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Abstract 18 

Background 19 

The phyllosphere is an important microbial habitat but our understanding of how plant 20 

hosts drive the composition of their associated leaf microbial communities and whether 21 

taxonomic associations between plants and phyllosphere microbes represent adaptive matching 22 

remains limited. In this study we quantify bacterial functional diversity in the phyllosphere of 17 23 

tree species in a diverse neotropical forest using metagenomic shotgun sequencing. We ask how 24 

hosts drive the functional composition of phyllosphere communities and their turnover across 25 

tree species, using host functional traits and phylogeny. We compare functional predictions 26 

inferred from 16S gene sequencing with functions estimated from metagenomic shotgun 27 

sequencing. 28 

Results 29 

Neotropical tree phyllosphere communities are dominated by functions related to the 30 

metabolism of carbohydrates, amino acids and energy acquisition, along with environmental 31 

signalling pathways involved in membrane transport. While most functional variation was 32 

observed within communities, there is non-random assembly of microbial functions across host 33 

species possessing different leaf traits. Metabolic functions related to biosynthesis and 34 

degradation of secondary compounds, along with signal transduction and cell-cell adhesion were 35 

particularly important in driving the match between microbial functions and host traits. These 36 

microbial functions were also evolutionarily conserved across the host phylogeny. Functional 37 

predictions inferred from 16S gene sequences were weakly correlated with functional 38 
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annotations from the same samples through metagenomic shotgun sequencing, especially for 39 

finer-scale functional annotations. 40 

Conclusions 41 

Functional profiling based on metagenomic shotgun sequencing offers evidence for the 42 

presence of a core functional microbiome across phyllosphere communities of neotropical trees. 43 

While functional turnover across phyllosphere communities is relatively small, the association 44 

between microbial functions and leaf trait gradients among host species supports a significant 45 

role for plant hosts as selective filters on phyllosphere community assembly. This interpretation 46 

is supported by the presence of phylogenetic signal for the microbial traits driving inter-47 

community variation across the host phylogeny. Our comparison of functional annotations 48 

derived from 16S genes versus metagenomic shotgun sequencing suggests caution in using 49 

functions inferred from 16S genes for studying ecological dynamics in phyllosphere 50 

communities. Taken together, our results suggest that there is adaptive matching between 51 

phyllosphere microbes and their plant hosts. 52 

Keywords 53 

Microbial communities, Phyllosphere, Functional traits, Host-symbiont matching, Metagenomic 54 

shotgun sequencing 55 
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 60 

Background 61 

The phyllosphere – the aerial surfaces of plants including leaves – is a widespread 62 

microbial habitat that hosts a diversity of microorganisms that play key roles in plant ecology 63 

and evolution [1]. Phyllosphere microbes play key roles in plant health [2, 3] and human health 64 

[4], and can influence ecosystem function [5]. At a broad taxonomic scale, phyllosphere bacterial 65 

communities are consistently dominated by taxa including Actinobacteria, Bacteroidetes, 66 

Firmicutes, and Proteobacteria [6], indicating that plants also influence the composition of their 67 

microbial partners. A key goal of phyllosphere microbial ecology research has been to identify 68 

the adaptive basis of such relationships between plants and associated microbes. 69 

Comparative studies of the taxonomic composition of phyllosphere microbial 70 

communities across plant hosts have demonstrated the importance of host identity as a key driver 71 

of variation in phyllosphere microbial taxonomic diversity. At fine taxonomic scales, the 72 

composition of these communities varies predictably across host plant species [7–9] and across 73 

genotypes within host plant species [10, 11]. Plants and associated bacteria also show 74 

cophylogenetic associations, with clades of plants and bacteria consistently occurring together 75 

[9, 12, 13], suggesting close adaptive associations between plants and their phyllosphere 76 

microbes. 77 

Determining whether plant-microbe associations in the phyllosphere have an adaptive 78 

basis will require establishing how both plant and microbial functions are related across a range 79 

of host species. Plant functional traits – measures of morphology and physiology that capture key 80 

axes of variation in plant life history and ecology [14] – have been targeted as a potential proxy 81 
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for explaining microbial community turnover among plant species. These traits determine the 82 

potential for nutrient, metabolite and secondary compound leaching from the plant, which should 83 

largely determine the quality of a leaf as a habitat for phyllosphere microbes [15]. In support of 84 

this hypothesis, plant functional traits such as leaf mass per area, leaf elemental composition, and 85 

growth rate are correlated with phyllosphere microbial community turnover both within [16] and 86 

among plant species [12, 17–20]. 87 

Several studies have reciprocally identified the broad-scale microbial functional 88 

categories and adaptations that epiphytic microbes possess for living on plants [e.g. 16–19]. 89 

Functions including the biosynthesis of osmoprotectants such as trehalose and betaine and the 90 

production of extracellular polysaccharides are enriched in the phyllosphere and are thought to 91 

provide key adaptations to life on leaf surfaces by allowing microbes to attach to the leaf surface 92 

and by providing resistance to environmental stresses and plant defenses [25, 26]. However, 93 

studies of microbial functions in the phyllosphere have largely been based on comparison of one 94 

or a few host plant species. How microbial functions map onto variation in host plant functions 95 

in diverse natural communities thus remains largely unknown. As a result, it is not clear whether 96 

plant microbiomes exhibit the pattern of taxonomic turnover but functional homogeneity across 97 

hosts that has been observed in some animal microbiomes [27] or if a turnover in microbial 98 

functions can also be observed across functionally different tree species. 99 

In this study, we quantified the functional repertoire of microbial communities on leaves 100 

of multiple tree species in a neotropical forest in Panama using metagenomic shotgun 101 

sequencing. We asked which microbial functions are abundant in the phyllosphere, and how 102 

these functions are linked to the taxonomy and functional traits of plant hosts. Our central 103 

hypothesis was that the plant-microbe taxonomic associations previously observed in this forest 104 
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[12, 28] should be driven by adaptive matches between microbes and host plants, leading to 105 

several key predictions. First, we predicted that microbial functions should vary among host 106 

plant species and be correlated with the functional traits of the hosts. Second, we predicted that 107 

cophylogenetic associations between trees and microbes should lead to phylogenetic signal in 108 

microbial functions present on different plant hosts. Third, we predicted that microbial functions 109 

present on leaves should be filtered by the host, since conditions on the leaves of different host 110 

plants create a selection pressure on the functions of microbes able to persist on those leaves. 111 

Given the increasing interest in using metagenomic predictions of functional genes from 112 

metabarcoding data in assessing functional diversity in microbial communities, we lastly aimed 113 

to compare the performance of functional predictions from 16S sequencing performed on the 114 

same samples in retrieving patterns of functional variation observed in our metagenomic shotgun 115 

sequencing dataset [see also 29]. 116 

 117 

Results 118 

Metagenomic shotgun sequencing characterization of phyllosphere microbial functions 119 

Overall, we detected 4587 different functional genes across all samples based on 120 

annotation of metagenomic shotgun sequencing of tropical tree phyllosphere communities. 121 

Functions related to metabolism were the most abundant overall in our dataset, making up 45% 122 

of all functionally annotated sequences (Fig. 1). The principal metabolic functions in the 123 

phyllosphere were related to metabolism of amino acids (e.g. amino acid related enzymes), 124 

nucleotides (e.g. purine and pyrimidine metabolism), carbohydrates (e.g. pyruvate, glyoxylate 125 

and dicarboxylate metabolism), and energy (e.g. oxidative phosphorylation & TCA cycle) (Fig. 126 
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1). Groups of functional genes related to environmental and genetic information processing also 127 

had a high relative abundance, mainly membrane transport (e.g. transporters), translation (e.g. 128 

aminoacyl-tRNA biosynthesis), and signal transduction (e.g. two-component systems). 129 

Variation in phyllosphere functions and taxa among versus within samples 130 

The bacterial functions present on tree leaves were remarkably consistent among 131 

different samples. The vast majority of functional variation occurred within samples (>97%), 132 

with a very small contribution of functional turnover among samples (<3%) to total functional 133 

diversity, regardless of the functional level under study. Most taxonomic diversity was also 134 

observed within samples, with a contribution of beta-diversity increasing from 1 to 4.4% of total 135 

diversity with a refinement of the taxonomic scale utilized (Table 1). The principal component 136 

analysis of bacterial community functional composition indicated that metabolic functions 137 

related to biosynthesis and degradation of secondary compounds and antibiotics, as well as 138 

functions related to signal transduction and cell-cell adhesion were the most strongly varying 139 

among hosts (Fig. 2; Supp. Tab. 1, Additional File 1). We detected 17 Tier 3 functions that 140 

exhibited a significantly non-random phylogenetic signal with respect to the host phylogeny 141 

(P<0.05; Fig. 3). These functions were mostly involved in the metabolism of terpenoids and 142 

polyketides, signal transduction and cellular processes. 143 

Associations between microbial and plant traits and host filtering 144 

Many of the plant traits displayed some level of correlation with the principal axes of 145 

microbial functional community composition. Among these, morphological leaf traits (e.g. leaf 146 

area, leaf mass per area) were most strongly associated with the first two axes of microbial 147 

functional variation. Leaf elemental concentrations of copper, aluminum and manganese were 148 
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also strongly correlated with these first dimensions. The plant trait gradients explained altogether 149 

~17% of variation in functional composition among microbial communities. Around half of the 150 

microbial Tier 3 functions were significantly more abundant or less abundant than expected by 151 

chance in their community, based on a null model keeping both the total abundance of a trait and 152 

the number of traits in a community constant (Table 2). The filtering signal was slightly stronger 153 

for the microbial taxa than for the microbial functions (Table 2). 154 

Comparison of functional annotations based on metagenomic shotgun versus 16S sequencing 155 

Prediction of the functional content of phyllosphere microbial communities from their 156 

16S rRNA genes using Tax4Fun yielded a higher diversity of functional genes (6429 genes) 157 

across all samples compared to predictions from direct annotation of metagenomic shotgun 158 

sequence data for the same samples (4587 genes). Most (~95%) functional genes were detected 159 

in both the metagenomic and 16S datasets. The relative abundances of individual genes covaried 160 

between the two datasets, with an increasing coherence of functional annotations at broader 161 

levels of functional classification (Fig. 4). When testing correlation between metagenomic and 162 

16S annotations within Tier 2 functional categories, we observed generally strong associations 163 

(median R2 = 0.85) between relative abundances of functions in the two datasets, though the 164 

slope of the relationship was often deviant from the 1:1 line (Supp. Fig. 1, Additional File 2). A 165 

constrained analysis of principal coordinates analysis revealed that genes related to 166 

environmental information processing functions, especially membrane transport and signal 167 

transduction, as well as functions related to cellular processes such as bacterial motility proteins 168 

and quorum sensing were especially more represented in the 16S dataset, while metabolism 169 

functions including nucleotide metabolism and energy metabolism as well as genetic information 170 

processing functions (transcription and translation) were more represented in the metagenomic 171 
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dataset (Supp. Tab. 2, Additional File 1). The type of functional prediction used had an influence 172 

on the classification of samples in ordination space. While the classification of samples was 173 

consistent among functional levels for each analysis separately, ordinations were incoherent 174 

between datasets at all levels (m2 similar to that expected by chance) (Supp. Fig. 2, Additional 175 

File 2).  176 

Discussion 177 

The functional composition of tree phyllosphere microbial communities in a tropical 178 

forest in Panama is largely consistent with those reported in the literature, regardless of the type 179 

of plant studied, suggesting the presence of a core functional microbiome in phyllosphere 180 

microbial systems. Core functional microbiomes in host-associated systems have also been 181 

reported for other hosts. Our study supports findings of an important role for the metabolism of 182 

carbohydrates and amino acids in bacterial survival in the phyllosphere [18, 46, 47] that is 183 

consistent with the abundance of these compounds in leaf leachates and photosynthates. The 184 

main mechanism of energy acquisition from these compounds appeared to be the TCA (citric 185 

acid) cycle, as reported in experimental studies of bacterial colonization of the phyllosphere [47]. 186 

Membrane transporters were also reported to be an important component of the epiphytic 187 

microbe functional repertoire, maximising the ability to monopolize otherwise limiting resources 188 

[48]. The abundance of signal transduction functional pathways, involved in the rapid sensing 189 

and response to environmental change, would lastly be coherent with the high variability in 190 

conditions of humidity, light and temperature in that microbial habitat [25].  191 

The low functional variability in microbiomes observed among tree species represents a 192 

further line of evidence supporting the presence of a core phyllosphere functional microbiome. 193 
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This low variability, observed even at fine functional levels, could be the consequence of 194 

essentially similar constraints imposed by the generally harsh leaf environment on its microbial 195 

communities, regardless of the specific physiological traits of the host plant species. This low 196 

functional turnover among communities was also associated with a low taxonomic turnover, 197 

contrasting with reports from phyllosphere-associated temperate systems where species identity 198 

was a strong driver of taxonomic composition of the microbial communities [8]. These results 199 

could be explained by a finer-scale partitioning of taxa among neotropical than temperate tree 200 

species, or a greater overlap in species functional types limiting strong associations between 201 

microbial taxa and their hosts. Such differences should be further investigated. 202 

Despite the high levels of convergence in microbial functions among the phyllospheres of 203 

different tree species, several lines of evidence support a role for plant species taxonomic and 204 

functional identity in driving microbial community assembly. Tree traits explained a notable 205 

portion of the functional turnover among microbial communities. Traits correlated with 206 

microbial functional turnover (e.g. leaf area, leaf mass per area) are mostly part of the leaf 207 

economics spectrum [49], a functional strategy scheme describing photosynthetic resource-use 208 

efficiency in plants, which is coherent with what we know of phyllosphere microbial physiology. 209 

The ability of a tree to be conservative of its resources and generate thicker and better protected 210 

leaves (i.e. high leaf mass per area) is likely to limit the leaching of nutrients from the leaf to the 211 

phyllosphere, in turn constituting a filter on resource-use strategies in microbes. The high 212 

correlation of leaf mass per area with turnover in microbial communities is coherent with a 213 

previously described role for cuticle characteristics in determining functional turnover among 214 

leaf microbial communities [16, 20]. The high correlation of aluminum and copper 215 

concentrations in leaves with microbial functional variation may be explained by their role as 216 
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antibiotics. The predominance of two-component systems associated with high aluminum and 217 

copper concentrations suggests that the ability to sense and quickly respond to fluxes in these 218 

elements at the cell surface might constitute an efficient stress-response to deal with these 219 

conditions [50]. This type of plant trait gradient is analog to the leaf chemical gradient described 220 

by Yadav and colleagues [51], who reported variation in leaf colonization by phyllosphere 221 

microbes on different tree species as a function of their total leaf phenolics content. Taken 222 

together, these interpretations are concordant with the importance of energy metabolism, 223 

secondary metabolites and antibiotics production as well as environmental sensing in driving 224 

functional turnover of microbes among tree species. 225 

Other lines of evidence support the idea that the plant host plays a selective role on 226 

microbial community assembly, such as the detection of bacterial traits that are non-randomly 227 

structured in the plant phylogeny. While this pattern might arise from the filtering of microbes on 228 

phylogenetically structured selective plant traits or from co-evolution of the two partners, it is 229 

regardless indicative of an influence of the host on the functional make-up of bacterial 230 

phyllosphere communities. Interestingly, the set of pathways that are important in driving 231 

functional turnover among communities belong to the same functional categories as the ones that 232 

are phylogenetically structured among plant hosts, supporting the proposed match between these 233 

bacterial functions and their host’s functional and taxonomic identity. The fact that the relative 234 

abundance of a large set of functions was different within communities than that expected by 235 

chance given their relative abundance across samples, also supports a role for individual tree 236 

species in structuring the functional composition of their phyllosphere bacterial communities. 237 

The higher filtering of most microbial taxa relative to microbial functions suggests a role for 238 

unmeasured trait variation in driving functional turnover among communities. 239 
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 The relatively small but significant contribution of functional turnover among microbial 240 

communities to the total functional diversity observed across samples suggests that the functions 241 

that are of importance in driving the distribution of bacteria across different host trees are 242 

actually relatively few compared to those enabling the bacteria to pass the overall “phyllosphere 243 

filter” that is needed to survive in the phyllosphere habitat. It remains unknown whether the 244 

majority of functional pathways that do not vary among trees are actually important for the 245 

ecology of the microbes, or if that trait variation is adaptively neutral within communities. It is 246 

also possible that some pathways important for microbial adaptations to leaf physiological 247 

gradients are not yet functionally described and are part of the large number of sequences that 248 

could not be functionally annotated. Ongoing efforts to better characterize gene functions will 249 

help improve the precision of ecological inferences in environmental metagenomes. 250 

The functional predictions generated from annotation of inferred functions from 16S 251 

sequences were broadly comparable to those obtained through shotgun metagenomic sequencing 252 

at broad functional levels (e.g. Tier 2 functions), but at finer levels (Tier 3 and functional genes) 253 

there were numerous discrepancies in the relative abundance of functions inferred using these 254 

different approaches.  The categories of functions for which we observed the largest 255 

discrepancies between the two approaches to functional annotations overlapped with those 256 

described for aquatic bacterial communities by Staley and colleagues [29] (i.e. membrane 257 

transport, translation). These results point to consistent biases in predictions of metagenomic 258 

functions from 16S sequences across ecosystems and warrant caution in interpreting ecological 259 

dynamics from inferred functions, especially when Tier 3 or functional gene abundances are 260 

being inferred. 261 

 262 
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Conclusions 263 

In conclusion, we have identified a core functional microbiome in the phyllosphere of 264 

neotropical trees. While most functional variation was observed within individual microbial 265 

communities, we reveal a functional matching between the traits of microbes and the traits of 266 

plants across 17 tree species, emphasizing the role for energy metabolism, secondary metabolites 267 

and antibiotic production as well as environmental sensing in mediating bacterial adaptation to 268 

leaf trait gradients in the canopy. Our identification of the adaptive drivers of phyllosphere 269 

microbial community composition in this neotropical ecosystem represents a good starting point 270 

for identifying the types of microbial traits that could be routinely studied by phyllosphere 271 

microbial ecologists to address global questions on the ecological and evolutionary dynamics of 272 

phyllosphere microbes. Empirical testing of the fitness consequences of variation in those traits 273 

will represent an important next step in understanding adaptive processes in the phyllosphere. 274 

 275 

Methods 276 

Microbial DNA collection, extraction and sequencing 277 

Microbial communities were collected from the leaves of 24 individual trees from 17 tree 278 

species (1-2 samples per species) in the tropical lowland rainforest of Barro Colorado Island, 279 

Panama, in December 2010. These samples were selected from a larger pool of samples [12, 28] 280 

for which we had sufficient quantities of high-quality DNA, selecting host species to maximize 281 

the phylogenetic and functional diversity of hosts. Methodological details of sample collection 282 

are described by Kembel et al. 2014 [12]. Briefly, 50-100g of fresh leaves were collected from 283 

the subcanopy of one tree of each species. Microbial cells were then washed from each leaf 284 
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sample using phosphate buffer [1 M Tris•HCl, 0.5 M Na EDTA, and 1.2% CTAB] and collected 285 

by centrifuging at 4,000 × g for 20 min. DNA was extracted using MoBio PowerSoil DNA 286 

extraction kits and samples stored at -80°C for future analyses. We quantified DNA 287 

concentrations and sequenced both extraction negative controls and PCR negative controls for 288 

these samples as part of previously published analyses of bacterial 16S and fungal 28S amplicon 289 

sequencing of these samples [12, 28]; none of the negative control samples contained measurable 290 

concentrations of DNA and upon sequencing they contained fewer DNA sequences than the 291 

minimum cut-off for inclusion in analyses As a result, they were all excluded from subsequent 292 

analyses in previously published studies and the present study. To quantify the metagenomic 293 

structure of each microbial community, we constructed a paired-end metagenomic shotgun 294 

library including a random sample of the whole community DNA composition using an Illumina 295 

Nextera XT® kit (Illumina reference FC-131-1024). These libraries were then sequenced using 296 

Illumina MiSeq paired-end 2 x 250 base pair sequencing (V2 kit, Illumina reference MS-102-297 

2003). Analyses were performed on these 24 samples unless stated otherwise. Results were not 298 

influenced by including replicates of the same species (see tests below). 299 

Microbial taxonomy and functional trait annotation 300 

Metagenomic shotgun sequencing yielded 14,642,408 reads in total. We trimmed 301 

sequences to remove Illumina adapters and truncate end-bases with a quality score less than 20, 302 

and removed sequences shorter than 25bp, leaving 14,634,072 trimmed and quality-controlled 303 

reads. Taxonomic annotation of all sequences in each microbial community was performed to 304 

restrict functional analyses only to bacterial sequences. We annotated metagenomic reads using 305 

Kaiju, which annotates taxonomic identity of reads by comparing sequenced reads to the 306 

microbial subset of the NCBI BLAST non-redundant protein database [30]. Out of the 7,317,036 307 
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sequences, we were able to annotate taxonomy to at least the taxonomic level of kingdom for 308 

2,138,885 sequences, of which 2,100,491 sequences were from Bacteria, representing 29% of 309 

total sequences. Of these Bacterial sequences, 1,902,749 were annotated to at least the phylum 310 

level, representing 26% of total sequences. Analysis of taxonomic composition was carried out 311 

on this subset of sequences annotated to at least the bacterial Phylum level. We rarefied all 312 

samples to 20,100 randomly chosen sequences per sample for taxonomic composition analyses, 313 

resulting in a total of 482,400 sequences for taxonomic analyses. 314 

Functional annotation of microbial sequences was performed via protein homology 315 

searches using the KEGG annotation framework [31, 32] via the software COGNIZER [33]. 316 

Analyses resulted in the identification of functional genes and categories for 873,082 sequences 317 

representing 12% of sequences. In total, of the 7,317,036 bacterial sequences that were obtained 318 

from the metagenomic sequencing of all samples, 722,936 sequences were taxonomically 319 

annotated as bacteria and had a functional annotation. We lastly classified each of these 320 

sequences into functional categories, defined by the BRITE functional hierarchy manually 321 

curated for the KEGG annotation system based on published literature [32]. This hierarchy 322 

contains four different levels, which were designed as Tier 1, Tier 2, Tier 3 and functional genes, 323 

ranging from the more general to the more specific functional assignment (see [29]). Most 324 

analyses were performed at the Tier 3 level, in the intent of reaching a balance between the 325 

complexity of the data and its interpretability. In a few instances, Tier 3 categories were perfectly 326 

correlated across samples so we removed the duplicates from the dataset (Supp. Tab. 3, 327 

Additional File 1). 328 

Inference of microbial functions from 16S gene sequences 329 
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Several methods have been proposed to estimate the functional composition of microbial 330 

communities based on estimation of functions from 16S gene sequences [e.g. 25–27]. In order to 331 

compare estimates of functional composition based on direct sequencing and annotation of 332 

metagenomic shotgun sequencing data versus estimation of functions based on 16S sequences, 333 

we analyzed previously published 16S gene sequence data for each sample [12]. The randomly 334 

rarefied set of 4000 16S sequences per sample described by Kembel et al. [12] were analyzed 335 

using Tax4Fun [35] which provided an inferred estimate of the relative abundance of microbial 336 

functions in each sample. 337 

Plant functional traits and phylogeny 338 

We obtained measurements of plant functional traits for all plant species from a dataset 339 

collected previously on Barro Colorado Island [37]. This trait database initially included 21 340 

whole-plant and leaf traits, but we reduced these traits to a subset of 12 traits with limited 341 

overlap in functional significance [38]. This reduced set of traits included height at maturity, 342 

sapling growth rate and sapling mortality rate as whole-plant resource-use traits, leaf area and 343 

leaf dry matter content as leaf structural traits, and a suite of leaf elemental chemistry traits 344 

including concentration of aluminum, calcium, copper, magnesium, phosphorus, zinc and 345 

nitrogen content. A phylogenetic hypothesis for host plant species was obtained by grafting tree 346 

species onto a dated megatree of angiosperms provided by Zanne et al. [39] using Phylomatic v.3 347 

[40].  348 

Variation in phyllosphere functions among versus within samples 349 

We determined the contributions of within- and among-sample variation in function of 350 

total functional variation among metagenomic samples using additive diversity partitioning 351 
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implemented in the R package entropart [41]. The proportions of alpha and beta diversity were 352 

calculated as a ration of the portion of alpha (or beta) diversity on total diversity. Analyses were 353 

performed at three levels of functional aggregation (Tier 1 to Tier 3). We tested whether the 354 

presence of two samples rather than one for some of the sampled species would affect this 355 

diversity partitioning by subsampling the dataset to include all possible combinations of samples 356 

totally a single sample per species (n=128) and rerunning the analyses. This subsampling did not 357 

affect our results (Supp. Fig. 3, Additional File 2), such that we kept the 24 samples in the 358 

subsequent analyses. We then compared sources of turnover for functions and taxonomy 359 

between samples by performing the same analysis from the taxonomically annotated 360 

metagenomic sequences, defined at levels from phylum to species. 361 

Associations between microbial and plant traits 362 

We performed a principal component analysis (PCA) of functional trait matrices and 363 

identified the functions contributing most to variation along the first axes of variation using R 364 

package FactoMineR [42].  We fitted the plant traits onto this ordination to identify correlations 365 

between bacterial traits driving the PCA and the plant traits. We evaluated the influence of tree 366 

species replicates in our samples on these results and did not uncover important differences in 367 

the main drivers of functional differences among samples when excluding these duplicates such 368 

that all 24 samples were kept in this analysis.  369 

We quantified the phylogenetic signal in associations between microbial functions and 370 

host plant phylogeny using function multiphylosignal from R package Picante [43] to calculate 371 

Blomberg’s K and an associated P-value, which quantifies whether a microbial function exhibits 372 

stronger phylogenetic signal than expected by chance. We selected a single random sample per 373 
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host species for those host species with more than one sample prior to calculating phylogenetic 374 

signal. We repeated this for different random subsamples and it did not qualitatively change the 375 

results so we report phylogenetic signal for a representative random subsample.  376 

Host filtering of microbial functions and taxa 377 

The degree of host filtering on microbial communities was assessed by comparing the 378 

occurrence of traits in observed communities to those obtained from 999 randomizations of 379 

community trait matrices. Host filtering was detected as an over- or under-representation of the 380 

given trait in individual communities. Randomizations were generated by permutations of the 381 

trait matrix preserving row and column totals. For each site and bacterial trait combination, we 382 

compare the observed frequency of the trait to the random values to assess whether it was lower 383 

or higher than expected by chance. To compare the strength of functional vs. taxonomic filtering, 384 

we applied the same procedure to the taxonomic datasets defined at each of six taxonomic levels, 385 

from the phylum to the species. 386 

Comparison of functional annotations based on shotgun metagenomic versus 16S sequencing 387 

We compared functional annotations obtained through shotgun metagenomic sequencing 388 

with those obtained from functional predictions made from 16S sequencing on the same samples. 389 

Since one sample was an outlier in the 16S functional predictions so we removed it in both 390 

datasets prior to analyses, resulting in 23 samples total.  391 

We first compared the relative abundances of individual functional pathways across the 392 

two datasets by performing a correlation analysis between their average abundance across all 393 

samples. The functional pathways the furthest from the 1:1 relationship would be the most over- 394 

or under- represented in either method. We then determined the functional pathways which were 395 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/851485doi: bioRxiv preprint 

https://doi.org/10.1101/851485
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

the most important in differentiating between the metagenomic and the 16S functional 396 

annotations by performing a Constrained Analysis of Principal Coordinates (CAP) analysis on 397 

Bray-Curtis distances. We next tested whether such differences would have an importance in the 398 

ecological classification of samples by performing a Procrustes analysis on the functional tables 399 

of each dataset [44], and tested the degree of similarity in the relationships among sites 400 

calculated for each dataset using a permutation approach. The degree of similarity is described 401 

by the m2 term, representing the sum of the squared deviations between sample positions in one 402 

dataset vs. the other. A m2 statistic smaller than expected by chance indicates that the two 403 

datasets are more similar than expected by chance [45]. Finally, we generated a diversity 404 

partitioning of the 16S functional predictions as described above for the metagenomic functional 405 

annotations to determine the impact of the 16S prediction approach in the description of 406 

biodiversity within and across samples. 407 
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Additional Files 562 

Additional File 1 (.docx) 563 

Supplementary Tables. This additional file contains 3 supplementary tables, referred to in the 564 

main text. 565 

Additional File 2 (.docx) 566 

Supplementary Figures. This additional file contains 3 supplementary figures, referred to in the 567 

main text. 568 

Additional File 3 (.newick) 569 

Host phylogeny. A phylogenetic hypothesis for host plant species obtained by grafting tree 570 

species from the study site onto a dated megatree of angiosperms (see Methods for details). 571 
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Tables 572 

Table 1. Functional and taxonomic additive diversity partitioning of bacterial communities across 24 tree phyllosphere samples.  573 

 

Functional Taxonomic 

 

Metagenomic 16S             

 

Tier 2 Tier 3 Functional 
gene 

Tier 2 Tier 3 Functional 
gene 

Phylum Class Order Family Genus Species 

Alpha diversity (%) 100.0 99.8 97.2 99.7 99.6 99.5 99.0 99.0 99.0 98.8 98.2 95.6 

Beta diversity (%) 0.0 0.2 2.8 0.3 0.4 0.5 1.0 1.0 1.0 1.2 1.8 4.4 

 574 

Diversity partitioning was calculated for both the metagenomic dataset and the 16S functional predictions. The percentage of alpha 575 

diversity was calculated as the amount of alpha entropy divided by the amount of total entropy across all communities. The percentage 576 

of beta diversity was calculated as 1 minus the percentage of alpha diversity.  577 
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Table 2. Occurrences of Tier 3 functions and taxa across 24 tree phyllosphere samples.  578 

  

Number of 
combinations higher 

than expected by 
chance % of total 

Number of 
combinations lower 

than expected by 
chance % of total 

Total number of 
combinations 

Functions           
Tier 3 functions 1553 25 1570 25 6192 
Taxa 

    Phylum 495 25 510 25 2016 
Class 493 29 556 33 1704 
Order 1124 29 1310 34 3888 
Family 2403 27 2804 32 8808 
Genus 10010 25 11575 29 40608 
Species 47492 20 45628 19 240288 

 579 

Occurrences of Tier 3 functions and taxa that are more or less abundant than would be expected by chance (α=0.05) across all 580 

combinations of functions or taxa per site.   581 
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Figure legends 582 

Figure 1. Relative abundance of the most abundant functional pathways detected across 24 tree 583 

phyllosphere samples in a neotropical forest in Panama. Functional pathways are classified using 584 

the KEGG functional hierarchy [32]. 585 

Figure 2. Principal components analysis (PCA) of microbial functional composition from the 586 

phyllosphere of neotropical trees. The 20 Tier 3 functions contributing the most to variation 587 

among samples are indicated as black arrow. Plant traits were fitted onto the PCA in a 588 

configuration that would maximize correlation with the PCA axes and are represented as blue 589 

dashed lines. Plant trait abbreviations are the following:  Aluminum (AL), Calcium (CA), 590 

Carbon (C), Copper (CU), Diameter at breast height (DBH), Leaf area (LEAFAREA), Leaf dry 591 

matter content (LDMC), Leaf mass per area (LMA), Leaf thickness (LEAFTHICK), Manganese 592 

(MN), Mortality (MORT), Nitrogen (N), Phosphorus (P), Potassium (K), Relative growth rate 593 

(RGR), Zinc (ZN). 594 

Figure 3. Distribution of microbial functions with respect to plant phylogeny. Distributions are 595 

shown for the subset of Tier 3 microbial functions with significant phylogenetic signal according 596 

to the K statistic test (P<0.05). Symbol size indicates the scaled relative abundance of microbial 597 

functions for each host species. 598 

Figure 4. Log-transformed relative abundance of functions detected in the metagenomic 599 

annotations and the 16S functional predictions across 24 tree phyllosphere samples in a 600 

neotropical forest in Panama. Relative abundances were evaluated at each of 3 functional 601 

classification levels. The red line represents a 1:1 relationship between the relative abundances of 602 

functions observed at each site, such that points below the red line represent occurrences of 603 
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functions over-represented in the metagenomic dataset, and those above the red line occurrences 604 

of functions over-represented in the 16S dataset. 605 

 606 
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