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11Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in

Fruit Crops and Viticulture, Dossenheim, Germany
12School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV
13Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
14These authors are joint senior authors on this work
∗Corresponding author: E-mail: mathieu.gautier@inra.fr and arnaud.estoup@inra.fr

Abstract

Evidence is accumulating that evolutionary changes are not only common during biological invasions

but may also contribute directly to invasion success. The genomic basis of such changes is still largely

unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions

under which invasiveness can be enhanced or suppressed. Here we characterized the genome response

of the spotted wing drosophila Drosophila suzukii during the worldwide invasion of this pest insect

species, by conducting a genome-wide association study to identify genes involved in adaptive processes

during invasion. Genomic data from 22 population samples were analyzed to detect genetic variants

associated with the status (invasive versus native) of the sampled populations based on a newly developed

statistic, we called C2, that contrasts allele frequencies corrected for population structure. This new

statistical framework has been implemented in an upgraded version of the program BayPass. We

identified a relatively small set of single nucleotide polymorphisms (SNPs) that show a highly significant

association with the invasive status of populations. In particular, two genes RhoGEF64C and cpo, the

latter contributing to natural variation in several life-history traits (including diapause) in Drosophila

melanogaster, contained SNPs significantly associated with the invasive status in the two separate main

invasion routes of D. suzukii . Our methodological approaches can be applied to any other invasive species,

and more generally to any evolutionary model for species characterized by non-equilibrium demographic

conditions for which binary covariables of interest can be defined at the population level.
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Introduction1

Managing and controlling introduced species2

require an understanding of the ecological3

and evolutionary processes that underlie4

invasions. Biological invasions are also of5

more general interest because they constitute6

natural experiments that allow investigation7

of evolutionary processes on contemporary8

timescales. Colonizers are known to experience9

differences in biotic interactions, climate,10

availability of resources, and disturbance regimes11

relative to populations in their native regions,12

often with opportunities for colonizers to evolve13

changes in resource allocation which favor their14

success (Balanya et al., 2006; Dlugosch et al.,15

2015; Lee and Gelembiuk, 2008). Adaptive16

evolutionary shifts in response to novel selection17

regimes may therefore be central to initial18

establishment and spread of invasive species19

after introduction (Colautti and Barrett, 2013;20

Colautti and Lau, 2015). In agreement with21

this adaptive evolutionary shift hypothesis,22

experimental evidence is accumulating that23

evolutionary changes are not only common24

during invasions but also may contribute directly25

to invasion success (Bock et al., 2015; Colautti26

and Lau, 2015; Ellstrand and Schierenbeck,27

2000; Facon et al., 2011; Lee, 2002; Ochocki and28

Miller, 2017; Williams et al., 2016). However,29

despite an increase in theoretical and empirical30

studies on the evolutionary biology of invasive31

species in the past decade, the genetic basis of32

evolutionary adaptations during invasions is still33

largely unexplored (Barrett, 2015; Reznick et al.,34

2019; Welles and Dlugosch, 2018).35

The spotted wing drosophila, Drosophila36

suzukii , represents an attractive biological model37

to study invasive processes. This pest species,38

native to South East Asia, initially invaded39

North America and Europe, simultaneously in40

2008, and subsequently La Réunion Island (Indian41

Ocean) and South America, in 2013. Unlike most42

Drosophilids, this species lays eggs in unripe43

fruits by means of its sclerotized ovipositor. In44

agricultural areas, it causes dramatic losses in45

fruit production, with a yearly cost exceeding46

one billion euros worldwide (e.g., Asplen et al.,47

2015; Cini et al., 2012). The rapid spreading48

of D. suzukii in America and Europe suggests49

its remarkable ability to adapt or to acclimate50

to new environments and host plants. Using51

evolutionarily neutral molecular markers, Adrion52

et al. (2014) and Fraimout et al. (2017) finely53

deciphered the routes taken by D. suzukii in54

its invasion worldwide. Interestingly, both studies55

showed that North American (plus Brazil) and56

European (plus La Réunion Island) populations57

globally represent separate invasion routes, with58

different native source populations and multiple59

introduction events in both invaded regions60

(Fraimout et al., 2017). These two major61

and separate invasion pathways provide the62
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opportunity to evaluate replicate evolutionary63

trajectories. Finally, D. suzukii is a good model64

species for finely interpreting genomic signals65

of interest due to the availability of genome66

assemblies for this species (Chiu et al., 2013;67

Ometto et al., 2013; Paris et al., 2019) along with68

the large amount of genomic and gene annotation69

resources available in its closely related model70

species D. melanogaster (Hoskins et al., 2015).71

In this context, advances in high-throughput72

sequencing technologies together with population73

genomics statistical methods offer novel74

opportunities to disentangle responses to selection75

from other forms of evolution. These advances76

are thus expected to provide insights into the77

genomic changes that might have contributed to78

the success in a new environment (reviewed in79

Bock et al., 2015; Welles and Dlugosch, 2018).80

Hence, comparing the structuring of genetic81

diversity on a whole genome scale among invasive82

populations and their source populations might83

allow the characterization of the types of genetic84

variation involved in adaptation during invasion85

of new areas and their potential ecological86

functions. For example, Puzey and Vallejo-Marin87

(2014) used whole genome resequencing data to88

scan for shifts in site frequency spectra to detect89

positive selection in introduced populations90

of monkey-flower (Mimulus guttatus). Regions91

putatively under selection were associated with92

flowering time and abiotic and biotic stress93

tolerance and included regions associated with94

a chromosomal inversion polymorphism between95

the native and introduced range.96

Identifying loci underlying invasion success97

can be considered in the context of whole-98

genome scan for association with population-99

specific covariate. These approaches, also known100

as Environmental Association Analysis (EAA),101

have received considerable attention in recent102

years (e.g., Coop et al., 2010; de Villemereuil103

and Gaggiotti, 2015; Frichot et al., 2013; Gautier,104

2015). Most of the methodological developments105

have focused on properly accounting for the106

covariance structure among population allele107

frequencies that is due to the shared demographic108

history of the populations. This neutral covariance109

structure may indeed confound the relationship110

between the across population variation in allele111

frequencies and the covariates of interest (Coop112

et al., 2010; Frichot et al., 2013, 2015; Gautier,113

2015). Yet, defining relevant environmental114

characteristics or traits as proxy for invasion115

success remains challenging and might even116

be viewed as the key aim. Therefore, we117

propose to simply summarize invasion success118

into a binary variable corresponding to the119

population’s historical status (i.e., invasive or120

native) based on previous studies. By extension,121

functional annotation of the associated variants122

identified may provide insights into candidate123

traits underlying invasion success (Estoup et al.,124

2016; Li et al., 2008; Wu et al., 2019).125
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The Bayesian hierarchical model initially126

proposed by Coop et al. (2010), later extended127

in Gautier (2015) and implemented in the128

software BayPass, represents one of the most129

flexible and powerful frameworks to carry130

out EAA since it efficiently accounts for the131

correlation structure among allele frequencies in132

the sampled populations. Although association133

analyses may be carried out with categorical or134

binary covariables (see the example of Littorina135

population ecotypes in Gautier, 2015), the136

assumed linear relationship with allele frequencies137

is not entirely satisfactory and may even be138

problematic when dealing with small data sets or139

if one wishes to disregard some populations.140

In the present study, we developed a non-141

parametric counterpart for the association model142

implemented in BayPass (Gautier, 2015). This143

new approach relies on a contrast statistic,144

we named C2, that compares the standardized145

population allele frequencies (i.e., the allele146

frequencies corrected for the population structure)147

between the two groups of populations specified148

by the binary covariable of interest. We evaluated149

the performance of this statistic on simulated data150

and used it to characterize the genome response of151

D. suzukii during its worldwide invasion. To that152

end, we generated Pool-Seq data (e.g., Gautier153

et al., 2013; Schlotterer et al., 2014) consisting154

of whole-genome sequences of pools of individual155

DNA (from n=50 to n=100 individuals per156

pool) representative of 22 worldwide populations157

sampled in both the invasive (n=16 populations)158

and native (n=6 populations) ranges of the159

species. We then estimated the C2 statistics160

associated with the invasive vs. native status161

of the populations on a worldwide scale or162

considering separately each of the two invasion163

routes (European and American) as characterized164

by Fraimout et al. (2017). Our aim was to identify165

genomic regions and genes involved in adaptive166

processes underlying the invasion success of D.167

suzukii .168

New Approaches169

To identify single nucleotide polymorphisms170

(SNPs) associated with a population-specific171

binary trait, such as the invasive versus native172

status of D. suzukii populations, we developed173

a new statistic, we called C2. The C2 statistic174

was designed to contrast SNP allele frequencies175

between the two groups of populations specified by176

the binary trait while accounting for the possibly177

complex evolutionary history of the different178

populations. Indeed, the shared population179

history is a major (neutral) contributor to allele180

frequency differentiation across populations (e.g.181

Bonhomme et al., 2010; Gunther and Coop, 2013)182

that may confound association signals (e.g. Coop183

et al., 2010; Gautier, 2015).184

We here relied on the multivariate normal185

approximation introduced by Coop et al. (2010)186

and further extended by Gautier (2015) to model187

population allele frequencies and to define the188

C2 contrast statistic. More precisely, consider a189
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sample made of J populations (each with a label190

j=1,...,J) that have been characterized for I bi-191

allelic SNPs (each with a label i=1,...,I), with192

the reference allele arbitrarily defined (e.g., by193

randomly drawing the ancestral or the derived194

state). Let αij represent the (unobserved) allele195

frequency of the reference allele at SNP i in196

population j. As previously defined and discussed197

(Coop et al., 2010; Gautier, 2015), we introduced198

an instrumental allele frequency α?ij (for each SNP199

i and population j) taking values on the real line200

such that αij =min
(
1,max

(
0,α?ij

))
.201

Following Coop et al. (2010) and Gautier202

(2015), a multivariate Gaussian (prior)203

distribution of the vector α?
i =
{
α?ij
}

1...J
is204

then assumed for each SNP i:205

α?
i |Λ,πi∼NJ (πi1J ;πi(1−πi)Ω) (1)

where 1J is the all-one vector of length J ; Ω is the206

(scaled) covariance matrix of the population allele207

frequencies which captures information about208

their shared demographic history; and πi is the209

weighted mean frequency of the SNP i reference210

allele. If Ω is used to build a tree or an211

admixture graph (Pickrell and Pritchard, 2012),212

πi corresponds to the root allele frequency. We213

further define for each SNP i the vector α̈i of214

standardized (instrumental) allele frequencies in215

the J populations as:216

α̈i=Γ−1
Ω

{
αij−πi√
π(1−πi)

}
(1..J)

(2)

where ΓΩ results from the Cholesky decomposition217

of Ω (i.e., Ω=ΓΩ
tΓΩ). The vector α̈i thus contains218

scaled allele frequencies that are corrected for219

both the population structure (summarized by Ω)220

and the across-population (e.g., ancestral) allele221

frequency (πi).222

The C2 contrast statistic is then simply defined223

as the mean squared difference of the sum of224

standardized allele frequencies of the two groups of225

populations defined according to the binary trait226

modalities:227

C2(i)=
1

ctc

(
α̈i

tc
)2

(3)

where c=cj(1..J)
is a vector of the trait values228

observed for each population j such that cj =1229

(respectively cj =−1) if population j displays the230

first (respectively second) trait modality. One may231

also define cj =0 to exclude a given population j232

from the comparison.233

According to our model, the J elements of α̈i234

are independent and identically distributed as235

a standard Gaussian distribution under the null236

hypothesis of only neutral marker differentiation.237

The C2 statistic is thus expected to follow a χ2
238

distribution with one degree of freedom.239

The estimation of the C2 statistic was240

performed here under the hierarchical Bayesian241

model implemented using a Markov-Chain Monte242

Carlo (MCMC) algorithm in the BayPass243

software (Gautier, 2015). However, such a multi-244

level modeling approach shrinks the estimated245

posterior means of the C2 toward their prior246

means, as already noticed in Gautier (2015)247

for the estimation of the SNP-specific XtX248

differentiation statistic defined as XtX=α̈i
tα̈i249
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(Gunther and Coop, 2013). To ensure proper250

calibration of both the C2 and XtX estimates we251

thus relied on the scaled posterior means of the252

α̈ij’s, denoted ̂̈αij and computed as:253

̂̈αi=
{ ̂̈αij−µα̈

σα̈

}
(1...J)

(4)

where ̂̈αij is the posterior means of α̈ij and254

µα̈ (respectively σα̈) is the mean (respectively255

standard deviation) of the I×J ̂̈αij’s (µα̈'0256

usually). The following estimators of XtX and C2,257

denoted for each SNP i as X̂tX?(i) and Ĉ2(i)258

respectively, were then obtained as:259

X̂tX?(i)= ̂̈αit̂̈αi
Ĉ2(i)=

1

ctc

(̂̈αitc)2
(5)

Under the null hypothesis, X̂tX?(i)∼χ2
J and260

Ĉ2(i)∼χ2
1 allowing one to rely on standard261

decision making procedures, e.g. based on p-262

values or more preferably on q-values to control263

for multiple-testing issues (Storey and Tibshirani,264

2003).265

Results266

Simulation-based evaluation of the267

performance of our novel statistical268

framework269

To evaluate the performances of the C2 contrast270

statistic for the identification of SNP associated271

with binary population-specific covariables, we272

simulated 100 data sets under the evolutionary273

scenario depicted in Figure 1A. Each simulated274

data set consisted of 5,000 SNPs genotyped for275

320 individuals belonging to 16 differentiated276

populations subjected to two different contrasting277

environmental constraints, denoted ec1 and ec2278

in Figure 1A. The ec1 constraint was aimed279

at mimicking adaptation of eight pairs of280

geographically differentiated populations to two281

different ecotypes (e.g., host plant) replicated in282

different geographic areas. Conversely, the ec2283

might be viewed as replicated local adaptive284

constraints with a first type a specifying a285

large native area with several geographically286

differentiated populations (here six), and a second287

type b specifying invasive areas with differentiated288

populations originating from various regions of the289

native area (i.e., not related to the same extent to290

their contemporary native populations). It should291

be noted that the two ec1 types were evenly292

distributed in the population tree while for ec2,293

the type b was over-represented in 10 populations294

(Figure 1A). During the adaptive phase, the295

fitness of individuals in the environment of their296

population of origin was determined by their297

genotypes at 25 SNPs for ec1 and 25 SNPs298

for ec2 constraints (hereafter referred to as ec1299

and ec2 selected SNPs, respectively). Overall, the300

realized FST (Weir and Cockerham, 1984) ranged301

from 0.110 to 0.122 (0.116 on average) across the302

data sets, a level of differentiation similar to that303

observed in our worldwide D. suzukii sample (see304

below).305

We further estimated with BayPass (Gautier,306

2015) the C2 statistics for each ec1 or ec2307

contrasting environmental constraints together308

with the corresponding Bayes Factors (BF) as an309
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alternative measure of the support for association.310

For comparison purposes, we also estimated the311

SNP XtX differentiation statistic, using both the312

posterior mean estimator (Gautier, 2015) and the313

X̂tX? estimator described above. Note however314

that, as an overall (covariate-free) differentiation315

statistic, the XtX does not distinguish outlier316

SNPs responding to the ec1 constraint from those317

responding to the ec2 constraint.318

Based on the status of each simulated SNPs319

(i.e., neutral, and ec1 or ec2 selected) and320

combining results in the 100 simulated data sets,321

standard receiver operating curves (ROCs) were322

computed (Grau et al., 2015) and plotted in323

Figure 1B (respectively 1C) for the six statistics.324

This allowed comparing for various thresholds325

covering their range of variation of the different326

statistics, the power to detect ec1 (respectively327

ec2 ) selected SNPs (i.e., the proportion of true328

positives among the corresponding selected SNPs)329

as a function of the false positive rates (FPR, i.e.,330

the proportion of positives among neutral SNPs).331

The C2 statistic was found efficient to detect332

SNPs affected by ec1 and ec2 environmental333

constraints, the area under the ROC curve334

(AUC) being equal to 0.977 (Figure 1B) and335

0.943 (Figure 1C), respectively. The unbalanced336

population representation of the two ec2 types337

had a limited impact on the performance of the C2338

statistic to identify the underlying selected SNPs.339

In addition, the C2 statistics clearly discriminated340

the selected SNPs according to their underlying341

environmental constraint. In other words, no342

selection signal was identified by the C2 statistic343

computed for the ec2 (respectively ec1 ) contrast344

on ec1 (respectively ec2 ) selected SNPs, resulting345

in ROC AUC close to the value of 0.5 obtained346

with a random classifier.347

The ROC curves displayed in Figures 1B and348

1C also revealed nearly identical performance of349

the C2 statistic and the BF. Accordingly, the350

correlation between both statistics were fairly351

high (Pearson’s r equal to 0.983 and 0.923 for352

ec1 and ec2, respectively). Yet, one practical353

advantage of the C2 statistic was its good354

calibration with respect to the null hypothesis355

of no association, the corresponding p-values356

(assuming a χ2 distribution with 1 degree of357

freedom) being close to uniform (Figure S1).358

Similarly, the two XtX estimators were found359

highly correlated (Pearson’s r=0.998) with360

almost confounded ROC curves, but only the361

X̂tX? was properly calibrated (Figure S2). Their362

performances were however clearly worse than363

those obtained with the C2 (and BF) statistics.364

This was in part explained by their inability to365

discriminate between the two types of selected366

SNPs, selected SNPs overly differentiated in ec2367

generating false positives in the identification of368

ec1 SNPs (Figure 1B) and vice versa. Accordingly,369

ROC AUC in Figure 1B for the XtX were also370

smaller than in Figure 1C, ec1 selected SNPs371

being more differentiated than those in ec2 due372

to the simulated design. Yet, the power of the373

7

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted November 21, 2019. ; https://doi.org/10.1101/851303doi: bioRxiv preprint 

https://doi.org/10.1101/851303


i
i

i
i

i
i

i
i

A) Simulation scenarios
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FIG. 1. Evaluation of the performance of the C2 contrast statistic on simulated data and comparison with the BF
for association and two XtX SNP-specific differentiation estimators. A) Schematic representation of the demographic
scenario used for the simulation. It consists of two successive phases: (i) a neutral divergence phase with migration (only
some illustrative migration combinations being represented) leading to the differentiation of an ancestral population
into 16 populations after four successive fission events (at generations t=50, t=150, t=200 and t=300); and (ii) an
adaptive phase (lasting 200 generations) during which individuals were subjected to selective pressures exerted by two
environmental constraints (ec1 and ec2 ) each having two possible modalities (a or b) according to their population
of origin (i.e., eight possible environments in total). Out of the 5,000 simulated SNPs, the fitness of individuals in the
environment of their population of origin was determined by their genotypes at 25 SNPs for ec1 and 25 SNPs for
ec2 constraints. In total 100 data sets were simulated. B) and C) The ROC curves associated to the ec1 and ec2 C2
contrasts and the two corresponding BF for association are plotted together with those associated with the two XtX

estimators (i.e., posterior mean estimator XtX, and the new calibrated estimator XtX?). The FPR’s associated to
each statistic were obtained from the corresponding neutral SNP estimates combined over the 100 simulated data sets
(n=4,950×100=495,000 values in total). Similarly, the TPR’s were estimated from either the n=2,500 combined ec1
(B) or ec2 (C) selected SNPs. ROC AUC values are given between parentheses.
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XtX statistic to detect ec1 or ec2 selected SNPs374

remained substantially smaller than that of the375

corresponding C2 contrast statistics. For instance,376

at the 1% p-value significance threshold, the power377

to detect ec1 (respectively ec2) selected SNPs378

was equal to 72.6% (respectively 59.1%) with the379

C2 statistic and only 17.1% (respectively 10.4%)380

with the X̂tX? estimator, even when considering381

for the latter, a unilateral test to only target382

overly differentiated SNPs. Note that, as expected383

from the good calibration of the X̂tX? statistic,384

similar results were obtained when considering385

empirical p–value thresholds computed from the386

distribution of the XtX statistics estimated from387

neutral SNPs.388

Genome-wide scan for association with389

invasion success in D. suzukii390

To identify genomic regions associated with391

the invasion success of D. suzukii, we carried392

out a genome scan, based on the C2 statistic,393

to contrast the patterns of genetic diversity394

among 22 populations originating from either395

the native (n=6 populations) or invaded areas396

(n=16 populations) (Figure 2A). To that end397

we sequenced pools of 50 to 100 individuals398

representative of each population (Table S1)399

and mapped the resulting sequencing reads400

onto the newly released WT3-2.0 D. suzukii401

genome assembly (Paris et al., 2019). These402

Pool-Seq data allowed the characterization of403

11,564,472 autosomal and 1,966,184 X–linked404

SNPs segregating in the 22 populations that were405

sub-sampled into 154 autosomal and 26 X–linked406

data sets (of ca. 75,000 SNPs each) for further407

analyses.408

The overall differentiation was estimated using409

the recently developed FST estimator for Pool-Seq410

data (Hivert et al., 2018). It ranged from 8.86% to411

9.02% (8.95% on average) for the autosomal data412

sets and from 17.6% to 17.8% (17.8% on average)413

for the X–chromosome data sets. Although a414

higher genetic differentiation is expected for the415

X-chromosome even under equal contribution of416

males and females to demography, the almost417

twice higher overall differentiation observed for418

the X chromosome compared to autosomes might419

have been accentuated by unbalanced sex-ratio420

(e.g., polyandry), male–biased dispersal or a421

higher impact of selection on the X–chromosome422

(Clemente et al., 2018). Inferring sex-specific423

demography was beyond the scope of the present424

study, but for our purposes, this finding justified425

to perform separate genome scans on autosomal426

and X–linked SNPs.427

We ran BayPass on the different data sets428

to estimate, for every SNPs, the C2 statistic429

that contrasts the allele frequencies of native430

and invasive populations, while accounting for431

their shared population history as summarized432

in the scaled covariance matrix Ω. Interestingly,433

the estimated Ω matrices for autosomal and X–434

linked SNPs resulted in a similar structuring of435

the genetic diversity across the 22 populations436

(Figure S3), which may rule out selective437
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A) Sample Origins

B) Invasive (n=16 pop.) vs. Native C2 contrast

FIG. 2. Whole-genome scan for association with invasion success in D. suzukii . A) Geographic location of the 22 D.
suzukii population samples genotyped using a pool-sequencing methodology. Population samples from the native range
are in blue and those from the invasive range are in red (American invasion route) or light red (European invasion route)
(Fraimout et al., 2017). See Table S1 for details on each population sample. B) Manhattan plot of the SNP q-values on
a −log10 scale derived from the estimated C2 statistics for the native vs. invasive status contrast of the 22 worldwide
D. suzukii populations. SNPs are ordered by their position on their contig of origin displayed with alternating dark
blue and light blue color when autosomal and dark green and light green when X–linked. The horizontal dashed line

indicates the 1% q-value threshold (here corresponding to a p-value threshold of 8.49×10−8) which gives the expected
FDR (False Discovery Rate), i.e., the expected proportion of false positives among the 110 SNPs (highlighted in the
plot) above this threshold.
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forces as the main driver of the differences of438

global differentiation levels observed between the439

two chromosome types. As expected from the440

simulation results, the distribution of the p-values441

derived from the C2 statistics was well-behaved,442

being close to uniform for higher p–values (Figure443

S4A). To account for multiple testing issues, we444

used the qvalue R package (Storey and Tibshirani,445

2003) to compute the individual SNP q–values446

plotted in Figure 2B.447

A striking feature of the resulting Manhattan448

plot was the lack of clustering of SNPs with449

high q–values which might be related to a small450

extent of linkage disequilibrium (LD) across the451

D. suzukii populations, as expected from their452

large effective populations sizes (Fraimout et al.,453

2017). We identified 101 SNPs (including three454

X–linked) that were significant at the 1% q–455

value threshold (i.e., 1% of these 101 SNPs are456

expected to be false positives). As a matter457

of comparison, we also estimated the BF for458

association of the (standardized) population allele459

frequencies with the native or invasive status of460

the population, i.e., under a parametric regression461

model (Gautier, 2015) (Figure S5A). Out of462

the 101 significant SNPs previously identified,463

80 displayed a BF>20 db, the threshold for464

decisive evidence according to the Jeffreys’ rule465

(Jeffreys, 1961). However, in total, 6,406 SNPs466

displayed a BF>20 db probably as a consequence467

of these BF’s not accounting for multiple testing468

issue. We also compared the C2 statistic to the469

XtX measure of overall differentiation. The (two-470

sided) p–values derived from the latter were471

also well behaved (Figure S4B) and allowed the472

computation of q–values to control for multiple473

testing. As shown in Figure S5B, at the same 1%474

q–value threshold for XtX, 71 out of the 101 C2475

significant SNPs were significantly differentiated476

but they represented only a small proportion of477

the 35,546 significantly differentiated SNPs. This478

is not surprising since invasion success is obviously479

not the only selective constraint exerted on the 22480

worldwide populations considered here.481

The North-American (plus Brazil) and482

European (plus La Réunion Island) populations483

globally represent separate invasion routes that484

can be considered as two independent invasive485

replicates (Figure 2A). Interestingly enough,486

this feature of historical invasion fits well with487

the overall pattern of structuring of genetic488

diversity inferred from the Ω matrix estimated489

with our Pool-Seq data (see above and Figure490

S3). To identify signals common or specific491

to each invasion routes, we estimated the C2492

statistic associated with the invasive vs. native493

status focusing either on the native and invasive494

populations of the European invasion route495

(CEU
2 ), or native and invasive populations of496

the American invasion route (CAM
2 ). Note that497

the two invasion routes were both represented498

by eight invasive populations, suggesting similar499

power for the two CEU
2 and CAM

2 statistics. As500

observed above, the distribution of p–values501
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derived from CEU
2 and CAM

2 were found well502

behaved (Figures S4C and S4D, respectively)503

and hence q–values to control for multiple504

testing could be confidently computed. The505

cross-comparisons of the C2 statistics considering506

the 22 worldwide populations (hereafter denoted507

CWW
2 ), the CEU

2 and the CAM
2 are plotted in508

Figures 3A (CEU
2 versus CWW

2 ), 3B (CAM
2 versus509

CWW
2 ) and 3C (CAM

2 versus CEU
2 ).510

In total, 204 SNPs (detailed in Table S2)511

were significant in at least one of the three512

contrasts at the 1% q–value threshold. The overlap513

among the three different sets of significant514

SNPs was summarized in the Venn diagram515

displayed in Figure 3D. Among the 68 SNPs516

significant for the CEU
2 , 15 were also significant517

for CWW
2 and 49 were not significant in the518

other tests. Likewise, among the 72 SNPs found519

significant for the CAM
2 , 14 were also significant520

for CWW
2 and 54 were not significant in the521

other tests. Hence, the majority of the significant522

SNPs identified with either the CEU
2 or the523

CAM
2 contrasts might be viewed as specific524

to one of the two invasion routes, the signal525

being lost in the global worldwide comparison526

for a substantial proportion of them. This is527

presumably due to a reduced power resulting528

from the addition of non-informative populations529

when computing the CWW
2 statistic. Conversely,530

68 SNPs found significant with CWW
2 were neither531

significant with CEU
2 nor CAM

2 contrasts. These532

SNPs might correspond to partially convergent533

signals among the two invasion routes (i.e., the534

informative populations are distributed among the535

two routes). Most interestingly, four SNPs were536

found significant at the 1% q–value threshold in537

the three contrast analyses (CEU
2 , CAM

2 and CWW
2 )538

and might thus be viewed as strong candidates539

for association with the global worldwide invasion540

success of D. suzukii.541

Annotation of candidate SNPs542

For annotation purposes, we relied on genomic543

resources available in D. melanogaster, a model544

species closely related to D. suzukii . More545

specifically we extracted from the WT3-2.0 D.546

suzukii genome assembly 5 kb long genomic547

sequences surrounding each of the 204 SNPs548

identified above and aligned them onto the549

dmel6 reference genome (Hoskins et al., 2015)550

using the BLAT algorithm implemented in the551

program pblat (Wang and Kong, 2019). The552

gene annotation available from the UCSC genome553

browser allowed us to map 169 SNPs out of the 204554

SNPs onto 130 different D. melanogaster genes,555

145 SNPs lying within the gene sequences and 24556

less than 2.5 kb apart (our predefined threshold;557

Table S2). Only one of the four SNPs significant558

for the three contrasts (CWW
2 , CEU

2 and CAM
2 )559

could not be assigned to a D. melanogaster gene,560

because its derived 5 kb long sequences aligned561

onto a D. melanogaster sequence located 10 kb562

away from the closest annotated gene.563

Most of the 130 identified genes (80%) were564

represented by a single SNP, a feature in565
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FIG. 3. Pairwise comparison of the q–values derived from the CEU2 (native vs. invasive D. suzuki populations of the

European invasion route) versus the CWW
2 (native vs. worldwide invasive populations) statistics A), the CAM2 (native

vs. invasive populations of the American invasion route) versus the CWW
2 statistic B), and the CAM2 versus the CEU2

statistics C). In A), B) and C) the dashed vertical and horizontal lines indicate the 1% q–value threshold for the C2
derived q–values. D) Venn diagram of the number of SNPs significant at the 1% q–values among the three contrast

analyses (CWW
2 , CEU2 and CAM2 ). Values for the autosomal (X–linked) SNPs are plotted in purple (green).

agreement with the visual lack of clustering of566

SNPs with strong signal already observed in the567

Manhattan plot (Figure 2B). It should be noticed568

that 14 of the 130 genes (ca. 11%) were long569

non-coding RNA. We however decided to focus570

on the 26 genes that were represented by at least571
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D. melanogaster Gene Position on dmel6 Number of significant SNPs

(Full Name) (in kb) All C2 (dist. in bp) CWW
2 CEU2 CAM2

Der-1 (Derlin-1) chr2L:1,974-1,975 2 (236) 1 - 1
Gdi (GDP dissociation inhibitor) chr2L:9,492-9,495 4 (342) 4 4 -
lncRNA:CR45693 (long non-coding RNA) chr2L:14,51-14,512 2 (14) 2 1 -
Tpr2 (tetratricopeptide repeat protein 2) chr2L:16,492-16,507 2 (8) - 2 -
Ret (Ret oncogene) chr2L:21,182-21,199 2 (70) 2 - -
tou (toutatis) chr2R:11,579-11,616 2 (18) 1 - 2
jeb (jelly belly) chr2R:12,091-12,119 2 (14) 2 - -
CG5065 chr2R:16,608-16,625 2 (13) - 2 -
bab2 (bric a brac 2) chr3L:1,140-1,177 2 (11189) 1 - 1
axo (axotactin) chr3L:4,630-4,687 2 (25886) - 1 1
RhoGEF64C (ρ guanine nucl. exch. fact. at 64C) chr3L:4,693-4,796 2 (8) 2 1 1
CG7509 chr3L:4,803-4,805 2 (5) - 2 -
Con (connectin) chr3L:4,938-4,976 2 (616) 1 1 -
Ets65A (Ets at 65A) chr3L:6,098-6,124 2 (27998) 1 1 -
lncRNA:CR45759 (long non-coding RNA) chr3L:6,787-6,787 4 (106) - - 4
ome (omega) chr3L:14,673-14,748 2 (1) 2 - -
sa (spermatocyte arrest) chr3L:21,405-21,407 2 (61) 1 1 -
yellow-e (yellow-e) chr3R:13,410-13,415 3 (33) 3 - 1
cv-c (crossveinless c) chr3R:14,392-14,482 4 (2737) 1 - 3
osa (osa) chr3R:17,688-17,718 2 (29) - - 2
cpo (couch potato) chr3R:17,944-18,016 3 (193) 3 2 3
Rh3 (rhodopsin 3) chr3R:20,081-20,082 2 (5709) 2 1 -
Ctl2 (choline transporter-like 2) chr3R:29,123-29,128 2 (3) - - 2
Syt12 (synaptotagmin 12) chrX:13,359-13,368 3 (65) 1 - 2
Ac13E (adenylyl cyclase 13E) chrX:15,511-15,554 4 (19) - - 4
Axs (abnormal X segregation) chrX:16,680-16,684 2 (11) - - 2

Table 1. Description of the 26 orthologous D. melanogaster genes represented by at least two of the 204 SNPs found

significant for one of the three contrast analyses, CWW
2 (6 native vs. 16 invasive populations), CEU2 (6 native vs. 8 invasive

populations of the European invasion route) and CAM2 (6 native vs. 8 invasive populations of the American invasion route).
The third column gives the overall number of significant SNPs (at the 1% q–value threshold) and their maximal spacing
in bp (on the D. suzukii assembly). Columns 4 to 6 gives the number of significant SNPs for each of the three contrast
analyses.

two SNPs significant in one of the three contrast572

analyses; see Table 1 for details. The significant573

SNPs underlying the different genes tended to be574

very close, spanning a few bp (span >1kb for only575

five genes). In particular, we observed doublet576

variants (i.e., adjacent SNPs in complete LD)577

within three genes (cpo, ome and lnc:CR45759 ).578

Among these 26 candidate genes, 10 and 12579

might be considered as specific to the European580

and American invasion routes, respectively, since581

they did not contain any SNP significant for the582

alternative contrasts. Only two genes contained583

SNPs significant in all three contrast analyses:584

RhoGEF64C with one SNP and cpo with two585

SNPs. Such convergent signals of association586

with invasive status in the two independent587

invasion routes were particularly convincing. The588

median allele frequencies (computed from raw589

read counts) for the reference allele underlying the590

corresponding RhoGEF64C significant SNP was591

0.09 (from 0.00 to 0.44) in the native populations592

compared to 0.93 (from 0.90 to 0.98) and 0.87593

(from 0.59 to 1.00) in the invasive populations594

of the European and American invasion routes,595

respectively (Table S2). Similarly, the two SNPs596

significant for the three contrast analyses in the597
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cpo gene actually formed a doublet with a median598

reference allele frequency of 0.20 (from 0.02 to599

0.33) in the native populations compared to600

0.99 (from 0.91 to 1.00, excluding the outlying601

Hawaiian population) in the invasive populations602

of the European and American invasion routes,603

respectively (Table S2). Finally, for both the604

genes RhoGEF64C and cpo, all D. suzukii605

extended sequences underlying the corresponding606

SNPs aligned within potentially rapidly evolving607

intronic sequences. These sequences nevertheless608

displayed substantial similarities with other609

related drosophila species, as shown in Figure S6610

for the gene cpo.611

Discussion612

We characterized the genome response of613

D. suzukii during its worldwide invasion by614

conducting a genome-wide scan for association615

with the invasive or native status of the sampled616

populations. To that end, we relied on the617

newly developed C2 statistic that was aimed at618

identifying significant allele frequencies differences619

between two contrasting groups of populations620

while accounting for their overall correlation621

structure due to the shared population history.622

Our approach identified genomic regions and623

candidate genes most likely involved in adaptive624

processes underlying the invasion success of D.625

suzukii .626

Overall, we found that a relatively small number627

of SNPs were significantly associated with the628

invasive status of D. suzukii populations. This629

may seem surprising since the binary trait under630

study (invasive versus native) is complex in the631

sense that numerous biological differences may632

characterize invasive and native populations. The633

invasion process itself, including the associated634

selective pressures and the genetic composition635

of the source populations, may actually differ636

depending on the considered invaded areas. Hence637

the small number of SNPs showing strong signals638

of association with the invasive status may stem639

from the integrative nature of our analysis over640

a large number of invasive populations from641

different invasion routes. The genomic features642

that may be identified under this evolutionary643

configuration are expected to correspond to major644

genetic changes instrumental to invasions shared645

by a majority of populations. Accordingly, it646

is worth noting that the independent contrast647

analyses of the two main invasion routes648

(i.e. the American and the European routes)649

point to substantially different subsets of SNPs650

significantly associated with the invasive status651

of the populations. This suggests that the source652

populations and some aspects of the invasion653

process differ in the two invaded areas. This could654

however also reflect the presumably polygenic655

nature of the traits underlying invasion success656

since the evolutionary trajectories of complex657

traits may rely on different combination of658

favorable genetic variants.659

The availability of a high quality genome660

assembly of D. suzukii (Paris et al., 2019) and661
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a large amount of genomic resources for its662

sister model species D. melanogaster allowed663

identifying a set of genes associated with the664

invasive status of populations. A subset of665

those genes was associated with physiological666

functions and traits previously documented in D.667

melanogaster, but for most of them, functional668

and phenotypic studies turned out to be limited.669

Their putative role in explaining the invasion670

success thus remained largely elusive. To avoid671

too speculative interpretations (Pavlidis et al.,672

2012), we will not elaborate further on the673

candidate genes. Yet, we did notice that long674

non–coding RNAs represent more than 10% (14675

out of 130) of our candidate genes, a feature676

which may underline a critical role of variants677

involved in gene regulation to promote short-678

term response to adaptive constraints during679

invasion. Also, two genes RhoGEF64C and cpo680

contained SNPs that were found to be highly681

significantly associated with the invasive status682

in both the European and American invasion683

routes. While the function of the RhoGEF64C684

gene has so far not been extensively studied,685

several functional and phenotypic studies in other686

Drosophila species identified genetic variation687

in the cpo gene associated with traits possibly688

important for invasion success. For instance, cpo689

genetic variation was found to contribute to690

natural variation in diapause in D. melanogaster691

populations of a North American cline and692

in populations from the more distantly related693

species Drosophila montana (Kankare et al., 2010;694

Schmidt et al., 2008). Moreover, indirect action695

of selection on diapause, by means of genetic696

correlations involving cpo genetic variation, was697

found on numerous other life-history traits in D.698

melanogaster (Schmidt and Paaby, 2008; Schmidt699

et al., 2005). Specifically, compared to diapausing700

populations, non-diapausing populations had a701

shorter development time and higher early702

fecundity, but also lower rates of larval and adult703

survival and lower levels of cold resistance.704

Both theoretical (Roughgarden, 1971) and705

experimental (Mueller and Ayala, 1981) evidence706

show that traits typical for colonization (i.e., the707

so-called r-traits; Charlesworth, 1994), such as708

a non-diapausing phenotype, are selected when709

a population evolves in a new habitat with low710

densities and low levels of competition. Common711

garden studies are needed to assess potential712

differences in key life history traits (including713

diapause induction and correlated traits) between714

native and invasive populations of D. suzukii and715

to evaluate to which extent these are related to716

the identified variants (including those within the717

cpo gene) differentiating the native and invasive718

populations of this species.719

The C2 statistic we developed in the present720

study appears particularly well suited to search721

for association with population-specific binary722

traits. Apart from the invasive vs. native723

status we studied in D. suzukii , numerous724

examples can be found where adaptive constraints725
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may be formulated in terms of contrasting726

binary population features, including individual727

resistance or sensibility to pathogens or host-728

defense systems (e.g., Eoche-Bosy et al., 2017),729

high vs. low altitude adaptation (e.g., Foll et al.,730

2014), ecotypes of origin (e.g., Roesti et al.,731

2015; Westram et al., 2014), or domesticated732

vs. wild status (e.g., Alberto et al., 2018). In733

our simulation study, the performance of the734

C2 statistic was similar to that of a standard735

BF obtained after assuming a linear relationship736

between the (standardized) population allele737

frequencies and their corresponding binary status.738

It is worth stressing, however, that C2 has several739

critical advantages over BF, as well as over any740

other decision criterion that may be derived from741

a parametric modeling.742

From a practical point of view, the C2743

estimation does not require inclusion of any other744

model parameters making it more robust when745

dealing with data sets including a small number of746

populations (e.g., <8 populations), the later type747

of data sets often leading to unstable estimates748

of BF (unpublished results). In addition, it may749

easily be derived from only a subset of the750

populations under study (as we did here when751

computing the CEU
2 and CAM

2 contrasts specific752

to each of the two invasion routes), while using753

the complete design to capture more accurate754

information about the shared population history.755

Last, the χ2 calibration of the C2 under the null756

hypothesis represents an attractive property in the757

context of large data sets since it allows to deal758

with multiple testing issues by controlling for FDR759

(Francois et al., 2016), via, e.g., the estimation of760

q–values (Storey and Tibshirani, 2003).761

To estimate the C2 statistic, we needed to762

correct allele frequencies for population structure.763

To that end, we relied on the Bayesian hierarchical764

model implemented in the software BayPass765

that has several valuable properties including (i)766

the accurate estimation of the scaled covariance767

matrix of population allele frequencies (Ω), (ii)768

the integration over the uncertainty of the769

across population allele frequencies (π parameter),770

and (iii) the inclusion of additional layers of771

complexities such as the sampling of reads772

from (unobserved) allele counts in Pool-Seq data773

(Gautier, 2015). A cost of Bayesian hierarchical774

modeling is however to shrink the posterior775

means of the model parameters and related776

statistics such as the C2 and XtX differentiation777

statistics (Gelman et al., 2003). To ensure proper778

calibration of the two corresponding estimates,779

we then needed to rely on the rescaled posterior780

means of the standardized allele frequencies.781

This empirical procedure proved efficient in782

providing well behaved p–values while avoiding783

computationally intensive calibration procedure784

based on the analysis of pseudo-observed data sets785

simulated under the generative model (Gautier,786

2015). Still, this did not allow accounting for the787

uncertainty of the allele frequencies estimation788

(i.e., their full marginal distribution) and more789

17

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted November 21, 2019. ; https://doi.org/10.1101/851303doi: bioRxiv preprint 

https://doi.org/10.1101/851303


i
i

i
i

i
i

i
i

importantly, it implicitly assumes exchangeability790

of SNPs both across the populations and along the791

genome. Such an assumption, which pertains to792

the null hypothesis of neutral differentiation only793

(and consequently of no association with binary794

population–specific covariable), might actually be795

viewed as conservative even in the presence of796

background LD across the populations, providing797

that a reasonably large number of SNPs is798

analyzed. Interestingly, the almost absence of799

clustering of associated SNPs we observed in800

the D. suzukii genome suggested a very limited801

extent of across-population LD, presumably802

resulting from large effective population sizes.803

This conversely led to a high mapping resolution.804

In practice, when dealing with large data sets,805

a sub-sampling strategy consisting in analyzing806

data sets thinned by marker position also807

allows further reduction of across-population LD808

(Gautier et al., 2018). Finally, it should be809

noticed that information from LD might be at810

least partially recovered by combining C2 or XtX811

derived p–values into local scores (Fariello et al.,812

2017).813

Other less computationally intensive (but814

less flexible and versatile) approaches may be815

considered to estimate the C2 statistic. For816

instance, the C2 statistic is closely related to the817

SB statistic recently proposed by Refoyo-Martinez818

et al. (2019) to identify footprints of selection in819

admixture graphs. However, while the C2 statistic820

relies on the full scaled covariance matrix of821

population allele frequencies (Ω), the SB statistic822

relies on a covariance matrix called F (Refoyo-823

Martinez et al., 2019) that specifies an a priori824

inferred admixture graph summarizing the history825

of the sampled populations. The covariance826

matrix F thus represents a simplified version of827

Ω that may only partially capture the covariance828

structure of the population allele frequencies. In829

addition, to compute SB, the graph root allele830

frequencies are estimated as the average of allele831

frequencies across the sampled population, which832

might result in biased estimates, particularly when833

the graph is unbalanced. Deriving the matrix834

F from Ω (e.g., Pickrell and Pritchard, 2012)835

might actually allow interpreting C2 as a Bayesian836

counterpart of the SB statistic, thereby benefiting837

from the aforementioned advantages regarding the838

estimation of the parameters Ω and π and allowing839

proper analysis of Pool-Seq data.840

Conclusion and perspectives841

Our genome-wide association approach allowed842

identifying genomic regions and genes most likely843

involved in adaptive processes underlying the844

invasion success of D. suzukii . The approach845

can be transposed to any other invasive species,846

and more generally to any species models847

for which binary traits of interest can be848

defined at the population level. The major849

advantage of our approach is that it does not850

require a preliminary, often extremely laborious,851

phenotypic characterization of the populations852
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considered (for example using common garden853

experiments) in order to inform candidate traits854

for which genomic associations are sought. As855

a matter of fact, in our association study the856

populations analyzed are simply classified into two857

categories: invasive or native.858

The functional and phenotypic interpretation859

of the signals obtained by our genome scan860

methods remains challenging. Such interpretation861

requires a good functional characterization of862

the genome of the studied species or, failing863

that, of a closely related species (i.e. D.864

melanogaster in our study). Following a strategy865

sometimes referred to as “reverse ecology”866

since it goes from gene(s) to phenotype(s) (Li867

et al., 2008), it is then necessary to test and868

validate via quantitative genetic experiments869

whether the inferred candidate traits show870

significant differences between native and invasive871

populations. The functional interpretation of the872

statistical association results can also benefit873

from experimental validation approaches based874

on techniques using RNA interference (RNA-875

silencing, e.g. Janitz et al., 2006) and/or more876

genome editing approaches (e.g., Karageorgi877

et al., 2017) targeting the identified candidate878

variants. Hopefully, such a combination of879

statistical, molecular and quantitative approaches880

will provide useful insights into the genomic and881

phenotypic responses to invasion, and by the882

same, will help better predict the conditions under883

which invasiveness can be enhanced or suppressed.884

Materials and Methods885

Simulation study886

We used computer simulations to evaluate the887

performance of the novel statistical framework888

described in the section New Approach. Simulated889

data sets were generated under the SimuPOP890

environment (Peng and Kimmel, 2005) using891

individual–based forward–in–time simulations892

implemented on a modified version of the code893

developed by de Villemereuil et al. (2014) for894

the so-called HsIMM-C demographic scenario.895

This corresponded to an highly structured896

isolation with migration demographic model897

(Figure 1A) that was divided in two successive898

periods: (i) a neutral divergence phase leading899

to the differentiation of an ancestral population900

into 16 populations after four successive fission901

events (at generations t=50, t=150, t=200 and902

t=300); and (ii) an adaptive phase (lasting 200903

generations) during which individuals of the 16904

populations were subjected to selective pressures905

exerted by two environmental constraints (ec1906

and ec2 ), each constraint having two possible907

modalities (a or b). We thus had a total of four908

possible environments in our simulation setting909

(Figure 1A).910

All the simulated populations consisted of 500911

diploid individuals reproducing under random-912

mating with non-overlapping generations. From913

generation t=150 (with four populations), the914

migration rate mjj′ between two populations j915

and j′ was set to mjj′=
m

2p−1 where p is the916
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number of populations in the path connecting917

k to k′ in the population tree. The migration918

rate between the two ancestral populations from919

generation t=50 to t=150 was set to m=0.005.920

For illustration purposes, some of the migration921

edges were displayed in Figure 1A.922

Following de Villemereuil et al. (2014), a923

simulated genotyping data set consisted of924

320 individuals (20 per populations) that were925

genotyped for 5,000 bi-allelic SNPs regularly926

spread along ten chromosomes of one Morgan927

length and with a frequency of 0.5 for the reference928

allele (randomly chosen) in the root population.929

Polygenic selection acting during the adaptive930

phase was simulated by choosing 50 randomly931

distributed SNPs (among the previous 5,000 ones)932

that influenced individual fitness according to933

either the ec1 or ec2 environmental constraints934

(with 25 SNPs for ec1 and 25 SNPs for ec2 ).935

The fitness of each individual, given its936

genotype, can be defined at each generation.937

let p(o)=j (j=1,...,16) denote the population938

of origin of individual o (o=1,...,16×500),939

and ek(j)=1 (respectively ek(j)=−1) if the940

environmental constraint eck (k=1,2) of941

population j is of type a (respectively b).942

Let further denote si(k) the local selective943

coefficient of SNP i such that si(k)=0 if the SNP944

is neutral with respect to eck and si(k)=0.01945

otherwise. The fitness of each individual o (at each946

generation) given its genotypes at all the SNPs947

is then defined using a cumulative multiplicative948

fitness function as:949

w(o)=
I∏
i=1

2∏
k=1

(1+ek(p(o))(1−gi(o))si(k)) (6)

where gi(o) is the genotype of individual o at950

marker i coded as the number of the reference951

allele (0, 1 or 2).952

Sampling of D. suzukii populations and DNA953

extraction954

Adult D. suzukii flies were sampled in the field955

at a total of 22 localities (hereafter termed956

sample sites) distributed throughout most of957

the native and invasive range of the species958

(Fig 1 and Table S1). Samples were collected959

between 2013 and 2016 using baited traps (with960

a vinegar-alcohol-sugar mixture) and sweep nets,961

and stored in ethanol. Only four of the 22962

samples were composed of flies which directly963

emerged in the lab from fruits collected in the964

field (Table S1). Native Asian samples consisted965

of a total of six sample sites including four966

Chinese and two Japanese localities. Samples from967

the invasive range were collected in Hawaii (1968

sample site), Continental US (6 sites), Brazil (1969

site), Europe (7 sites) and the French island of970

La Réunion (1 site). The continental US (plus971

Brazil) and European (plus La Réunion Island)972

populations are representative of two separate973

invasion routes (the American and European974

routes, respectively), with different native source975

populations and multiple introduction events in976

both invaded areas (Fraimout et al. 2017; see977

Table S1).978
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Pool sequencing979

For each of the 22 sampling sites, the thoraxes980

of 50 to 100 representative adult flies (Table981

S1) were pooled for DNA extraction using the982

EZ-10 spin column genomic DNA minipreps kit983

(Bio basic inc.). Barcoded DNA PE libraries984

with insert size of ca. 550 bp were further985

prepared using the Illumina Truseq DNA Library986

Preparation Kit following manufacturer protocols987

using the 22 DNA pools samples. The DNA988

libraries were then validated on a DNA1000989

chip on a Fragment Analyzer (Agilent) to990

determine size and quantified by qPCR using991

the Kapa library quantification kit to determine992

concentration. The cluster generation process was993

performed on cBot (Illumina) using the Paired-994

End Clustering kit (Illumina). Each pool DNA995

library was further paired-end sequenced on a996

HiSeq 2500 (Illumina) using the Sequence by997

Synthesis technique (providing 2x125 bp reads,998

respectively) with base calling achieved by the999

RTA software (Illumina). The Pool-Seq data were1000

deposited in the Sequence Read Archive (SRA)1001

repository under the BioProject accession number1002

PRJNA576997.1003

Raw paired-end reads were filtered using fastp1004

0.19.4 (Chen et al., 2018) run with default options1005

to remove contaminant adapter sequences and1006

trim for poor quality bases (i.e., with a phred-1007

quality score <15). Read pairs with either one1008

read with a proportion of low quality bases over1009

40% or containing more than 5 N bases were1010

removed. Filtered reads were then mapped onto1011

the newly released WT3-2.0 D. suzukii genome1012

assembly (Paris et al., 2019), using default options1013

of the mem program from the bwa 0.7.17 software1014

(Li, 2013; Li and Durbin, 2009). Read alignments1015

with a mapping quality Phred-score <20 or1016

PCR duplicates were further removed using the1017

view (option -q 20) and markdup programs from1018

the SAMtools 1.9 software (Li et al., 2009),1019

respectively.1020

Variant calling was then performed on the1021

resulting mpileup file using VarScan mpileup2cns1022

v2.3.4 (Koboldt et al., 2012) (options –min–1023

coverage 50 –min–avg–qual 20 –min-var-freq 0.0011024

–variants-output-vcf 1). The resulting vcf file was1025

processed with the vcf2pooldata function from the1026

R package poolfstats v1.1 (Hivert et al., 2018)1027

retaining only bi-allelic SNPs covered by >41028

reads, <99.9th overall coverage percentile in each1029

pool and with an overall MAF>0.01 (computed1030

from read counts). In total, n=11,564,472 SNPs1031

(respectively n=1,966,184 SNPs) SNPs mapping1032

to the autosomal contigs (respectively X–1033

chromosome contigs) were used for genome-wide1034

association analysis. The median coverage per1035

pool ranged from 58X to 88X and from 34X to 84X1036

for autosomal and X chromosomes, respectively1037

(Table S2). As previously described (Gautier1038

et al., 2018), the autosomal and X-chromosome1039

data sets were divided into sub-data sets of ca.1040

75,000 SNPs each (by taking one SNP every 1541041

SNPs and one SNPs every 26 SNPs along the1042
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underlying autosomal and X–chromosome contigs,1043

respectively).1044

Genome scan analyses1045

All genome-wide scans were performed1046

using an upgraded version (2.2) of1047

BayPass (Gautier, 2015) (available from1048

http://www1.montpellier.inra.fr/CBGP/1049

software/baypass/), that includes the new C21050

and XtX statistics estimated as described in the1051

above section New Approach . We always used1052

the BayPass core model with default options1053

for the MCMC algorithm to obtain estimates of1054

four statistical items: (i) the scaled covariance1055

matrix (Ω); (ii) the SNP-specific XtX overall1056

differentiation statistic in the form of both X̂tX,1057

the posterior mean of XtX (Gautier, 2015) and1058

X̂tX?, our newly described calibrated estimator;1059

(iii) our novel C2 statistic in the form of the1060

calibrated estimator described above; and (iv)1061

Bayes Factor reported in deciban units (db) as a1062

measure of support for association with contrasts1063

of each SNP based on a linear regression model1064

(Coop et al., 2010; Gautier, 2015). For BF, a1065

value >15 db (respectively >20 db) provides1066

very strong (respectively decisive) evidence in1067

favor of association according to the Jeffreys’ rule1068

(Jeffreys, 1961).1069

For the D. suzukii data sets, we specified the1070

pool haploid sample sizes, for either autosomes1071

or the X–chromosome (Table S1), to activate1072

the Pool-Seq mode of BayPass. The CWW
21073

statistic for the contrast of the six native and1074

16 worldwide invasive populations was estimated1075

jointly with the CEU
2 and CAM

2 statistics for1076

the contrast of the six native and eight invasive1077

populations of the European and American1078

invasion routes, respectively. For these two latter1079

estimates, this simply amounted to setting cj =01080

(see eq. 3) for all population j not considered in1081

the corresponding contrast analysis. Finally, two1082

additional independent runs (using the option -1083

seed) were performed to assess reproducibility of1084

the MCMC estimates. We found a fairly high1085

correlation across the different independent runs1086

(Pearson’s r>0.92 for autosomal and r>0.87 and1087

X–chromosome data) for the different estimators1088

and thus only presented results from the first1089

run. Similarly and for each chromosome type1090

(i.e., autosomes or the X chromosome), a near1091

perfect correlation of the posterior means of the1092

estimated Ω matrix elements was observed across1093

independent runs as well as within each run across1094

SNP sub-samples, with the corresponding FMD1095

distances (Gautier, 2015) being always smaller1096

than 0.4. We thus only reported results regarding1097

the Ω matrix that were obtained from a single1098

randomly chosen sub-data set analysed in the first1099

run.1100
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Sample
name

Sampling site
(Lat.; Long.)

Status Sampling 
date

Sampling method Auto. (X) 
haploid 
sample size

Auto. (X) 
median 
coverage

CN-Bei Beijing, China
(40.00;116.4)

Native June 2014 Baited trap 100 (89) 88 (84)

CN-Lia Liaoyuan, China
(42.96;125.1)

Native Aug. 2014 Baited trap 100 (42) 63 (41)

CN-Nin Ningbo, China
(30.02;121.5)

Native July 2014 &
May 2016

Baited trap 100 (86) 59 (56)

CN-Shi Shiping county, China
(23.7;102.5)

Native June 2014 &
May 2016

Baited trap 100 (53) 61 (34)

JP-Sap Sapporo, Japan
(43.05;141.4)

Native July 2014 Mullberry 100 (54) 77 (40)

JP-Tok Tokyo, Japan
(35.64;139.4)

Native June 2016 Mullberry, plum 100 (90) 62 (56)

DE-Dos Dossenheim, Germany
(49.45;8.660)

Invasive 
(EU)

Aug. 2015 Baited trap 100 (58) 73 (49)

DE-Jen Jena, Germany
(50.93;11.56)

Invasive
(EU)

Sept. 2016 Baited trap 200 (150) 70 (56)

ES-Bar Barcelona, Spain
(41.36;1.964)

Invasive
(EU)

July 2014 Baited trap 100 (50) 71 (37)

FR-Cor Corsica, France
(42.35;9.003)

Invasive 
(EU)

Aug. 2016 Baited trap 100 (75) 66 (58)

FR-Lez Montpellier, France
(43.70;3.834)

Invasive 
(EU)

July 2014 Baited trap 200 (150) 82 (65)

FR-Par Paris, France
(48.84;2.361)

Invasive 
(EU)

Nov. 2016 Baited trap 200 (150) 65 (54)

FR-Run La Réunion, France
(-21.15;55.64)

Invasive 
(EU)

Sept. 2016 Cattley guava 200 (150) 86 (68)

IT-Tre Trento, Italy
(46.04;11.15)

Invasive 
(EU)

Sept. 2014 Baited trap 200 (140) 63 (48)

BR-Pal Porto Alegre, Brazil
(-27.72;-52.17)

Invasive 
(AM)

July 2014 Baited trap 100 (67) 68 (53)

US-Col Fort Collins, USA
(40.57;-105.1)

Invasive 
(AM)

Sept. 2015 Baited trap 100 (74) 72 (59)

US-Haw Hawaii (Hilo), USA
(19.67;-155.5)

Invasive 
(AM)

June 2016 Baited trap 100 (75) 87 (71)

US-Nca Raleigh, USA
(35.70;-80.62)

Invasive 
(AM)

Oct. 2016 Raspberries,Blac
kberries

200 (150) 67 (54)

US-Sdi San-Diego, USA
(32.72;-117.2)

Invasive 
(AM)

May 2014 Baited trap 100 (68) 82 (61)

US-Sok Dayton, USA
(45.22;-123.1)

Invasive 
(AM)

Oct. 2014 Baited trap, 
sweep net

150 (95) 58 (38)

US-Wat Watsonville, USA
(36.90;-121.8)

Invasive 
(AM)

Oct. 2014 Sweep net 100 (54) 65 (37)

US-Wis Barneveld, USA
(42.97;-89.69)

Invasive 
(AM)

Nov. 2016 Baited trap 150 (120) 70 (58)

TAB. S1 : Description of the 22 D. suzukii population samples. The populations representative of the European 
and American invasion routes are denoted Invasive (EU) and Invasive (AM), respectively (column 3). For each 
population sample, the thoraxes of 50 to 100 adult flies were pooled; hence the haploid sample sizes of autosomal 
loci ranging from 100 to 200 (column 7). Pool-samples included both females and male adults, with different 
proportions of the two sexes depending on the sample; hence the variable number of haploid sample sizes for the X
chromosome (column 7).
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FIG. S1. Distribution of the p-values computed on the simulated data (n=500,000 SNPs) and derived from the C2 statistics

for the environmental contrasts ec1 A) and ec1 B), assuming a χ2 null distribution (with one degree of freedom). The red
horizontal dashed line represents the uniform distribution.

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted November 21, 2019. ; https://doi.org/10.1101/851303doi: bioRxiv preprint 

https://doi.org/10.1101/851303


i
i

i
i

i
i

i
i

FIG. S2. Distribution of the p-values computed on the simulated data sets (n=500,000 SNPs) and derived from the SNP

differentiation estimator XtX (posterior mean estimator) A) and the new estimator X̂tX? B), assuming a χ2 null distribution
(with J=16, the number of population, degrees of freedom). To account for the bilateral nature of the underlying test
(SNPs might be over or under-differentiated if under directional or balancing selection), p-value were computed as p=1−2 |

Φχ2(J)

(
X̂tX

)
−0.5 |, where Φχ2(J) represents the cumulative density function of the χ2 distribution with J degrees of

freedom. The red horizontal dashed line represents the uniform distribution.
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FIG. S3. Correlation plot representation of the scaled covariance matrices of population allele frequencies (Ω) among all 22
D. suzukii populations based on autosomal (A) and X-linked (B) SNPs.
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FIG. S4. Distribution of the p-values derived from the C2 contrast statistics estimated from different analyses [A), C)

and D)], and from the X̂tX? statistic for genetic differentiation among all 22 populations [B)].The C2 contrast statistics

were estimated for 6 native vs. 16 worldwide invasive populations (CWW
2 ) [A)]; 6 native vs. 8 invasive populations of

the European invasion route (CEU2 ) [C)]; and 6 native vs. 8 invasive populations of the American invasion route (CAM2 )

[D)]. The distribution of the (two-sided) p-values derived from the XtX * differentiation statistics (among all 22 D. suzukii
populations) is given in B). The red dashed line correspond to the uniform distribution.
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FIG. S5. Comparison of the C2 statistics for the native vs. invasive status of the 22 D. suzukii populations (CWW
2 ) with

BF for association A) and with XtX * overall differentiation estimates B). In A) the dashed horizontal line indicates the
BF=20 db threshold of decisive evidence according to the Jeffreys’ rule (Jeffreys, 1961) and the dashed vertical line to the
0.1% q–value threshold for the C2 derived q–values. In B) the horizontal and vertical dashed lines indicate the 0.1% q–value
threshold for the XtX * and C2 derived q–values, respectively. Values for the autosomal (X–linked) SNPs are plotted in
purple (green).
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FIG. S6. Mapping of the three significant SNPs within the cpo gene onto the dmel6 reference genome of D. melanogaster and
alignment with genomes from other drosophila species. The aligned D. suzukii sequence consisted of a 1,193 bp sequence
spanning the three significant SNPs (separated by 193 bp) indicated by a green star in the lower panel (the two first
SNPs being those significant for the three contrast analyses). The plots were generated using the UCSC genome browser
(https://genome.ucsc.edu/).
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