in Table 4.

The values reported in the table are evaluated by averaging three simulations each obtained

using different sets of parameters.
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Table 3: Control Error Metrics in the stochastic case. The open loop forcing and the two control strategies
are compared in terms of Integral Square Error (ISE), Integral Absolute Error (IAE), and Integral Time-

weighted Absolute Error (ITAE) of the error signal, computed according to (12) over the last 12 periods.
The values reported in brackets are computed over the entire simulation (18 periods).

Strategy ISE IAE ITAE
Open Loop (13456.03) (7413.06) (16.822305 E06)
PI-PWM 469.90 (830.52) 998.20 (1472.87) 2.903351 E06 (3.218139 E06)

MPC 150.14 (178.50) 616.05 (724.72) 1.904908 E06 (1.975185 E06)

In the case of parameters extracted with a standard deviation of 5%, MPC guarantees

better transient performance – as confirmed by lower ISE value over the whole simulation

– while PI-PWM achieves better steady-state regulation, i.e. lower ITAE values. While in

the case of a standard deviation of 10%, PI-PWM metrics worsen more than for the MPC,

which globally guarantees better performance.

Table 4: Control Error Metrics in the stochastic case with parametric variations. The parameters of each
cell in the population were independently drawn from Gaussian distributions centered on their nominal values
given in Tab. 1 (in Section 1) with standard deviation of 5% and 10%, respectively. The open loop forcing
and the two control strategies are compared in terms of Integral Square Error (ISE), Integral Absolute Error

(IAE), and Integral Time-weighted Absolute Error (ITAE) of the error signal, which has been computed
according to (12) over the last 12 periods of the simulations. Values reported in brackets are related to the
entire simulations (18 periods).

Strategy Var. ISE IAE ITAE
Open Loop 5% (15613.06) (7985.07) (18.091973 E06)
PI-PWM 5% 687.30 (1605.77) 1224.34 (2056.69) 3.605903 E06 (4.162760 E06)

10% 4369.72 (6061.33) 3094.09 (4317.68) 9.014108 E06 (9.968271 E06)

MPC 5% 1116.21 (1459.63) 1532.02 (2109.08) 4.193415 E06 (4.716253 E06)

10% 2185.18 (2751.82) 2164.75 (2870.43) 6.153388 E06 (6.791182 E06)

Agent-based simulations in BSim. Fig. 13 shows the evolution of the cells’ output

when simulated in open-loop (i.e. without feedback control action) via agent-based sim-

ulations. When comparing this figure with the closed-loop simulation shown in the main

text (Fig. 6) we see that LacI and TetR average values are consistently far away from the

reference setpoints, as opposed to their evolution in the closed-loop simulations.

Variations of the 10% on all the parameters of the system do not influence the overall

performance of the two closed-loop control strategies, with the MPC still considerably better

than the PI-PWM (see Table 5).
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Table 5: Control Error Metrics in the agent-based simulations. The open-loop forcing and the proposed
control strategies are compared in terms of Integral Square Error (ISE), Integral Absolute Error (IAE), and
Integral Time-weighted Absolute Error (ITAE) of the error signal that is computed according to (12). The
values are computed neglecting the transient of about 5 periods required for the circuit outputs to settle
down. The values computed over the entire simulation are reported in brackets.

Strategy Var. ISE IAE ITAE
Open Loop no 11161.13 (15543.92) 5661.29 (7923.19) 16.271114 E06 (18.281741 E06)

PI-PWM no 1483.72 (3671.39) 1510.72 (2939.98) 3.452511 E06 (4.458611 E06)

10% 1781.40 (3508.97) 1826.95 (2975.92) 4.477333 E06 (5.217549 E06)

MPC no 173.12 (277.18) 562.83 (836.80) 1.677061 E06 (1.947358 E06)

10% 283.49 (481.36) 732.75 (1201.13) 2.097497 E06 (2.451896 E06)
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Figure 13: Agent-based simulation in BSim of the cells evolution in open-loop. The pulsatile inputs’ am-
plitudes were set to ūaTc = 35, ūIPTG = 0.35, while the duty-cycle was kept constant (without any adapta-
tion) to dref = 0.4. The period was selected as usual to be TPWM = 240 min. Total simulation time is 72
hours. We considered E. coli cells growing in a single chamber of a “mother machine”-like microfluidic device
(27 ): the simulations start with a single cell located at the bottom of the chamber; as the cell grows and
duplicates, it pushes outside of the chamber new cells that exceed the maximum capacity of the chamber
(around 10 cells). The top panel shows the evolution over time of LacI; the dashed line representing the
setpoint LacIref = 750, while lighter lines the evolution of the state for each cell in the simulation, and the
darker solid line the mean trajectory computed over the population, evaluated through a moving window of
period TPWM . The middle panel shows the evolution over time of TetR; the dashed line representing the
setpoint TetRref = 300, lighter lines are the evolution of the state for each cell in the simulation, while the
dark solid line represents the evolution of the mean trajectory across the population in the period, evaluated
using a moving window of period TPWM .
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