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Abstract 22 

Background: Metagenomics is revolutionizing the study of microorganisms and their 23 

involvement in biological, biomedical, and geochemical processes, allowing us to investigate 24 

by direct sequencing a tremendous diversity of organisms without the need for prior cultivation. 25 

Unicellular eukaryotes play essential roles in most microbial communities as chief predators, 26 

decomposers, phototrophs, bacterial hosts, symbionts and parasites to plants and animals. 27 

Investigating their roles is therefore of great interest to ecology, biotechnology, human health, 28 

and evolution. However, the generally lower sequencing coverage, their more complex gene 29 

and genome architectures, and a lack of eukaryote-specific experimental and computational 30 

procedures have kept them on the sidelines of metagenomics.  31 

Results: MetaEuk is a toolkit for high-throughput, reference-based discovery and annotation 32 

of protein-coding genes in eukaryotic metagenomic contigs. It performs fast searches with 6-33 

frame-translated fragments covering all possible exons and optimally combines matches into 34 

multi-exon proteins. We used a benchmark of seven diverse, annotated genomes to show that 35 

MetaEuk is highly sensitive even under conditions of low sequence similarity to the reference 36 

database. To demonstrate MetaEuk’s power to discover novel eukaryotic proteins in large-37 

scale metagenomic data, we assembled contigs from 912 samples of the Tara Oceans project. 38 

MetaEuk predicted >12,000,000 protein-coding genes in eight days on ten 16-core servers. 39 

Most of the discovered proteins are highly diverged from known proteins and originate from 40 

very sparsely sampled eukaryotic supergroups.  41 

Conclusion: The open-source (GPLv3) MetaEuk software 42 

(https://github.com/soedinglab/metaeuk) enables large-scale eukaryotic metagenomics 43 

through reference-based, sensitive taxonomic and functional annotation.  44 
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Background 45 

Unicellular eukaryotes are present in almost all environments, including soil [1], oceans [2], 46 

and plant and animal-associated microbiomes [3,4]. They exhibit both autotrophic and 47 

heterotrophic lifestyles [5], exist in symbiosis with plants and animals [6], and interact with 48 

other microbial organisms [7]. They account for roughly half of the global primary productivity 49 

in the oceans, mostly by photosynthesis [8], are key contributors to the carbon and nitrogen 50 

cycles through carbon-dioxide fixation, organic matter degradation, and denitrification [9,10], 51 

and have been shown to be a source for chemically bioactive compounds [e.g., 11,12].  52 

Since the advent of metabarcoding using 18S rRNA genes, the known evolutionary diversity 53 

of unicellular eukaryotes has increased by orders of magnitude [13], and novel phyla and 54 

supra-kingdoms are still being discovered [14,15]. Due to their vast diversity [16,17], 55 

unicellular eukaryotes are certain to hold invaluable secrets for biotechnology and 56 

biomedicine. 57 

Protein-coding genes are major keys for understanding eukaryotic functions and activities [18]. 58 

Metatranscriptomic and metagenomic studies provide unique means to reveal protein-coding 59 

genes. However, despite the great potential of studying uncultivatable eukaryotes in their 60 

natural environment, they have received little attention in metatranscriptomic and 61 

metagenomic studies so far, with a few notable exceptions [e.g., 19,20]. The unique features 62 

of eukaryotic data, i.e., lower genomic coverage due to lower population densities in 63 

metagenomic samples, fewer reference genomes, increased genome sizes and higher 64 

complexity of gene structure negatively impact all stages of metagenomic analyses, from 65 

assembly, through binning, to protein prediction and annotation [as discussed by 21,22]. 66 

Specifically, identifying protein-coding genes in eukaryotes is inherently more challenging than 67 

in prokaryotes due to the exon-intron architecture of eukaryotic genes. To date, methods for 68 

eukaryotic gene calling [e.g., 23–25] consider two types of information when training models 69 

for gene prediction: intrinsic sequence signals (e.g., CpG islands) and extrinsic data, such as 70 

transcriptomics or an annotated genome from a closely-related organism. As splicing 71 

signatures are not well conserved throughout evolution, the predictive power of the trained 72 

models declines fast when applied to organisms that are phylogenetically distant from the 73 

organism on which the model was trained [26]. 74 

While these methods are very useful for genomics, their applicability to metagenomic data is 75 

severely limited. First, the transcriptomic or genomic data of annotated organisms that are 76 

sufficiently closely related are usually not available. Second, since the models need to be 77 

trained on a relatively narrow clade, the application of such methods to metagenomic data 78 
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requires to first bin the assembled contigs by their assumed genome of origin [as performed 79 

by 27], which is often quite inaccurate and slow, especially when the number of contigs is 80 

large, the coverage is low, the contigs are short, and the metagenomic data are species-rich 81 

[28–30]. Finally, model-training in itself is time consuming, taking hours to days per genomic 82 

bin [25,27], limiting this approach to the analysis of few genomic bins at a time. 83 

Previously, methods that bypass or reduce the need to explicitly train models to detect protein-84 

coding genes have been proposed in the context of genomics [e.g., 31,32]. These methods 85 

extract putative protein-coding fragments from the genome and join those that bear sequence 86 

similarity to available transcriptomic or protein sequence targets. Since the joined fragments 87 

can be separated by non-coding (intronic) regions, their match to the target is termed “spliced 88 

alignment”. Even at a genomic level, a brute force application of the spliced alignment 89 

approach poses a serious computational burden as it requires aligning each putative fragment 90 

to each target as well as recovering the set of putative fragments that best match a target. 91 

Here, we developed MetaEuk, a novel and sensitive reference-based approach to identify 92 

single- and multi-exon protein-coding genes in eukaryotic metagenomic data. MetaEuk takes 93 

as input a set of assembled contigs and a reference database of target protein sequences or 94 

profiles. MetaEuk scans each contig in all six reading frames and extracts putative protein 95 

fragments between stop codons in each frame. Thus, MetaEuk makes no assumption about 96 

the splicing signal and does not rely on any preceding binning step. MetaEuk uses the 97 

MMseqs2 code library [33] for a very fast, yet sensitive identification of putative exons within 98 

the fragments. This step also discards the vast majority of fragments, which significantly 99 

reduces the computation time of all succeeding steps. The combinatorial task of considering 100 

all possible sets of putative exons to best match a given target is solved by means of dynamic 101 

programming. Since MetaEuk uses a homology-based strategy to identify protein-coding 102 

genes, it can directly confer annotations to its predictions from the matched target proteins.  103 

We benchmarked MetaEuk by using annotated genomes and proteins of seven unicellular 104 

organisms from different parts of the eukaryotic tree of life under conditions of increasing 105 

evolutionary distance to sequences in the reference database. Despite its high speed and low 106 

false positive rates, MetaEuk is able to discover a large fraction of the known proteins in these 107 

benchmark genomes. We next applied MetaEuk to study marine eukaryotes. We assembled 108 

all Tara Oceans metagenomic samples [20] and focused on ~1,300,000 contigs of at least 109 

5kbp in length. We clustered more than 330,000,000 proteins to create a comprehensive 110 

catalog of over 87,000,000 protein profiles to serve as a reference database. We found the 111 

MetaEuk collection of >12,000,000 marine proteins is highly diverged, offering major 112 

eukaryotic lineage expansions.  113 
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Results 114 

The MetaEuk algorithm 115 

The main steps of the algorithm are presented schematically in Figure 1 and a detailed 116 

description is provided in the Methods section. For each input contig, all possible protein-117 

coding fragments are translated in six reading frames and searched against a reference target 118 

database of protein sequences or profiles. Fragments from the same contig and strand that 119 

hit a reference target T are examined together. In each fragment, only the part that was aligned 120 

to the target protein T is considered as a putative exon. The putative exons are ordered 121 

according to their start position on the contig. Based on their contig locations and the locations 122 

of their aligned region on the target T, any two putative exons are either compatible or not. A 123 

dynamic programming procedure recovers the highest scoring path of compatible pairs of 124 

putative exons by computing the maximum scores of all paths ending with each putative exon. 125 

Since homologies among targets in the reference database can lead to multiple calls of the 126 

same protein-coding gene, redundancies are reduced by clustering the calls. To that end, all 127 

calls are ordered by their start position on the contig. The first call defines a new cluster and 128 

all calls that overlap it on the contig are assigned to its cluster if they share an exon with it. 129 

The next cluster is defined by the first unassigned call. After all calls are clustered, the best 130 

scoring call is selected as the representative of the cluster, termed a “prediction”. Finally, as 131 

overlaps of genes on the same strand are very rare [as reviewed by 34], gene predictions 132 

overlapping others on the same strand with a better E-value are removed. 133 
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 134 

Figure 1 – MetaEuk algorithm. Input to MetaEuk are assembled metagenomic contigs and a reference database of protein 135 
sequences. (1) Six-frame translation of all putative protein-coding fragments from each contig. (2) Fragments on the same 136 
contig and strand that hit the same reference protein T are examined together. (3) Putative exons are identified and ordered 137 
according to their start position on the contig. The highest score and path (denoted with a star) of a set of compatible putative 138 
exons is computed by dynamic programming, in which individual scores of the putative exons are summed and unmatched 139 
amino acids are penalized. (4) Redundancies amongst gene calls due to homologous targets (T, T’ and T’’) are reduced and a 140 
representative prediction (denoted with a star) is retained. (5) Contradicting predictions of overlapping genes on the same 141 
strand are resolved by excluding the prediction with the higher E-value. 142 

 143 

Performance evaluation on benchmark data 144 

We evaluated MetaEuk using seven annotated unicellular eukaryotic organisms obtained from 145 

the NCBI’s genome assembly database [35] (Table 1). These organisms are varied in terms 146 

of their phylogenetic group, genome size, number of annotated proteins, fraction of multi-exon 147 

genes, and assembly quality. MetaEuk was run on the assembled scaffolds of each of these 148 

organisms against the UniRef90 [36] database with an average run time of 42 minutes per 149 

genome, or 0.5 Mbp/min, on a server with two 8-core with Intel Xeon E5-2640v3 CPUs and 150 

128 GB RAM (Table 1). The NCBI data included the scaffold coordinates of the annotated 151 

protein-coding genes and their exons. In the following sections we used this information to 152 

assess MetaEuk's sensitivity and precision by mapping MetaEuk predictions to annotated 153 

proteins in their scaffold location. This was done based on the scaffold boundaries of the 154 

MetaEuk prediction and the annotated protein and by requiring high sequence identity of their 155 
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protein alignment. We then computed the coverage of individual exons of the annotated 156 

proteins to which MetaEuk predictions were mapped. These mappings are fully described in 157 

the Methods section. 158 

 159 

Table 1 – Species used to benchmark MetaEuk. 160 

Species Group 
Genome 

size (Mbp) 

# 

scaffolds 

# annotated 

proteins 

% multi-exon 

proteins 
GC% 

MetaEuk run 

time against 

UniRef90 

Schizosaccharomyces 

pombe 
Fungi 12.59 4 5,132 47% 36 35m 

Acanthamoeba castellanii 

str. Neff 
Amoebozoa 42.02 384 14,974 91% 57.8 59m 

Phytomonas sp. isolate 

EM1 
Excavata 17.78 138 6,381 0% 48 37m 

Babesia bigemina Alveolates 13.84 483 5,079 54% 50.6 35m 

Nucleomorph of 

Lotharella oceanica 
Rhizaria 0.68 4 668 39% 32.8 24m 

Phaeodactylum 

tricornutum 
Stramenopiles 27.45 88 10,408 46% 48.8 51m 

Aspergillus nidulans Eurotiomycetes 30.28 91 9,556 88% 50.3 52m 

 161 

Sensitivity at evolutionary distance 162 

Sequences from major eukaryotic clades, such as Rhizaria, Stramenopiles, and Dinoflagellata 163 

are poorly represented in public protein databases, despite their high abundance in the 164 

environment [17]. We therefore measured the ability of MetaEuk to identify homologous 165 

protein-coding genes in organisms, which have distant evolutionary relatives in the reference 166 

database, as would be the case in a typical metagenomic analysis. To that end, for each 167 

annotated organism, we considered five sets of MetaEuk predictions. The first is the base set, 168 

which consisted of all predictions. Since we worked with annotated species, their proteins are 169 

well represented in UniRef90. The base set therefore reflects ideal conditions, in which the 170 

queried organisms are close to the reference database. The other four sets reflect an 171 

increasing evolutionary distance and were generated by excluding MetaEuk gene calls whose 172 

Smith-Waterman alignment (computed using MMseqs2) to their UniRef90 target had more 173 

than 90%, 80%, 60% or 40% sequence identity. We measured sensitivity as the fraction of 174 
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annotated proteins from the query genome to which a MetaEuk prediction was mapped (see 175 

Methods). For all organisms, the sensitivity of the base set of predictions was at least 92%, 176 

and sensitivity decreased with the sequence identity threshold (Figure 2A). However, even at 177 

low thresholds (40% – 60%), a significant fraction of the annotated proteins were discovered. 178 

 179 

Annotated exon coverage 180 

We next assessed MetaEuk’s performance at the level of individual exons. For each MetaEuk 181 

prediction from the base set and its mapped annotated protein, we computed the proportion 182 

of annotated exons that were covered by the prediction (see Methods). Overall, the majority 183 

of predictions covered the majority of exons and, as expected, the fraction of predictions that 184 

cover all annotated exons decreases with the number of exons in the annotated protein (Figure 185 

2B). For all organisms, most (77% – 91%) annotated exons were covered by MetaEuk 186 

predictions. In addition, we found that the fraction of multi-exon MetaEuk predictions was 187 

similar to that presented in Table 1 (average difference: 10%, Supp. Figure 1A) and that single-188 

exon predictions tended to have longer exons than multi-exon predictions (Supp. Figure 1B). 189 

An additional measure of completeness of MetaEuk predictions is the coverage of the target 190 

UniRef90 protein based on which the prediction was made. We therefore aligned each 191 

predicted MetaEuk protein to its target and found that on average, > 83% of predictions 192 

covered > 90% of their target (Supp. Figure 2). 193 

 194 

Precision 195 

MetaEuk predictions that were mapped to annotated proteins were considered as true 196 

predictions. We first measured the precision of MetaEuk by using the NCBI annotations as 197 

gold standard and regarded all predictions in the base set that were not mapped to an 198 

annotated protein (8% –  35%, Supp. Figure 2) as false. We computed precision-recall curves 199 

by treating the predictions’ E-values as a classifying score. We found good separation (AUC-200 

PR > 0.7 in all cases) between predictions that mapped to annotated proteins and the rest 201 

(Figure 2C). However, a prediction that does not map to a known protein is not necessarily 202 

false as it might reflect an unannotated protein. We found that about 40% of the unmapped 203 

predictions overlap a protein-coding gene on the opposite strand or are on scaffolds that had 204 

no annotation at all (Supp. Figure 2), suggestive of post-hoc exclusion criteria in the NCBI 205 

annotation procedure. For this reason, we also measured the precision of MetaEuk 206 

independently of external annotations by using an inverted-sequence null model. For this 207 

annotation-free approach, we ran standard MetaEuk on the inverted sequences of the six 208 
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frame-translated putative fragments. Each prediction based on these inverted sequences can 209 

therefore be considered a false positive. We applied the same E-value cutoff for reporting 210 

predictions based on the original sequence data and based on the inverted set. For all 211 

organisms, the total number of false positive predictions produced by this approach was low 212 

(0 – 12), indicating very high precision (> 99.9%).  213 

 214 

Redundancy reduction 215 

MetaEuk’s redundancy reduction procedure divides gene calls into disjoint clusters and retains 216 

a representative call as gene prediction for each cluster (see Methods). This reduces the 217 

number of potential protein-coding genes that need to be inspected. E.g., for S. pombe, 218 

MetaEuk produced over 1,100,000 calls that were reduced to a total of 5,564 predictions in 219 

the base set. A full reduction of redundancy is achieved when no two predictions correspond 220 

to same protein-coding gene. We thus identified cases in which two or more MetaEuk 221 

predictions were mapped to the same protein-coding gene. We found that for all benchmark 222 

organisms, redundancy is greatly reduced, as more than 99% of the annotated protein-coding 223 

genes in the benchmark scaffolds are only predicted once (Figure 2D). 224 

 225 

Statistical scores 226 

For each prediction, MetaEuk computes a bit-score between the set of translated and joined 227 

putative exons and the target protein. Based on this bit-score and the size of the reference 228 

database, an E-value is computed (see Methods). We evaluated MetaEuk’s bit-scores and E-229 

values by comparing them to those computed for each predicted protein and its target by the 230 

Smith-Waterman algorithm. Since MetaEuk penalizes missing and overlapping amino acids 231 

when joining putative exons, we expect the MetaEuk bit-score to be more conservative than 232 

the direct Smith-Waterman alignment bit-score. We found very high levels of agreement 233 

between the MetaEuk statistics and the Smith-Waterman statistics (Figure 2E, Supp. Figure 234 

3). This suggests a straightforward statistical interpretation of MetaEuk prediction scores. 235 
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 236 

Figure 2 – MetaEuk evaluation on benchmark. MetaEuk predictions were mapped to annotated proteins. (A) Conditions of 237 
increasing evolutionary divergence were simulated by excluding gene calls based on their sequence identity to their target. 238 
Sensitivity is the fraction of annotated proteins from the query genome to which a MetaEuk prediction was mapped. (B) 239 
Fraction of exons covered by MetaEuk (color saturation). The number of MetaEuk predictions is indicated on top of each bar. 240 
(C) In an annotation-dependent precision estimation MetaEuk predictions that mapped to an annotated protein were considered 241 
as true and the rest as false. These sets of predictions are well separated by their E-values, as indicated by the high AUC-PR 242 
values. (D) Fraction of annotated protein-coding genes that were split by MetaEuk into two (dark grey) or three (black) 243 
different predictions. (E) Comparison of the E-values computed by MetaEuk and by the Smith-Waterman algorithm for A. 244 
castellani proteins. The Spearman rho indicates high correlation for A. castellani and the other organisms (Supp. Figure 3A). 245 

 246 

Effect of contig length 247 

Assembling metagenomic reads often produces contigs that are much shorter than the 248 

scaffolds of the organisms we used for benchmarking MetaEuk (Table 1). We thus aimed to 249 

assess the effect of analyzing shorter genomic stretches by artificially dividing each of the 250 

scaffolds from Table 1 into shorter contigs following a typical length distribution with a 251 

minimum of 5kbp in length and a median of 6.8kbp (see Methods). Any protein-coding gene 252 

that spans more than one contig is expected to result in incomplete MetaEuk predictions. 253 

Indeed, while the sensitivity measured by the mapping to annotated proteins remained similar 254 

to that recorded on the original scaffolds (Supp. Figure 4A), we found that more predictions 255 

were partial and covered fewer annotated exons (Supp. Figure 4B) as well as an increase of 256 

up to 15% in annotated genes being split into several MetaEuk predictions (Supp. Figure 4D). 257 
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Eukaryotic protein-coding genes in the ocean 258 

To date, little is known about the biological activities of eukaryotes in the oceans [2,37]. We 259 

aimed to use MetaEuk to discover eukaryotic protein-coding genes in the Tara Oceans 260 

metagenomic dataset [20]. We first used MEGAHIT [38] to assemble all 912 samples of this 261 

project. We retained 1,351,204 contigs of at least 5kbp in length that were classified as 262 

potentially eukaryotic by EukRep [27]. We next constructed a comprehensive set of reference 263 

proteins by uniting over 21,000,000 representative sequences of the Uniclust50 database [39], 264 

the MERC dataset of over 292,000,000 protein sequence fragments assembled from 265 

eukaryotic Tara Oceans metatranscriptomic datasets [40], and over 18,500,000 protein 266 

sequences of MMETSP, the Marine Microbial Eukaryotic Transcriptome Sequencing Project 267 

[17,41]. We clustered the joint dataset of 331,913,793 proteins using the combined Linclust / 268 

MMseqs2 four-step cascaded clustering workflow [42] with a minimal sequence identity of 269 

20% and high sensitivity (-s 7). This resulted in 87,984,812 clusters, most of which (> 97%) 270 

contained proteins from a single reference dataset (Figure 3). For each cluster, a multiple 271 

sequence alignment was generated, based on which a sequence profile was computed. 272 

 273 

Figure 3 – Reference profiles composition. Proteins from three datasets: MERC (292 million), MMETSP (18.5 million) and 274 
Uniclust50 (21 million) were clustered into ~88 million clusters. Most clusters contained proteins from a single reference 275 
dataset. The profiles computed based on these clusters served as the reference database for the MetaEuk run on the Tara Oceans 276 
contigs. 277 

 278 

MetaEuk’s run using this reference database took eight days on ten 2x8-core servers and 279 

resulted in 12,111,301 predictions with no same-strand overlaps in 1,287,197 of the Tara 280 

Oceans contigs. Due to sequence similarities among the assembled contigs, some of these 281 
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proteins are identical to each other, leaving a total of 6,158,526 unique proteins. We examined 282 

the distribution of predictions per contig, the number of putative exons in each prediction and 283 

the length of putative exons in single-exon and multi-exon predictions. We found that the 284 

number of predictions increases as a function of the contig length (Figure 4A), about 24% of 285 

predictions had more than one putative exon (Figure 4B) and multi-exon predictions tend to 286 

have shorter putative exons than single-exon predictions (4C). We analyzed the contribution 287 

of each reference dataset to the profiles based on which the MetaEuk predictions were made. 288 

MERC, MMETSP and Uniclust50 contributed 77.4%, 5.7% and 4.3% of the predictions, 289 

respectively. The rest of the predictions were based on mixed-dataset clusters (Supp. Figure 290 

5). We then used MMseqs2 to query the MetaEuk predicted proteins against their targets. 291 

Over 33% of the MetaEuk predictions have less than 60% sequence identity to their MERC, 292 

MMETSP or Uniclust50 target (Figure 5A). Finally, we found that 70% of the MetaEuk 293 

predicted proteins covered at least 80% of their reference target (Figure 5B). 294 

 295 

Figure 4 – MetaEuk predictions on Tara Oceans contigs. MetaEuk was run on over 1.3 million contigs assembled from 296 
Tara Oceans metagenomic reads against a reference database of ~88 million protein profiles. (A) The number of MetaEuk 297 
predictions per contig increases with its length. Horizontal lines mark contig length quartiles. (B) Most (76%) MetaEuk 298 
predictions had a single putative exon. The absolute number of predictions is indicated above each bar. (C) Single-exon 299 
predictions tend to have longer putative exons than multi-exon predictions. 300 

 301 
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 302 

Figure 5  – MetaEuk predictions compared to the reference datasets. MetaEuk predicted proteins were queried against the 303 
representative sequence of their target reference cluster. (A) About one third of the predicted MetaEuk proteins had less than 304 
60% sequence identity to their target. (B) Targets are well covered by MetaEuk predicted proteins. 305 

 306 

We next explored the taxonomic composition of the MetaEuk proteins. Since the majority 307 

(77%) of MetaEuk predictions were based on homologies to the MERC dataset, for which no 308 

taxonomic annotation is available, we queried the MetaEuk marine proteins collection against 309 

the Uniclust90 dataset [39] and the MMETSP dataset, both annotated using NCBI taxonomy 310 

(see Methods). We found that 63% of predictions based on homologies to the MERC dataset 311 

did not match any protein in either of the reference datasets, which means ~49% (63% of 312 

77%) of the MetaEuk marine proteins collection could not be assigned any taxonomy. This is 313 

in agreement with 52% of unassigned unigenes assembled from Tara Oceans 314 

metatranscriptomics [20]. We next assigned taxonomic labels to each assembled contig by 315 

conferring the taxonomic label with the best E-value of all MetaEuk predictions in the contig. 316 

This allowed us to annotate 92% of the contigs for which MetaEuk produced predictions (87% 317 

of all input contigs). We found that 82% of the contigs were assigned to the domain Eukaryota 318 

and 9% to non-eukaryotes, mostly bacteria (Figure 6A). We then examined the assigned 319 

eukaryotic supergroups below the domain level. About 12% of the eukaryotic contigs could 320 

not be assigned a supergroup. Among the most abundant eukaryotic supergroups are 321 

Metazoa and Chlorophyta (Figure 6B). 322 
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 323 

Figure 6  – Taxonomy of Tara Oceans contigs with MetaEuk predictions. The best-scoring taxonomic label of all 324 
predictions on each contig was conferred to the contig. Contigs were divided into four categories according to their number of 325 
MetaEuk predictions. Over 82% of the contigs were assigned to the domain Eukaryota. (A) The proportion of unassigned 326 
contigs decreases with the number of MetaEuk predictions on the contig. The fraction of eukaryotic contigs out of all assigned 327 
contigs is about 90% in all four categories. (B) Eukaryotic taxonomic labels below the domain level. 328 

 329 

The high fraction of unassignable predictions (49%) prompted us to seek an additional way to 330 

assess the diversity of the MetaEuk marine proteins. We thus collected orthologous 331 

sequences of the large subunits of RNA polymerases, which are universal phylogenetic 332 

markers [43] from 985 organisms for which we had taxonomic information, as well as 1,076 333 

MetaEuk proteins, which consisted of all five Pfam domains of the large subunit in the right 334 

order (see Methods). We aligned these sequences using MAFFT [44] and constructed the 335 

maximum-likelihood phylogeny using RAxML [45]. The aim of this analysis was to delineate 336 
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the diversity of eukaryotic taxa of the MetaEuk marine proteins collection and not to resolve 337 

the exact phylogenetic relationships among them. As can be seen in Figure 7, MetaEuk 338 

proteins offer major lineage expansions in under-sampled eukaryotic supergroups. 339 

Importantly, the strict ortholog collection procedure performed for this analysis results in a 340 

conservative estimate of the diversity level of the MetaEuk marine proteins collection. 341 

 342 

 343 

Figure 7 – Diversity of MetaEuk marine eukaryotic proteins. Homologous sequences of the large subunits of RNA 344 
polymerases of 985 species as well as 1,076 MetaEuk marine proteins were collected and a maximum-likelihood tree was 345 
computed based on their alignment. MetaEuk sequences (black) expand major eukaryotic lineages, including deeply rooted 346 
supergroups (denoted with star).  347 
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Discussion 348 

We presented MetaEuk, an algorithm designed for large-scale analysis of eukaryotic 349 

metagenomic data. We demonstrated its utility for discovering proteins from highly diverged 350 

eukaryotic groups by analyzing assemblies of a huge set of 912 marine metagenomics 351 

samples. MetaEuk makes no assumption concerning splice site signatures and does not 352 

require a preceding binning procedure, which renders it suitable for the analysis of contigs 353 

from a mixture of highly diverged organisms. In order to achieve this, MetaEuk considers all 354 

possible putative protein-coding fragments from each input contig. Applying the spliced 355 

alignment dynamic programming procedure to recover the optimal set of putative exons 356 

directly on these fragments would result in a run time complexity per contig that is quadratic 357 

in the number of its fragments times the number of targets in the reference database. This is 358 

not feasible for metagenomics, as the number of fragments can be hundreds of millions (e.g., 359 

from 1,351,204 Tara Oceans contigs, 152,519,258 fragments were extracted) and the 360 

reference database should be as comprehensive as possible (in this study, we used more 361 

than 87,000,000 protein profiles). To circumvent this limitation, MetaEuk takes advantage of 362 

the ultra-fast MMseqs2 search algorithm, which allows it to find putative exons matching a 363 

reference protein sequence with sufficient significance (in this study, a lenient E-value of 100). 364 

MetaEuk does not require significance at the exon level as it can combine sub-significant 365 

single exon matches to highly significant multi-exon matches. For example, two putative exons 366 

each with an E-value of 10 (corresponding to a bit-score of 25-40 in this study), are not 367 

individually significant but the sum of their bit-scores of at least 50 corresponds to a significant 368 

E-value of 1E-05. 369 

MetaEuk is not designed to recover accurate splice sites, but rather to identify the protein-370 

coding parts within exons. Indeed, we showed that MetaEuk predictions on the benchmark 371 

covered the majority (77% – 91%) of exons in annotated proteins. Since MetaEuk relies on 372 

local alignment at the amino acid level, it could potentially report pseudogenes, which still bear 373 

sequence similarity to reference proteins. However, we found that the majority of benchmark 374 

predictions (65% – 92%) mapped to NCBI annotated protein-coding genes, while the rest 375 

could be well separated from those that mapped by their E-values (AUC-PR > 0.7). 376 

Furthermore, unmapped predictions can reflect a missing annotation or post-hoc exclusion 377 

criteria (e.g., removal of annotations that overlap a better scoring one on the opposite strand). 378 

We therefore measured precision independently of annotations by running standard MetaEuk 379 

on the inverted sequences of the putative protein fragments extracted from the contigs. By 380 

using this annotation-free approach, we showed that MetaEuk’s precision was greater than 381 

99.9% for all benchmark organisms. Put together, MetaEuk’s strength is in describing the 382 
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protein-coding repertoire of versatile environments rather than in constructing statistical 383 

models of exon-intron transitions. 384 

The Tara Oceans contigs analyzed in this study were assembled from Illumina HiSeq 2000 385 

short reads. High population diversity, repeat regions, and sequencing errors are among the 386 

major factors contributing to the computational challenge associated with metagenomic 387 

assembly [reviewed by 46]. These factors reduce the quality of the assembly as reflected, for 388 

example, in shorter contig lengths, chimeric contigs and contigs containing strand inversions. 389 

These in turn, directly and negatively impact MetaEuk. Shorter contigs limit its ability to 390 

discover multi-exon protein-coding genes as it searches for them within a contig. In addition, 391 

predictions on contig edges can be partial, which is more likely to happen in a highly 392 

fragmented assembly. By dividing each of the benchmark scaffolds to contigs whose lengths 393 

were drawn at random based on the length distribution of the Tara Ocean contigs, we showed 394 

that while MetaEuk retains its overall sensitivity to detect protein coding genes even under 395 

conditions of increasing evolutionary distance between the query organism and the target 396 

reference database, the completeness of its predictions is reduced. We thus expect MetaEuk 397 

to benefit from future improvements in assembly algorithms, higher sequencing coverage, and 398 

long-read sequencing technology [47–50]. 399 

In addition to developing MetaEuk, we generated two useful resources for the analysis of 400 

eukaryotes as part of this study. The first is the comprehensive protein profile database, which 401 

was computed using protein sequences from three sources: MERC, MMETSP and Uniclust50. 402 

With ~88 million records, it is the largest profile database focused on eukaryotes to date. Since 403 

MERC was assembled from the Tara Oceans metatranscriptomic data, we expected it to be 404 

a valuable resource for discovering protein-coding genes in the same environment. Indeed, 405 

we found that the majority of MetaEuk predictions (77%) were based on MERC protein 406 

profiles. Furthermore, the high fraction of MERC-based predictions that could not be assigned 407 

a taxonomic label (63%) demonstrates the uniqueness of this resource.  408 

The second resource is the MetaEuk marine protein collection, which is available on our 409 

search webserver (https://search.mmseqs.com/search) for easy investigation [51]. Using a 410 

phylogenetic marker protein, we showed that this collection contains proteins spanning major 411 

eukaryotic lineages, including supergroups with very few available genomes. Over 33% of 412 

these proteins have less than 60% sequence identity to the representative reference proteins 413 

that were used to predict them, indicating their diversity with respect to the reference database. 414 

Unlike the MERC and MMETSP proteins, MetaEuk proteins are predicted in the context of 415 

genomic contigs. This allows us to learn of the number of putative exons that code for them 416 

as well as to examine them together with other proteins on the same contig. The latter is useful 417 
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for conferring taxonomic annotations to unlabeled predictions on the same contig as well as 418 

for detecting complex functional modules, by searching for co-occurrences of the module’s 419 

proteins on the same contig.  420 

As was demonstrated by the challenge of assigning taxonomy to highly diverged eukaryotic 421 

proteins, the paucity of eukaryotic sequences in reference databases is currently a major 422 

limitation in the study of eukaryotes. Thus, we expect the resources produced in this study 423 

and further analyses of eukaryotic metagenomic data using MetaEuk to produce a more 424 

comprehensive description of the tree of life [16,52–54]. 425 

 426 

Conclusions 427 

MetaEuk is a sensitive reference-based algorithm for large-scale discovery of protein-coding 428 

genes in eukaryotic metagenomic data. Applying MetaEuk to large metagenomic datasets is 429 

expected to significantly enrich our databases with highly diverged eukaryotic protein-coding 430 

genes. By adding sequences from under-sampled eukaryotic lineages, we can improve 431 

sequence homology searches, protein profile computation and thereby homology-based 432 

function annotation, template-based and even de-novo protein structure prediction [55,56]. 433 

These, in turn will allow for further exploration of eukaryotic activity in various environments 434 

[57].  435 
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Methods 436 

MetaEuk algorithm 437 

Code and resources availability 438 

The MetaEuk source code, compilation instructions and a brief user guide are available from 439 

https://github.com/soedinglab/metaeuk under the GNU General Public License v3.0. The 440 

resources produced during this study are available from 441 

http://wwwuser.gwdg.de/~compbiol/metaeuk/. 442 

 443 

Putative exons compatibility 444 

In the first two stages of the MetaEuk algorithm all possibly coding protein fragments are 445 

translated from the input contigs. We scan each contig in six frames and extract the fragments 446 

between stop codons. These fragments are queried against the reference target database 447 

using MMseqs2. A set of fragments from the same contig and strand that have local matches 448 

to the same specific target 𝑇 define a set of putative exons. We say two putative exons 𝑃𝑖 and 449 

𝑃𝑗 from the same set are compatible with each other if they can be joined together to a multi-450 

exon protein.  451 

Each 𝑃𝑖 is associated with four coordinates: the amino-acid position on 𝑇 from which the match 452 

to 𝑃𝑖 starts (𝑃𝑖
𝑆𝑇) and ends (𝑃𝑖

𝐸𝑇); the nucleotide position on the contig from which the 453 

translation of 𝑃𝑖 starts (𝑃𝑖
𝑆𝐶) and ends (𝑃𝑖

𝐸𝐶). We require a match of at least 10 amino acids (a 454 

minimal exon length). We consider putative exons 𝑃𝑖 and 𝑃𝑗 with 𝑃𝑖
𝑆𝑇 < 𝑃𝑗

𝑆𝑇 as compatible on 455 

the plus strand if: 456 

(1) their order on the contig is the same as on the target: 𝑃𝑖
𝑆𝐶 < 𝑃𝑗

𝑆𝐶  ; 457 

(2) the distance between them on the contig is at least the length of a minimal intron but 458 

not more than the length of a maximal intron: 15 ≤ (𝑃𝑗
𝑆𝐶 − 𝑃𝑖

𝐸𝐶) ≤ 10,000; 459 

(3) their matches to 𝑇 should not overlap. In practice we allow for a short overlap to 460 

account for alignment errors: (𝑃𝑗
𝑆𝑇 − 𝑃𝑖

𝐸𝑇) ≥ −10. 461 

In case 𝑃𝑖 and 𝑃𝑗 are on the negative strand, we modify conditions (1) and (2) accordingly: 462 

(1) 𝑃𝑖
𝑆𝐶 > 𝑃𝑗

𝑆𝐶; 463 

(2) 15 ≤ (𝑃𝑖
𝐸𝐶 − 𝑃𝑗

𝑆𝐶) ≤ 10,000. 464 
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Since the adjustment of conditions to the minus strand is straightforward, in the interest of 465 

brevity we focus solely on the plus strand in the following text.  466 

We say a set of 𝑘 > 1 putative exons is compatible if, when ordered by their 𝑃𝑖
𝑆𝑇 values, each 467 

pair of consecutive putative exons is compatible. (A set of a single exon is always compatible). 468 

 469 

Bit-score and E-value computation 470 

A set of 𝑘 compatible putative exons defines a pairwise protein alignment to the target 𝑇. This 471 

alignment is the concatenation of the ordered local alignments of all putative exons to 𝑇. 472 

Between each consecutive putative pair of exons 𝑃𝑖 and 𝑃𝑖+1 there might be unmatched amino 473 

acids in 𝑇 or there might be a short overlap of their matches to 𝑇. We denote the number of 474 

unmatched amino acids between 𝑃𝑖 and 𝑃𝑖+1 as 𝑙𝑖, which can take a negative value in case of 475 

an overlap. MetaEuk computes the bit-score of the concatenated pairwise alignment 𝑆(𝑃𝑠𝑒𝑡 , 𝑇) 476 

by summing the individual Karlin-Altschul [58] bit-scores 𝑆(𝑃𝑖, 𝑇) of the putative exons to 𝑇 and 477 

penalizing for unmatched or overlapping amino acids in 𝑇 as follows: 478 

𝑆(𝑃𝑠𝑒𝑡 , 𝑇) = ∑ 𝑆(𝑃𝑖 , 𝑇)

𝑘

𝑖=1

+ ∑ 𝐶(𝑙𝑖)

𝑘−1

𝑖=1

+ 𝑙𝑜𝑔2(𝑘!) 479 

where the penalty function is 𝐶(𝑙𝑖) = −|𝑙𝑖| for 𝑙𝑖 ≠ 1 and 0 if 𝑙𝑖 = 1. The last term rewards the 480 

correct ordering of the 𝑘 exons. 481 

An E-value is the expected number of matches above a given bit-score threshold. Since for 482 

each contig, at most one gene call is reported per strand and target in the reference database, 483 

the E-value takes into account the number of amino acids in the reference database 𝐷 and 484 

the search on two strands: 485 

𝐸 − 𝑉𝑎𝑙𝑢𝑒(𝑃𝑠𝑒𝑡 , 𝑇) = 2 × 𝐷 × 2−𝑆(𝑃𝑠𝑒𝑡,𝑇) 486 

 487 

Dynamic programming 488 

Given a set of 𝑛 putative exons and their target, MetaEuk finds the set of compatible exons 489 

with the highest combined bit-score. First, all putative exons are sorted by their start on the 490 

contig, such that 𝑃1
𝑆𝐶 ≤ ⋯ ≤ 𝑃𝑛

𝑆𝐶. The dynamic programming computation iteratively computes 491 

vectors 𝑆, 𝑘, and 𝑏 from their first entry 1 to their 𝑛𝑡ℎ. The entry 𝑆𝑖 holds the score of the best 492 

exon alignment ending in exon 𝑖 and 𝑘𝑖 holds the number of exons in that set. Once the 493 
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maximum score is found, the exon alignment is back traced using 𝑏, in which entry 𝑏𝑖 holds 494 

the index of the aligned exon preceding exon 𝑖 (0 if 𝑖 is the first aligned exon). Using the 495 

following values: 496 

𝑆0 = 0; 𝑘0 = 0; 𝑏0 = 0 497 

all putative exons 𝑃𝑗 are examined according to their order and the score vector is updated: 498 

𝑆𝑗 = max
𝑖

(𝑆𝑖 + 𝑆(𝑃𝑗 , 𝑇) + 𝐶(𝑙𝑗
𝑖) + log2(𝑘𝑖 + 1)|0 ≤ 𝑖 < 𝑗, 𝑖 compatible with 𝑗) 499 

𝑘𝑗 and 𝑏𝑗 are updated accordingly. The terms log2(𝑘𝑖 + 1) add up to the score contribution 500 

∑ log2(𝑖)𝑘
𝑖=1 =  𝑙𝑜𝑔2(𝑘!) and the transition 0 to 𝑗 is defined as compatible with 𝐶(𝑙𝑗

0) = 0 for all 501 

𝑗. The optimal exon set is then recovered by tracing back from the exon with the maximal 502 

score. This dynamic programming procedure has time complexity of 𝑂(𝑛2). 503 

 504 

Clustering gene calls to reduce redundancy 505 

MetaEuk assigns a unique identifier to each extracted putative protein fragment (stage 1 in 506 

Figure 1). A MetaEuk exon refers to the part of a fragment that matched some target T (stage 507 

2 in Figure 1, tinted background) and has the same identifier as the fragment. Two calls that 508 

have the same exon identifier in their exon set are said to share an exon. MetaEuk reduces 509 

redundancy by clustering calls that share an exon (stage 4 in Figure 1) and selecting a 510 

representative call as the gene prediction of each cluster. To that end, all 𝑁 MetaEuk calls 511 

from the same contig and strand combination are ordered according to the contig start position 512 

of their first exon. Since this order can include equalities, they are sub-ordered by decreasing 513 

number of exons. The first cluster is defined by the first call, which serves as its tentative 514 

representative. Let 𝑚 be the last contig position of the last exon of this representative. Each 515 

of the following calls is examined so long as its start position is smaller than 𝑚 (i.e., it overlaps 516 

the representative on the contig). If that call shares an exon with the representative, it is 517 

assigned to its cluster. In the next iteration, the first unassigned call serves as representative 518 

for a new cluster and the following calls are examined in a similar manner, adding unassigned 519 

calls to the cluster in case they share an exon with the representative. The clustering ends 520 

with the assignment of all calls. At this stage, the final prediction is the call with the highest 521 

score in each cluster. This greedy approach has time complexity of 𝑂(𝑁 × 𝑙𝑜𝑔(𝑁) +  𝑁 × 𝐴), 522 

where 𝐴 is the average number of calls that overlap each representative on the contig. Since 523 

in practice, 𝐴 ≪ 𝑁, the expected time complexity is 𝑂(𝑁 × 𝑙𝑜𝑔(𝑁)). 524 
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 525 

Resolving same-strand overlapping predictions 526 

After the redundancy reduction step, MetaEuk sorts all predictions on the same contig and 527 

strand according to their E-value. It examines the sorted list and retains predictions only if they 528 

do not overlap any preceding predictions on the list. 529 

 530 

Benchmark datasets 531 

The UniRef90 database was obtained in March 2018. The annotated information of 532 

Schizosaccharomyces pombe (GCA_000002945.2), Acanthamoeba castellanii str. Neff 533 

(GCA_000313135.1), Babesia bigemina (GCA_000981445.1), Phytomonas sp. isolate EM1 534 

(GCA_000582765.1), Nocleomorph of Lotharella oceanica (GCA_000698435.2), 535 

Phaeodactylum tricornutum (GCA_000150955.2), and Aspergillus nidulans 536 

(GCA_000149205.2) were downloaded from the NCBI genome assembly database (March – 537 

September 2018). This information included the genomic scaffolds, annotated protein 538 

sequences, and GFF3 files containing information about the locations of annotated proteins 539 

and other genomic elements. MetaEuk (Github commit 540 

47141068c171fcdd3d93411ac50958da0f2c4025, MMseqs2 submodule version 541 

ebb16f3631d320680a306c03aa7412c572f72ee3) was run with the following parameters: -e 542 

100 (a lenient maximal E-value of a putative exon against a target protein), --metaeuk-eval 543 

0.0001 (a stricter maximal cutoff for the MetaEuk E-value after joining exons into a gene call), 544 

--metaeuk-tcov 0.6 (a minimal cutoff for the ratio between the MetaEuk protein and the target) 545 

and --min-length 20, requiring putative exon fragments of at least 20 codons and default 546 

MMseqs2 search parameters. 547 

 548 

Mapping benchmark predictions to annotated proteins 549 

For each annotated protein, we listed the contig start and end coordinates of the coding part 550 

(CDS) of each of its exons. The lowest and highest of these coordinates were considered as 551 

the boundaries of the annotated protein, and the stretch between them as its “global” contig 552 

length. Similarly, we listed these coordinates and computed the boundaries and global contig 553 

length for each MetaEuk prediction. A MetaEuk prediction was globally mapped to an 554 

annotated protein if the overlap computed based on their boundaries was at least 80% of the 555 

global contig length of either of them and if, in addition, the alignment of their protein 556 
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sequences mainly consisted of identical amino acids or gaps (i.e., less than 10% mismatches). 557 

These criteria allow mapping MetaEuk predictions to an annotated protein, even if they miss 558 

some of its exons. Next, we computed the exon level mapping for all globally mapped pairs of 559 

MetaEuk predictions and annotated proteins. To that end, we compared their lists of exon 560 

contig coordinates. If an exon predicted by MetaEuk covered at least 80% of the contig length 561 

of an annotated protein’s exon, we considered the annotated exon as “covered” by the 562 

MetaEuk prediction.  563 

 564 

Generating typical metagenomic contig lengths 565 

In order to evaluate MetaEuk’s performance on contigs with a length distribution typical for 566 

assemblies from metagenomic samples, we recorded the lengths of the assembled contigs 567 

used for the analysis described in the “Tara Oceans dataset” section. The 1,351,204 contigs 568 

had a minimal length of 5,002 bps, 1st quartile of 5,661 bps, median of 6,763 bps, 3rd quartile 569 

of 9,020 bps and a maximal length of 1,524,677 bps. We divided each annotated scaffold into 570 

contigs of lengths that were randomly sampled from these recorded lengths. This resulted in 571 

1,392, 5,061, 1,816, 2,095, 80, 3,153 and 3,273 contigs for S. pombe, A. castellanii, 572 

Phytomonas sp. isolate EM1, nucleomorph of L. oceanica, P. tricornutum, and A. nidulans, 573 

respectively. MetaEuk was run on these contigs in the same way as on the original scaffolds. 574 

Since each of the new contigs corresponded to specific locations on the original scaffolds, we 575 

could carry out all benchmark assessments, which relied on mapping between MetaEuk 576 

predictions and annotated proteins. 577 

 578 

Tara Oceans dataset 579 

The 912 metagenomic SRA experiments associated with accession number PRJEB4352 were 580 

downloaded from the SRA (August – September 2018). The reads of each experiment were 581 

trimmed to remove adapters and low quality sequences using trimmomatic-0.38 [59] with 582 

parameters ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 583 

SLIDINGWINDOW:4:15 MINLEN:36 (SE for single-end samples). The resulting reads were 584 

then assembled with MEGAHIT [38] with default parameters. Contigs of at least 5kbp in length 585 

were classified as eukaryotic/non-eukaryotic using EukRep [27], which is trained to be highly 586 

sensitive to detecting eukaryotic contigs. MetaEuk was run on the contigs classified as 587 

eukaryotic with parameters: -e 100, --metaeuk-eval 0.0001, --min-ungapped-score 35, --min-588 
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exon-aa 20, --metaeuk-tcov 0.6, --min-length 40, --slice-search (profile mode) and default 589 

MMseqs2 search parameters. 590 

 591 

Taxonomic assignment to predictions and contigs 592 

We used MMseqs2 to query the MetaEuk marine proteins collection against two taxonomically 593 

annotated datasets: Uniclust90 and the MMETSP protein dataset. Taxonomic labels 594 

associated with each of the MMETSP identifiers were downloaded from the NCBI website 595 

(BioProject PRJNA231566). We retained the hit with the highest bit-score value for each 596 

prediction if it had an E-value smaller than 1E-05. In addition, we examined the sequence 597 

identity between the MetaEuk prediction and the target in order to determine the rank of the 598 

taxonomic assignment. Similarly to [20], we used the following sequence identity cutoffs: 599 

>95% (species), >80% (genus), >65% (family), >50% (order), >40% (class), >30% (phylum), 600 

>20% (kingdom). Lower values were assigned at the domain level. The predictions on each 601 

contig were examined and the best-scoring one was used to confer taxonomic annotation to 602 

that contig. The assignment was visualized using Krona [60]. 603 

 604 

Phylogenetic tree reconstruction 605 

We constructed the tree using the large subunit of RNA polymerases as a universal marker. 606 

This subunit contains five RNA_pol_Rpb domains (Pfam IDs: pf04997, pf00623, pf04983, 607 

pf05000, pf04998). As detailed below, protein sequences that contained all five domains in 608 

the right order were obtained in January-November 2019 from six sources to construct the 609 

multiple sequence alignment and tree. The sources were: (1) 75 sequences of the OrthoMCL 610 

[61] group OG5_127924. The four-letter taxonomic codes of these sequences were converted 611 

to NCBI scientific names, based on information from the OrthoMCL website 612 

(http://orthomcl.org/orthomcl/getDataSummary.do). (2) 36 reviewed eukaryotic sequences 613 

were downloaded from UniProt [36]. These were used to distinguish between eukaryotic RNA 614 

Polymerase I (8 sequences), eukaryotic RNA Polymerase II (16 sequences) and eukaryotic 615 

RNA Polymerase III (12 sequences). We then ran an MMseqs2 profile search against the 616 

Pfam database (with parameters: -k 5, -s 7) with several query sets and retained results in 617 

which all five domains were matched in the right order with a maximal E-value of 0.0001. This 618 

allowed us to add the following sources: (3) 674 MMETSP proteins. (4) 100 archaeal proteins; 619 

(5) 100 bacterial proteins. For datasets (4) and (5), we first downloaded candidate proteins 620 

from the UniProt database by searching for the five domains and restricting taxonomy:archaea 621 

(bacteria). We then ran the previously described search procedure and randomly sampled 622 
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exactly 100 proteins from each group that matched the criterion. (6) 1,076 MetaEuk 623 

predictions. The joint set of 2,061 sequences was aligned using MAFFT v7.407 [44] and a 624 

phylogenetic tree was reconstructed by running RAxML v8 [45]. Tree visualization was 625 

performed in iTOL [62].  626 
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