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ABSTRACT 26 

Fumarate Hydratase (FH) is an enzyme of the citric acid (TCA) cycle that is 27 

responsible for reversibly catalysing the conversion between fumarate and malate. 28 

FH loss and subsequent buildup of the oncometabolite fumarate causes hereditary 29 

leiomyomatosis and renal cell carcinoma.  30 

We sought to explore the mutational landscape of FH in silico, to predict the 31 

functional effects of many detected mutations, and categorise detected but un-32 

characterised mutations in human populations. Using mutational energy predicting 33 

tools such as Rosetta and FoldX we can accurately predict mutations and mutational 34 

hotspots with high disruptive capability. Furthermore, through performing molecular 35 

dynamics simulations we show that hinge regions of the protein can be stabilized or 36 

destabilized by mutations, with new mechanistic implications of the consequences 37 

on the binding affinity of the enzyme for its substrates. 38 

We can additionally categorise a large majority of mutations and potential mutations 39 

into functional groups. This allows us to predict which detected mutations in the 40 

human population are likely to be loss-of-function, and therefore predispose patients 41 

to papillary renal carcinoma through considering only mutations to the protein 42 

binding site, hinges, and those that are buried deep within the protein. We 43 

additionally link mutation data to publicly available metabolomics data, and show that 44 

we can accurately predict which mutations in cancer cell lines are functionally 45 

relevant. 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2019. ; https://doi.org/10.1101/852392doi: bioRxiv preprint 

https://doi.org/10.1101/852392
http://creativecommons.org/licenses/by/4.0/


 

 

3 

 

INTRODUCTION 55 

Fumarate hydratase (FH) is a member of the tricarboxylic acid (TCA) cycle occurring 56 

in the mitochondria, and enzymatically metabolises fumarate within the cytosol. FH 57 

activity in the cell is responsible for the reversible conversion of the metabolite 58 

fumarate into malate, and the knockout or mutational inactivation of FH in kidneys is 59 

linked to an oncogenically-associated buildup of fumarate1,2. As a result the enzyme 60 

FH has been described as a tumor suppressor, and fumarate as part of a novel 61 

classification of molecules named “oncometabolites”. Precisely how the buildup of 62 

fumarate can be oncogenic is unknown, but recent work points towards suppression 63 

of DNA repair responses, EMT, and promotion of mitotic entry upon fumarate 64 

buildup3–5. 65 

Understanding the effects of mutations on the activity and assembly of FH is of 66 

importance for the understanding and stratification of germline mutations in FH, 67 

which can predispose patients with a single mutated or deleted allele to hereditary 68 

leiomyomatosis and renal cell cancer (HLRCC) upon mutational inactivation of their 69 

remaining wild-type copy6,7. Previous work has identified mutants linked with 70 

inherited and de-novo FH-related conditions, including cancer8 – most notably, the 71 

FH mutation database represents a comprehensive list of mutations and their 72 

effects, if known, on FH activity9.  73 

In recent years numerous methods have been developed for estimating the effects of 74 

single point mutations (SNPs) on the stability of a protein structure in silico. Notable 75 

methods include FoldX10,11, which uses an empirical force field to predict the 76 

alterations in a protein induced by mutation, and methods included as part of the 77 

Rosetta suite12,13, which uses Monte-Carlo based dynamics to predict energetic 78 

effects of mutations. Additionally, molecular dynamics can be used to more 79 

comprehensively investigate mutant protein structure, though at significantly higher 80 

computational cost. With the advent of high-throughput methods such as CRISPR 81 

screening, and larger projects being undertaken to screen populations for mutations 82 

and disease, coupled with large-scale disease-focussed data generating projects 83 

such as The Cancer Genome Atlas (TCGA)14 and the International Cancer Genome 84 

Consortium (ICGC)15, the number and diversity of mutations being implicated in 85 

disease is rapidly expanding. Whilst methods to attempt to sift functionally relevant 86 
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mutations from synonymous to detect highly mutated genes exist in the form of 87 

statistical tests such as DN/DS16, mutsig17, and oncodrive18, including some methods 88 

that take into account structure of the protein such as Rhapsody19, there is scope for 89 

detailed, structure-informed, chemically aware methods to classify mutations, 90 

including those not yet observed, into Loss-of-Function (LOF) and benign categories. 91 

Here we computationally screen and classify every potential mutation in the available 92 

fumarate hydratase structure to study the landscape of potential mutations. We 93 

consider the structural and biological implications of each mutation, and thus can 94 

predict mechanistic details of every potential mutant. We confirm that our method 95 

predicts known functionally relevant mutations, and predict from existing databases 96 

of mutations which have an unknown effect, which of them will be damaging to the 97 

activity of FH. Overall we predict that 66% of all mutations to FH influence activity or 98 

assembly. We further validate our predictions through studying the Cancer Cell Line 99 

Encyclopaedia (CCLE)20,21 and show that previously unstudied mutations that we 100 

predict to be damaging to the function of FH result in altered metabolite levels 101 

expected from disruption to the activity of FH. 102 

 103 
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RESULTS 116 

Evidence of mutational clustering in FH 117 

Human FH is formed as a homotetramer of subunits generated from the FH gene. 118 

Each subunit contains 3 domains, Domain 1, Domain 2, and Domain 3 (D1, D2, and 119 

D3 respectively) (Figure 1 A). D1 is formed from residues in the range 49-188, D2 is 120 

formed from residues in the range 189-439, and D3 from residues in the range 440-121 

510. The full functional protein is an assembly of 4 subunits and contains 4 identical 122 

binding pockets made of interactions between 3 subunits (Figure 1 B). There are 123 

two proposed regions of importance for catalysis of the fumarate/malate conversion; 124 

Site A, the known active site (hereafter referred to as the binding site), and Site B, a 125 

region of proposed but unknown functional importance22,23. For this study we chose 126 

to only include the known catalytic site, Site A, defined as residues HIS176, ASN182, 127 

SER186, SER187, ASN188, THR234, HIS235, LYS371, VAL372, ASN373, and 128 

GLU378 (Figure 1 C). We do not consider Site B due to the unknown and conflicting 129 

evidence surrounding its importance. For this study we chose to focus on the crystal 130 

structure 5upp24, which covers residues 49-510 of the 510 residue protein 131 

assembled into a homotetramer.  132 

To study mutations known or suspected to have roles in human disease, we 133 

investigated the Fumarate Hydratase Mutation Database9, which contains 378 134 

mutations, including 113 that are distinct missense, at the time of this study. The 135 

Fumarate Hydratase Mutation Database attempts to pool all observed mutations in 136 

FH, including those that are benign, and a large number of mutations have no clinical 137 

or functional annotation. Mutations that are not known to be benign (i.e those either 138 

labelled as loss-of-function, or those which are uncharacterised) are shown in Figure 139 

1 D. In particular, mutations at amino acids 107, 117, 230, and 233 are reported at a 140 

higher frequency than other mutations and may indicate regions of mutational 141 

vulnerability in the structure. 142 

We applied the NMC clustering method to look for clustering of mutations across the 143 

1D sequence of the protein25. We chose to include the top 5 predicted clusters, 144 

ranked by significance, and with a size less than 50 residues long. We find the most 145 

significant clusters are all within the region of the more prevalent mutations in 146 
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residues 230 and 233, indicating that this region is statistically highly over mutated, 147 

and potentially a mutationally vulnerable site. 148 

149 

Figure 1: Structure and current mutations in Fumarate Hydratase. A) Structure of a 150 

single subunit of FH showing the D1, D2, and D3 regions. B) Structure of an 151 
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assembled homotetramer of FH. Binding sites are highlighted and made up on an 152 

interface between 3 subunits. C) Close up of the binding site of FH showing the 153 

residues involved in catalytic activity. D) Mutational spectrum of non-benign SNPs in 154 

FH. D1, D2, and D3 regions are highlighted in blue, red, and yellow respectively. 155 

Stars indicate residues involved in catalytic activity that make up the binding site of 156 

FH. Purple highlight and lines represent the top 5 mutational clusters as calculated 157 

by the NMC algorithm.  158 

 159 

Classification of mutations by proximity to the binding site and protein hinges 160 

Residues of the catalytic site in FH have been previously identified as essential for 161 

the conversion of fumarate to malate. We chose to define binding site-associated 162 

residues as those with alpha-carbons (CA) within 6 Å of the CA of any binding site 163 

residue. Plotting the resultant distances for each residue in the FH structure shows 164 

that specific clusters of residues in the vicinity of the binding site are also significantly 165 

mutated (Figure 2 A). In particular, there is a high frequency of mutations between 166 

residues 172-189, 232-237, 277-278, and 369-381 that correspond to mutations 167 

likely to alter the binding site via proximity by our definition. Additionally, generating 168 

the Rhapsody scores19 for each residue results in regions of predicted pathogenicity 169 

that also align with the binding site regions – reinforcing that mutations neighbouring 170 

binding sites are likely to be pathogenic purely via proximity and disruption of the 171 

precise conformation of sidechains necessary for catalysis. Whilst Rhapsody 172 

represents a potentially useful single metric for assessing mutational disruption, 173 

incorporates evidence from sequence and structure alone, without biological context. 174 

Due to the three-domain structure of FH we surmised that regions involved in the 175 

“hinging” of these domains may influence the binding site assembly, due to the 176 

proximity and reliance of the quaternary structure of multiple domains to make up the 177 

binding pocket. To calculate predicted hinges within the structure we used Gaussian 178 

Network Modelling (GNM) within prody26,27 to calculate the major normal modes for 179 

an individual subunit of FH. We find that the second mode best represents the 180 

hinging mode expected around the three domains of the protein. Calculating the 181 

hinge residues from the second normal mode results in residues 196, 198, 232, 242, 182 

270, 317, 401, 411, and 448 being the most likely “hinge points” in the structure 183 
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(Figure 2 B), these residues are shown on a single subunit of FH, coloured by 184 

eigenvector direction in Figure 2 C. In order to assess whether mutation of these 185 

domains was sufficient to disrupt the quaternary structure of the protein and thus the 186 

binding site we chose to simulate a known mutation within a hinge region that is 187 

found at a high frequency in the FH mutation database using molecular dynamics 188 

simulations. We chose the simulate the R233H mutant, and the wild type (WT) 189 

tetrameric assemblies for 200ns each. Measuring the angles between CA atoms of 190 

two residues in the centre of the D2 and D3 regions with respect to the hinge reveals 191 

that the R233H mutant reduces the angle of the domains by an average of 8 192 

degrees, and so leads to a partial occlusion of the catalytic site of FH (Figure 2 D). 193 

From this evidence we conclude that disruption of these hinges are likely to alter the 194 

binding site and assembly of FH – and are likely pathogenic. We chose to treat all 195 

mutations with CA atoms within 6 Å of any hinge residue as potentially LOF through 196 

disruption of the protein quaternary structure.  197 

Overall, we find that mutations near to either the binding site, or a hinge region of the 198 

protein are likely to disrupt or alter the protein function. We find that, from the FH 199 

mutation database, a significant proportion of mutations can be classed as either 200 

binding site-associated, or hinge-associated, including a number of known loss-of-201 

function (LOF) variants. Whilst 42 residues in the 461 amino acid protein structure 202 

(9%) are classified as being “binding site-associated”, we find that 11 of the 30 (36%) 203 

known LOF mutations are within these residues, showing a clear bias towards 204 

binding site-associated mutations. Similarly, 55 of the 461 (12%) amino acids in the 205 

protein structure are classified as “hinge-associated”, and we find 7 of the 30 (23%) 206 

within the FH mutation database fulfil this classification, showing a lesser, but still 207 

large occurrence bias. Distance calculations for all potential mutations are included 208 

in Supplementary Table 1. 209 

 210 

 211 
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 214 

Figure 2: Mutations can be categorised on proximity to functional regions of FH. A) 215 

Alpha carbon (CA) distance from a binding site residue. Shown is: Top: average 216 
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Rhapsody score for each residue, Middle: distance of each residue from a binding 217 

site residue by CA distance, Bottom: mutational frequency for each residue. Orange 218 

highlights show some regions have high Rhapsody scores, low binding site distance, 219 

and high mutational frequency. B) Second normal mode eigenvectors per residue for 220 

a single subunit of FH. Residues with an eigenvector above the line are moving 221 

generally opposed to those with an eigenvector below the line. Predicted hinge 222 

residues are shown in grey. C) Single subunit of FH coloured according to 223 

eigenvector direction (positive as organge and negative as purple). Hinge residues 224 

are highlighted as grey. D) Molecular Dynamics simulations of hinge mutations 225 

shows altered hinge flexibility. Left: Schematic of the angle measured in each 226 

simulation, Right: Angle of WT (red), and R233H mutant FH (blue) over a 200 ns 227 

equilibrium molecular dynamics simulation.  228 

 229 

High-Throughput mutational stability screen of FH in silico 230 

To study how mutations that are not near the binding site or hinge regions may have 231 

effects on the structure of the protein, we sought to generate predicted mutational 232 

energy changes (ΔΔG) for every potential amino acid substitution in the FH 233 

structure. We chose to use two conceptually different methods and use an average 234 

between the two methods to study each potential mutant. We chose to utilize the 235 

FoldX method10,11, and the Rosetta cartesian_ddg method12,13, (hereafter described 236 

as the Rosetta method) to perform mutational energy calculations. Both methods 237 

have been shown to generate accurate predictions on the CAGI5 blind challenge 238 

datasets, but overlaps between the two methods on the same dataset indicate that 239 

they generally predict different mutations correctly, the combined overlap between 240 

the two being a good indicator of mutational ΔΔG13. 241 

To perform mutant calculations, the pdb structure 5upp was first relaxed using the 242 

FoldX RelaxPDB method, before each mutation and its resultant ΔΔG was 243 

calculated. We additionally calculate the Relative Solvent Accessible Surface Area 244 

(RSA) for each wild-type (WT) residue. Mutations on the surface of the protein are 245 

unlikely to dramatically alter the folding of the protein, so we chose to only consider a 246 

mutation potentially destabilizing if it is buried, defined as having an RSA <= 0.2. 247 
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 248 

We find a good agreement between the FoldX and Rosetta methods, with an r of 249 

0.67 (p <0.0001) for all mutational energies (Figure 3 A). Notably however, both 250 

methods appear to agree on predictions of mutations with extremely high energy, but 251 

there is a significant portion of the distribution that shows a reasonably poor 252 

correlation, particularly mutations that have a predicted ΔΔG between 1 and -1 253 

kcal/mol. We chose to study the average predicted energy of each mutation by 254 

taking the average ΔΔG from the two methods. Ranking the average ΔΔG over all 255 

~9000 mutations results in a distribution of all mutational energies across the 256 

mutational landscape (Figure 3 B). We find that mutations known to be LOF, and 257 

that are not within 6 Å of either the binding site or hinge regions tend to cluster near 258 

the upper end of the distribution, indicating that they affect the stability of the protein. 259 

Mutations that are known benign tend to fall near the lower end of the distribution. 260 

We chose a cutoff of 2.5 kcal/mol for classifying mutations as potentially 261 

destabilizing, and any mutation over this value for average energy, and with a RSA < 262 

0.2 was classified as destabilizing. Across all potential mutations we find that ~45% 263 

(3968 out of 8778) meet this criterion (Figure 3 C). This fits roughly with historical 264 

data of mutational stability in T4 lysozyme, which found that 45% of mutational sites 265 

lead to structural inactivation of enzymatic function28. 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 
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 276 

Figure 3: Prediction of Destabilizing Mutations. A) Comparison of ΔΔG calculations 277 

from FoldX and Rosetta. Correlation r is spearmans rank. B) Position of known loss-278 

of-function (red) and benign mutations (orange) on the ΔΔG spectrum. Mutations are 279 

ordered in acsending mutational ΔΔG. Black line represents 2.5 Kcal/mol cutoff. C) 280 

Overlap between residues with a high predicted mutational energy (Defined as those 281 

with average ΔΔG > 2.5 Kcal/mol) and buried residues (RSA < 0.2). In total 3968 282 

mutations are classified as destabilizing by taking the overlap between these two 283 

criterion. 284 

 285 

 286 

 287 
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Plotting mutational frequency for both methods, and their average for each residue 288 

(Figure 4 A) reveals that the most destabilizing mutations predicted by either 289 

method are in regions with a large number of buried amino acids, as expected. 290 

When plotting these mutations on the structure of the protein (Figure 4 B), we find 291 

the most significantly destabilizing mutations are those packed within the centre of 292 

D1, and on the interface between D1 and D2. This location suggests mutational 293 

disruption will alter the position of the D1/D2 interface, and thus will affect the binding 294 

site conformation, whereas mutations within the core D2 region are likely to influence 295 

the stability of the fully assembled tetramer.  296 

 297 

Figure 4: Predicted ΔΔG for every mutation in Fumarate Hydratase. A) Average 298 

mutational energy per residue in the FH structure. Top: Relative solvent accessible 299 

surface area (RSA) for every residue. Blue highlight indicates RSA < 0.2, classified 300 
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as buried. Middle: average ΔΔG for each residue (Grey). Red and Orange lines 301 

represent average Rosetta and FoldX calculations respectively. Bottom: Mutational 302 

frequency from the FH mutation database for each residue in FH. B) Mutational ΔΔG 303 

applied to the structure 5upp of FH. Red indicates high average ΔΔG, and so 304 

represents areas where mutations are likely to disrupt the strucutre. Blue represents 305 

regions of generally stabilizing mutations.  306 

 307 

Existing mutations are accurately categorised based on known phenotypic 308 

effects 309 

Overall, we define a scheme for classifying mutations into different categories of 310 

potentially disrupting, predicted LOF substitutions (Figure 5 A). The initial structure 311 

is relaxed using FoldX, before the binding site and hinge regions are calculated and 312 

classified, additionally mutations that are potentially destabilizing are defined based 313 

on average energy from the Rosetta and FoldX mutation methods, plus screened for 314 

buried mutations through calculating the RSA. This results in a categorisation for 315 

every mutation, where each is classified as predicted silent, binding site, hinge site, 316 

or destabilizing (including combinations of disruptive mutation types) 317 

(Supplementary Table 1). Overall we classify 5811 out of 8778 (66%) mutations as 318 

potentially functionally disruptive, similar to a study of mutational effects on TP53, 319 

which found that roughly 50-60% of all possible mutations were functionally 320 

disruptive29. 321 

 322 

To study the accuracy of our classification we chose to interrogate all mutations 323 

within the FH mutation database. We classed all mutations within the database as 324 

either loss of function (LOF), benign, or of unknown functional effect. In total 34 325 

mutations had a known (or implied) functional effect, whilst 73 were classified as 326 

unknown (Supplementary Table 2). We sought to validate our functional 327 

classifications (binding site associated, hinge associated, or destabilizing) against 328 

the mutations that are known to be LOF (Figure 5 B). We find that 24 out of 30 329 

(80%) mutations are correctly classified as LOF, and 3 out of 4 (75%) are correctly 330 

classed as benign. Of the mutations incorrectly classified as benign when they are 331 
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known to be LOF, two mutations involve cysteine (C434Y, Y465C), which is known 332 

to be modelled poorly by Rosetta cartesian_ddg, and in fact, is classified as a 333 

stabilizing mutations by Rosetta, with a predicted ΔΔG of -5.2 kcal/mol, though FoldX 334 

classifies it as destabilizing. The mutation incorrectly classified as deleterious when it 335 

is listed as benign within the FH mutation database is R268G. We predict the R268G 336 

mutation to be both destabilizing (ΔΔG > 2.5 kcal/mol, RSA < 0.2) and hinge-337 

associated. Whilst the mutation is listed as benign, no experimental information is 338 

cited, and PolyPhen-230, and Rhapsody also classify this particular mutation as 339 

damaging, indicating that the benign classification for this mutation may be 340 

questionable. To further explore this mutation we ran a molecular dynamics 341 

simulation of the R268G mutant. Simulations predict that mutant R268G reduces the 342 

hinge angle of the D1/D2 domains by ~5 degrees (Supplementary Figure 1), and 343 

supports previous evidence from the R233H mutant, that hinges within the protein 344 

can effect binding site assembly. Of the 73 unknown mutations, we predict that 28 345 

are functionally benign, and 45 are potential LOF mutations.  346 

 347 

Figure 5: Prediction of known Loss-of-Function (LOF) mutations. Venn diagram 348 

showing overlap between Hinge-associated (orange), destabilizing (red) and Binding 349 

site-associated (blue) mutations. 30 known LOF mutations are included (purple) 24 350 
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mutations are correctly categorized as LOF, whilst 6 are incorrectly categorized as 351 

benign mutations. B) Schema for categorization of mutations in FH. The structure is 352 

initially relaxed using FoldX RelaxPDB, residues within 6 Å of the binding site are 353 

calculated resulting in a list of 798 binding site associated mutations (orange). FoldX 354 

and Rosetta are used to calculate the ΔΔG for every mutation and this is subset by 355 

the relative solvent acessible surface area resulting in 3968 potentially destabilizing 356 

mutations (red). Elastic network modelling is performed to generate hinge regions of 357 

the protein, and residues within 6 Å of hinges are calculated, resulting in 1045 hinge 358 

associated mutations (blue). 2967 mutations are predicted to be silent. 359 

 360 

Mutations with unknown properties can be accurately predicted to be 361 

functional or neutral 362 

To study all potential mutations in FH we chose to plot all mutations using umap31. 363 

We ran umap on the 4 major axis involved in the classification in this study for every 364 

mutations – minimum distance to a binding site residue, minimum distance to a 365 

hinge residue, average ΔΔG of mutation, and RSA for each residue (Figure 6 A). 366 

We find that distinct regions of the plot cluster into functionally different mutations 367 

when coloured by classification. There is a region specifically for hinge-associated 368 

mutations, binding site-associated, and unknown (not predicted damaging) 369 

mutations. In particular, the region of “unknown” (not classified as damaging) 370 

mutations overlaps significantly with a number of predicted destabilizing mutations, 371 

indicating that discrimination between these mutations is difficult, and perhaps not 372 

accurate with currently available data. Also shown are the known benign and loss of 373 

function mutations. We find that most of the benign mutations, aside from R268G are 374 

found clearly within the regions of predicted benign mutations. R268G clusters with 375 

the hinge mutation region as expected from our previous classification. For the 376 

known LOF mutations, we find they mostly cluster within the well defined regions for 377 

binding site, hinge, and destabilizing mutations. There are some mutations, 378 

particularly those which were misclassified, that fall within ambiguous regions of 379 

state space in the mutational landscape, and so are hard to classify using our 380 

defined criterion. Overall, we find that mutations broadly separate as expected using 381 

umap, and that unclassified mutations can be plotted on the resultant distribution – 382 
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confidence of the classification of any individual mutation can be inferred from where 383 

it fits within the landscape.  384 

 385 

To test the predictive power of our classification we used the Cancer Cell Line 386 

Encyclopedia to look for changes in metabolite levels associated with mutations in 387 

FH21,32. We find 42 mutations (35 unique) in FH within 34 individual cell lines 388 

(Supplementary Table 3). Selecting only for missense mutations yielded 25 389 

mutations (20 unique) within 23 unique cell lines. We classified the mutations 390 

according to our criterion as either predicted LOF, or predicted benign. We find that 391 

by analysis of metabolomics data included in the CCLE database, mutations that we 392 

predict to be LOF have a higher average level of fumarate/mateate/alpha-393 

ketoisovalerate detected in media than cells with predicted benign mutations (p = 394 

0.035) – indicating that these cell lines may have an accumulation of fumarate as a 395 

result of inactive levels of FH (Figure 6 B,C).  396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 
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 410 

Figure 6: Mutational Landscape of Fumarate Hydratase. A) Umap for all mutations 411 

in FH. Mutations are coloured by classification. Hinge-associated (orange), 412 

Destabilizing (red), and Binding site-associated (blue) are shown clustered into 413 

groups. Predicted silent mutations (grey) are also shown. Overlayed are our 414 
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predictions for characterized mutations in the FH mutation database. Mutations that 415 

are known Loss-of-Function (LOF) are circular and coloured according to whether 416 

we predict them to be LOF (black) or silent (white). Known benign mutations are in 417 

triangles, and also coloured according to whether we predict them to be LOF (black) 418 

or silent (white). The questionable known benign mutation R268G is labelled B) 419 

Mutations in the Cancer Cell Line Encyclopedia (CCLE) metabolomics data. All cell 420 

lines are ranked according to their detected levels of Fumarate/Maleate/Alpha-421 

Ketoisovalerate. Coloured are cell lines with mutations in FH that we predict to bo 422 

LOF (orange), or silent (purple). C) Swarmplot for levels of Fumarate/Maleate/Alpha-423 

Ketoisovalerate in mutant FH cell lines. Mutations predicted to be silent are 424 

significantly lower than mutations predicted to be LOF (p value represents 425 

independent T test).  426 
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DISCUSSION 445 

In conclusion, we have shown, using a comprehensive combination of techniques, 446 

that we can categorise accurately the functional effects of any potential missense 447 

mutation in FH. Beyond FH, we present an integrated series of methods that can be 448 

adapted for mutationally screening any protein for functionally relevant mutations in a 449 

reasonably small amount of computational time. Our workflow predicts the functional 450 

effects of all mutations that can be compared to existing methods based on machine-451 

learning principles such as Rhapsody and PolyPhen, at significantly lower time and 452 

effort expenditure than experimental characterization. Whilst some other methods 453 

incorporate some manner of structural analysis in their predictions, ours 454 

demonstrates a new perspective, as it explicitly models every potential mutation in a 455 

structure, allowing it to interface directly with other computational techniques in the 456 

field such as molecular dynamics simulations to further study mutations of interest.  457 

 458 

Biologically we propose three ways in which mutations can potentially disrupt the 459 

catalytic activity of FH. In particular we find that addition of hinge altering mutations 460 

are necessary for classification of many known LoF mutations, indicating that there is 461 

a biological relevance, and hinting at a mechanism for, mutations that change the 462 

flexibility and stiffness of protein hinges in this case. Additionally, we chose to 463 

exclude site B from our analysis of mutation disruption and find that we are able to 464 

classify almost all known mutations without its inclusion. This implies that mutations 465 

in site B may not have functional or disease-related relevance, despite some 466 

evidence that site B can alter catalytic activity of the enzyme33. This is reinforced by 467 

the fact that 27 of the 461 residues within the protein structure are classified as near 468 

site B (6%), and only 3 of 30 residues in the FH mutation database (10%) are near to 469 

site B, showing a poor to negligible enrichment of mutations in site B when 470 

compared to similar calculations for site A. 471 

 472 

Fumarate hydratase represents a good first-use case for high-throughput mutational 473 

screen due to the need to understand mutations in their functional context, but as 474 
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mutational detection techniques, and high-throughput mutational studies increase 475 

the need to be able to classify mutations confidently as benign and LOF is more 476 

important. Here we show that our method accurately classifies known LOF and 477 

benign mutations with a high degree of accuracy, and predict which mutations 478 

discovered in the human population are likely to have functional relevance, and 479 

therefore predispose patients to particular metabolic diseases.  480 

 481 

Whilst the accuracy of our method with the current data is high, there are clear 482 

regions where the analysis is not able to discriminate between mutations on the 483 

borderline between destabilizing and benign, this results from the lack of accuracy in 484 

the mutational ΔΔG calculations, despite using the best available methods at time of 485 

study13. As better methods become available it will be of interest to improve upon 486 

this work to attempt a more accurate classification. 487 

Finally, whilst the work here focusses on a single molecule within the TCA cycle, FH, 488 

structural data has existed for a large number of enzymes within the cycle for some 489 

time34–37, and it would be of great interest to look into mutations across entire 490 

metabolic pathways. With this study laying the groundwork, it will be of future interest 491 

to model all mutations in all enzymes, and attempt to further link these with genomic 492 

and metabolomic data that is already available. 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2019. ; https://doi.org/10.1101/852392doi: bioRxiv preprint 

https://doi.org/10.1101/852392
http://creativecommons.org/licenses/by/4.0/


 

 

22 

 

AUTHOR CONTRIBUTIONS 501 

DS and BAH conceived the study and wrote the manuscript. DS generated all data 502 

and performed all analysis. All authors were responsible for editing of the 503 

manuscript. 504 

 505 

ACKNOWLEDGEMENTS 506 

We thank the Frezza group, in particular Christian Frezza for support and 507 

constructive feedback during the generation of this manuscript.  508 

 509 

COMPETING FINANCIAL INTEREST 510 

The authors declare no competing financial interest. 511 

 512 

DATA AVAILABILITY 513 

All data used in this study, including the code used in generating all figures from raw 514 

data is available publicly at: https://github.com/shorthouse-mrc/Fumarate_Hydratase 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2019. ; https://doi.org/10.1101/852392doi: bioRxiv preprint 

https://doi.org/10.1101/852392
http://creativecommons.org/licenses/by/4.0/


 

 

23 

 

METHODS 523 

FH mutation database 524 

The FH mutation database was downloaded from the Leiden Open Variation 525 

Database9 (https://databases.lovd.nl/shared/variants/FH/unique). Missense 526 

mutations were manually curated into categories (Loss of Function, Benign, and 527 

Unknown) based on their implied clinical classification, and variant remarks, which 528 

contained information regarding FH enzymatic activity. 529 

Mutational Clustering 530 

Mutational clustering was performed with the NMC clustering algorithm, which 531 

attempts to discern the likelihood of a mutation spectrum occurring by random 532 

chance. NMC returns clusters of mutations that are statistically significant. We chose 533 

to run the NMC algorithm using the R library iPAC25, using an alpha cutoff value of 534 

0.05, and the Bonferroni multiple test correction method (see supplementary code). 535 

Gaussian Network Modelling 536 

GNM was implemented using the Prody package in python38. 537 

Molecular Dynamics Simulations 538 

Molecular dynamics was performed using Gromacs version 2018.139. We chose to 539 

simulate proteins using the GROMOS 54a7 forcefield40.  540 

The protein structure was first repaired using FoldX10 “RepairPDB” with the following 541 

command: 542 

$foldx --command=RepairPDB --pdb=5upp.pdb --ionStrength=0.05 --pH=7 --
vdwDesign=2 

543 

The protein was then placed in a cubic box and solvated with spc water. Counterions 544 

were introduced to a neutral charge, and to a concentration of 0.05 mol/litre. The 545 

system was energy minimized using the steepest descents algorithm until the 546 

maximum force,Fmax, of the system reached below 1000 kJ/mol/nm.  547 
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Equilibration was performed using the NVT, followed by the NPT ensembles for 100 548 

ps each. We chose to use the verlet cutoff scheme and PME electrostatics, and 549 

utilized periodic boundary conditions in the x,y, and z planes.  550 

Molecular dynamics was performed for 200 ns retaining velocities from the NPT 551 

equilibration. We used the V-rescale temperature coupling scheme, and Parrinello-552 

Rahman isotropic pressure coupling. 553 

FoldX ΔΔG Calculations 554 

FoldX predicted ΔΔG was calculated using the PositionScan command within 555 

FoldX4. Positionscan was run on each residue in the protein structure sequentially 556 

using the following command: 557 

$foldx --command=PositionScan --pdb=5upp.pdb --ionStrength=0.05 --pH=7 --
vdwDesign=2 --pdbHydrogens=false --positions=49 

558 

 559 

For positionscan on the 49th residue.  560 

Rosetta ΔΔG Calculations 561 

Rosetta predicted ΔΔG was calculated using the cartesian_ddg method as described 562 

in Kellogg et al: 563 

$path/to/source/bin/cartesian_ddg.static.linuxgccrelease -in:file:s 5upp.pdb -
in::file::fullatom -database /path/to/database/ -ignore_unrecognized_res true -
ignore_zero_occupancy false -fa_max_dis 9.0 -ddgccartesian -ddg::mut_file 
mutfile.txt -ddg::iterations 3 -ddg::dump_pdbs true -ddg::suppress_checkpointing 
true -ddg::mean true -ddg::min true -ddg:output_silent true -bbnbr 1 -
beta_nov16_cart > logfile.log 

564 

 565 

ΔΔG was calculated by averaging the energy of 3 models of each mutation and 566 

comparing it to the WT calculation. 567 

Umap 568 

We used Umap31 based on the github repository at 569 

www.github.com/lmcinnes/unmap 570 
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Cancer Cell Line Encyclopedia Data 571 

Cancer Cell Line Encylopedia (CCLE) mutation data was downloaded from the 572 

Broad Institute at: https://portals.broadinstitute.org/ccle/data . Metabolomics data 573 

was obtained from the supplementary data of Li et al21.  574 

Data Analysis 575 

Both MDanalysis41 and Biopython42 were used for analysis of structural data. 576 

 577 

 578 
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