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ABSTRACT   

Discovery   of   influential   genetic   variants   and   prediction   of   phenotypes   such   as   antibiotic   resistance   are  

becoming   routine   tasks   in   bacterial   genomics.   Genome-wide   association   study   (GWAS)   methods   can  

be   applied   to   study   bacterial   populations,   with   a   particular   emphasis   on   alignment-free   approaches,  

which   are   necessitated   by   the   more   plastic   nature   of   bacterial   genomes.   Here   we   advance   bacterial  

GWAS   by   introducing   a   computationally   scalable   joint   modeling   framework,   where   genetic   variants  

covering   the   entire   pangenome   are   compactly   represented   by   unitigs,   and   the   model   fitting   is  

achieved   using   elastic   net   penalization.   In   contrast   to   current   leading   GWAS   approaches,   which   test  

each   genotype-phenotype   association   separately   for   each   variant,   our   joint   modelling   approach   is  

shown   to   lead   to   increased   statistical   power   while   maintaining   control   of   the   false   positive   rate.   Our  

inference   procedure   also   delivers   an   estimate   of   the   narrow-sense   heritability,   which   is   gaining  

considerable   interest   in   studies   of   bacteria.   Using   an   extensive   set   of   state-of-the-art   bacterial  

population   genomic   datasets   we   demonstrate   that   our   approach   performs   accurate   phenotype  

prediction,   comparable   to   popular   machine   learning   methods,   while   retaining   both   interpretability   and  

computational   efficiency.   We   expect   that   these   advances   will   pave   the   way   for   the   next   generation   of  

high-powered   association   and   prediction   studies   for   an   increasing   number   of   bacterial   species.  
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INTRODUCTION  

Bacterial   genomics   has   recently   entered   an   era   of   'big   data'.   Single   cohorts   with   10 4 -10 5    samples,   10 8  

variants,   and   corresponding   extensive   high   quality   metadata   are   now   publicly   available    (1,   2) .   In   the  

context   of   bacterial   populations,   data   inputs   are   typically   genotypes   or   environmental   factors   (such   as  

host   age),   and   outputs   are   commonly   antimicrobial   resistance,   host   specificity   or   virulence  

phenotypes.   With   enough   independent   observations,   these   methods   can   automatically   predict   the  

phenotype   of   new   isolates,   and   potentially   tell   us   something   about   the   underlying   genetic  

mechanisms.   A   deluge   of   recent   papers   have   applied   general   predictive   models   to   such   datasets,  

most   showing   high   accuracy    (3–8) ,   though   some   commentaries   have   been   more   cautious   in   their  

conclusions    (9,   10) .  

 

The   overall   problem   of   relating   microbial   genotype   to   phenotype   has   generally   been   approached   by  

genome-wide   association   study   (GWAS)   methods    (11–13) .   Generally   these   methods   take   a   univariate  

approach,   considering   the   association   between   a   phenotype   and   a   single   variant,   then   'scanning'  

along   the   whole   genome   one   variant   at   a   time.   Microbial   GWAS   methods   must   incorporate   a  

correction   for   population   structure   in   each   test,   the   specifics   of   which   varies   between   methods   and  

datasets.   The   simplicity   of   this   method   is   one   of   its   great   strengths   –   it   is   quick   and   easy   to   apply,  

understand   and   visualise.   Useful   extensions   which   allow   the   estimation   of   heritability    (14) ,   the  

proportion   of   phenotypic   variance   explained   by   genotype,   and   prediction   of   phenotype   (by   forming  

linear   predictors   from   significant   variants,    (15) )   are   also   relatively   simple   to   implement.  

 

Large   cohorts   of   bacterial   sequences   have   been   a   tempting   target   for   exciting   new   machine   learning  

and   'deep   learning'   methods   such   as   convolutional   neural   networks,   which   are   able   to   relate   arbitrary  

high-dimensional   inputs   to   measured   outputs   with   high   accuracy,   and   without   need   for   specialised  

model   descriptions   for   each   new   problem    (16) .   They   are   potentially   broadly   applicable   to   any   problem  

with   vast   amounts   of   data,   though   perform   best   when   the   number   of   datapoints   exceeds   the   number  

of   dimensions.   Unsurprisingly   their   uptake   in   sequence   analysis    (17,   18)    and   bacterial   genomics  

specifically   has   been   rapid    (4,   5) .   

 

However,   some   issues   crucial   to   understanding   bacterial   populations   remain   unaddressed.   Firstly,  

bacterial   populations   tend   to   exhibit   strong   population   structure,   meaning   samples   cannot   be   treated  

as   independent.   In   the   context   of   prediction,   this   can   result   in   the   selection   of   features   unrelated   to   the  

phenotype,   but   common   to   the   background   of   associated   strains   (lineage   effects).   While   not  

necessarily   a   problem   in   the   training   dataset,   if   new   data   is   drawn   from   different   strains   this   can   lead  

to   much   poorer   prediction   than   expected.   This   effect   has   been   known   since   early   efforts   to   statistically  

classify   images,   where   from   as   early   as   1964   it   was   shown   that   pictures   of   tanks   were   recognised   by  

the   background   they   appeared   in,   rather   than   the   shape   of   the   tank   itself    (19) .   In   genetics,   a   similar  

problem   has   arisen   due   to   an   overrepresentation   of   samples   of   European   ancestry   in   genotype  
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databases.   This   has   led   to   polygenic   risk   scores,   which   were   originally   thought   to   be   highly   accurate  

predictors   of   disease   liability,   to   have   significantly   lower   accuracy   in   non-European   ancestry   samples,  

which   make   up   most   of   the   global   population    (20) .    Additionally,   these   methods   are   unable   to   deal   with  

missing   input   data.   Naive   variant   calling   in   separate   populations   is   likely   to   produce   disparate   sets   of  

variants,   and   with   very   different   minor   allele   frequencies.   Without   using   a   method   which   produces  

consistent   variant   calls   in   test   datasets   (not   simply   by   cutting   these   out   of   a   common   call   set),   the  

accuracy   of   predictive   models   is   likely   to   be   heavily   overstated.  

 
Here,   we   set   out   to   develop   a   method   which   combines   the   desirable   attributes   of   both   of   these  

classes   of   approaches   when   analysing   genetics   underlying   bacterial   traits.   We   wished   to   retain   the  

simplicity   and   interpretability   of   traditional   univariate   GWAS   approaches,   and   combine   this   with   the  

flexibility   and   accuracy   of   machine   learning   methods   which   can   be   fitted   to   the   entire   dataset   at   once.  

This   multivariate   approach   reflects   the   polygenic   nature   of   complex   traits   better   than   univariate  

methods.   Unlike   marginal   tests,   a   multivariate   regression   approach   gives   rise   to   an   increase   of  

resolution   when   sample   size   increases,   as   has   previously   been   noted   in   human   GWAS    (21–23) .  

Additionally,   simultaneously   analyzing   predictors   together   in   a   regression   model   means   that  

interactions   and   correlation   between   the   predictors   (e.g.   population   structure)   may   be   included  

implicitly.  

 

Using   large   genomic   datasets   from   four   different   species   and   sixteen   varied   phenotypes,   we   find   that  

an   elastic   net   model   offers   improvements   over   univariate   GWAS,   without   sacrificing   their   major  

advantage   of   quantitative   model   interpretability.   Using   simulated   data   we   demonstrate   improved  

power   and   false-discovery   rate   at   the   single   variant   level   compared   with   fixed   and   random   effect  

models,   and   illustrate   this   use   in   practise   on   antibiotic   resistance   phenotypes   in   two   species.   We   show  

further   results   which   find   similar   accuracy   between   new   machine-learning   and   simpler   approaches,  

consistent   with   previous   studies    (4,   5,   24) .   Additionally,   our   approach   was   able   to   estimate   trait  

heritability   without   assuming   specific   effect   size   distributions,   which   are   unproven   in   bacterial  

populations.   We   argue   that   the   prediction   model   itself   is   far   less   important   than   three   other   factors:   the  

dataset   itself,   creating   a   method   with   careful   genomic   data   management,   and   incorporating  

knowledge   specific   to   bacterial   populations.  

 

Our   approach   models   the   entire   pan-genome   of   the   population,   to   include   the   large   proportion   of  

variation   which   resides   in   the   accessory   genome.   It   explicitly   addresses   issues   of   population   structure,  

and   consistent   performance   between   trained   and   new   (test)   datasets.   The   method   is   broadly   usable,  

not   requiring   programming   knowledge   or   manual   adjustments   for   new   datasets,   and   allows   for   the  

sharing   of   models   between   researchers.   We   have   implemented   the   association   model   in   the   pyseer  

microbial   GWAS   package,   and   consistent   pan-genome   variant   calling   in   two   further   packages.   An  

extensive   tutorial   for   all   of   these   methods   is   available   online  

( https://pyseer.readthedocs.io/en/master/predict.html ).   
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MATERIALS   AND   METHODS  

Elastic   net   model  

We   use   a   high   dimensional   regression   model   which   includes   all   genetic   variants   and   covariates   of  

interest   .   Typically   this   is   not   possible   using   classical   inference   methods   such   as   the   least   squares  x→  

estimator,   as   the   number   of   genetic   predictors    m    exceeds   the   number   of   samples    N ,   leading   to   an  

under-constrained   system.   The   elastic   net   defines   such   a   function    (25,   26) ,   mixing   L1   (lasso)   and   L2  

(ridge)   penalties,   which   is   minimised   with   respect   to   the   values   of   the   intercept    b 0    and   slopes   :  b 
→

  

 

where    N    is   the   number   of   samples;    w i    are   positive   weights   (with   a   sum   equal   to    N );    l ()   is   the   link  

function   (linear   or   logit   respectively   for   continuous   and   binary   phenotypes    y i );     is   the   magnitude 0λ >    

of   the   penalty;   is   the   amount   of   mixing   between   L1   and   L2   penalties.   Minimising   this   function 0 < α < 1  

reduces   the   squared   distance   between   predicted   and   observed   values.  

Given   the   strong   linkage   disequilibrium   present   in   bacterial   populations    (11,   27) ,   many   genetic  

variants   are   strongly   correlated   across   long   distances,   and   it   is   therefore   desirable   to   report   all   of   this  

linkage   block,   rather   than   randomly   selecting   a   representative   from   it.   For   this   reason,   the   elastic   net  

has   been   shown   to   be   especially   useful   when   the   variables   are   dependent    (25) .     We   compare   this  

selection   with   the   lasso   in   our   simulations.   The   value   of     can   be   changed   by   the   user,   should   they α  

wish   to   opt   for   a   more   sparse   model.  

Two   important   parameters   which   are   not   directly   set   using   the   data   are   and .   The   amount   of λ α  

penalty     is   set   by   cross-validation,   using   a   default   of   10   folds   to   pick   the   value   of     which   maximises λ λ  

the    R 2    value   of   the   model.   The   user   can   change   the   number   of   folds.   The   amount   of   mixing   α  

between   L1   penalties,   which   lead   to   sparse   predictive   models   with   mostly   zero   valued   slopes,   and   L2  

penalties,   which   lead   to   models   with   shrunken   but   non-zero   predictors   could   also   be   chosen   by  

cross-validation   to   prediction   accuracy.   However,   in   this   application   we   propose   using   a   value   of  

around   0.01   throughout.   A   sparse   model   is   preferred   for   prediction   for   speed   and   easier   consistency  

between   populations,   but   this   leads   to   a   loss   of   power   in   the   context   of   GWAS,   as   potentially   causally  

related   predictors   may   be   removed   from   the   model   (Figure   1,   Supplementary   figures   1-6 ) .  

By   virtue   of   the   fact   that   all   pan-genomic   variation   enters   this   model,   if   a   linear   additive   model   of  

heritability   is   assumed,   which   it   typically   is   in   bacterial   GWAS    (28–30) ,   the   value   of    R 2    calculated   from  

the   fit   of   the   elastic   net:  
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also   serves   as   an   estimate   of   the   narrow-sense   heritability    h 2 .   As    R 2    measures   the   variance   explained  

by   the   model's   predictors,   in   this   case   all   genetic   features,   this   is   equivalent   to   the   proportion   of  

phenotypic   variance   explained   by   genetic   variation   ,   the   definition   of    h 2 .   This   provides   a σp2  σg2  

lower-bound   on    h 2    because   the   Lasso-type   estimator   is   biased    (31) ,   and   it   tends   to   shrink   some  

coefficients   with   weak   effects   towards   zero,   though   these   weak   effects   may   have   a   significant   effect  

on   the   trait   variability.  

Efficiently   modelling   the   entire   pan-genome  

Bacterial   populations   vary   greatly   in   their   sequence   content,   and   mapping   short   variation   within   their  

core   genes   (coding   sequences   shared   by   all   members   of   the   population)   is   generally   insufficient   to  

capture   all   of   the   variation   within   the   samples.   In   particular,   accessory   gene   content   has   been   shown  

to   both   vary   independently   of   core   variation    (32) ,   associated   with   clinically   relevant   phenotypes    (12,  

33) ,   and   be   useful   for   predicting   the   evolution   of   the   population    (34,   35) .  

Early   bacterial   GWAS   methods   used   k-mers,   sequence   words   of   fixed   or   variable   length,   to   assay  

variation   throughout   the   population   independent   of   gene   annotation   or   variant   calling   method    (11,   12,  

36) .   The   set   of   common   k-mers   (1-99%   frequency)   is   vast,   particularly   in   the   large   and   genetically  

diverse   populations   which   are   most   amenable   to   GWAS.   Efforts   to   model   all   of   these   sequence  

elements   simultaneously   are   potentially   computationally   intractable,   as   these   words   will   not   fit   in   main  

memory,   and   model   fitting   takes   an   extremely   long   time.  

We   use   two   techniques   to   circumvent   this   issue   while   still   including   as   much   pan-genomic   variation   as  

possible.   Following   the   idea   of   screening   methods   in   ultra   high   dimensional   data    (37,   38) ,   we   use   the  

absolute   value   of   the   sample   correlation   as   a   screening   criteria   for   each   variant:  

 

where   are   the   standardizations   of    y    and    x    such   that , x  ȳ  ̄  

 

Using   a   single   threshold   on   mean   value   for   this   correlation   would   lead   to   a   large   number   of   variants  

being   removed   before   modelling,   which   is   appealing   computationally,   but   in   our   simulations   led   to   a  
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loss   of   power.   We   instead   remove   the   lowest   quartile,   which   maintained   power,   though   did   not   reduce  

model   size   as   much.   The   size   of   the   quantile   to   remove   can   be   set   by   the   user.  

We   also   follow   the   method   used   in   DBGWAS    (39) ,   which   after   counting   fixed-length   k-mers   constructs  

a   de   Bruijn   graph   of   the   population.   Nodes   in   this   graph   are   extensions   of   k-mers   with   the   same  

population   frequency   vector,   and   whose   sequence   is   referred   to   as   unitigs.   These   unitigs   greatly  

reduce   the   redundancy   present   in   raw   k-mer   counts   by   combining   those   with   the   same   patterns,   and  

are   generally   easier   to   functionally   interpret   due   to   their   longer   length.   We   follow   the   same   method   as  

step   1   of   the   DBGWAS   package,   which   uses   the   GATB   library   to   construct   a   compressed   de   Bruijn  

graph    (40) ,   and   then   report   frequency   vectors   of   each   unitig/node   and   unique   pattern   in   a   format  

readable   by   pyseer.   We   use   a   k-mer   length   of   31   throughout   to   count   unitigs,   as   this   was   previously  

shown   to   maximise   association   power    (39) .   This   length   can   also   be   set   by   the   user.   We  

reimplemented   this   approach   as   a   standalone   package   ( https://github.com/johnlees/unitig-counter ),  

also   including   tools   to   extend   unitigs   by   traversing   neighbouring   nodes   in   the   graph,   and   calculate  

distances   between   unitigs   based   on   the   graph   using   Dijkstra's   algorithm.  

Incorporating   population   structure  

Population   structure   causes   correlation   between   the   genetic   variants   (unitigs)   that   make   up   .   As   all  x→  

of   these   enter   our   model   together,   this   effect   may   be   implicitly   controlled   for   without   the   need   for  

further   correction.   We   also   wished   to   compare   this   to   the   use   of   an   explicit   correction   term   to   test  

which   approach   is   more   effective.   This   can   be   included   in   the   modelling   step   by   a   combination   of  

three   approaches:   use   of   extra   predictors   in     which   account   for   population   structure;   modifying   the  x→  

per-sample   weights    w i ;   or   by   changing   the   folds   used   in   cross-validation.  

Fixed   effect   models   typically   use   a   principal   components-type   analysis   to   include   main   axes   of  

variation   in   the   population   as   covariates.   In   a   new   dataset,   projection   of   variation   onto   these   existing  

axes   could   be   used,   but   would   require   large   overlap   between   variant   calls   in   each   dataset   to   be  

accurate.   Random   effect   models   use   a   kinship   matrix   to   include   the   sample   covariance   matrix   in   each  

association.   For   a   new   dataset,   this   would   require   calculation   of   covariance   against   the   original  

dataset,   which   reduces   model   portability.  

We   therefore   opted   to   use   a   definition   of   population   structure   which   does   not   introduce   extra  

predictors.   This   makes   application   of   the   model   more   straightforward   in   new   datasets.   Using   a  

definition   of   clusters   which   naturally   extends   to   new   populations,   which   may   have   very   different   strain  

frequency   and/or   large   numbers   of   novel   clusters,   further   increases   robustness   in   the   face   of  

between-dataset   variation.   Any   method   which   produces   discrete   cluster   membership   definitions  

independent   of   cluster   frequency   is   suitable   for   this   purpose,   such   as   sequence   type,   clonal   complex  

or   percentage   identity   cutoff.   We   opted   to   use   the   'strain'   definition   provided   by   the   PopPUNK  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 23, 2019. ; https://doi.org/10.1101/852426doi: bioRxiv preprint 

https://doi.org/10.1101/852426
http://creativecommons.org/licenses/by-nd/4.0/


 

software   throughout   our   analysis   due   to   its   speed   and   biological   basis    (32) ,   but   our   implementation  

allows   any   preferred   definition   of   cluster   membership   to   be   used.  

Given   such   a   definition   of   cluster   membership   C(x),   these   clusters   are   then   used   as   folds   in   the  

cross-validation   step,   which   may   be   referred   to   as   'leave-one-strain-out'   (LOSO)   cross-validation.   This  

is   more   realistic   than   random   selection   of   folds,   as   random   samples   would   maintain   relative   strain  

frequencies   between   training   and   test   data,   whereas   new   populations   usually   vary   greatly   in   their  

genetic   background    (1,   10) .   Furthermore,   we   added   the    --sequence-reweighting    option   in  

pyseer,   which   defines   the   sample   weights   as   being   inversely   proportional   to   the   cluster/strain   size:  

 

This   'sequence   reweighting'   is   a   commonly   used   definition   in   epistasis   methods   such   as   direct  

coupling   analysis   and   correlation-based   approaches,   which   have   recently   been   successfully   applied  

to   genome-wide   variation   in   bacterial   populations    (41–43) .  

Phenotypic   prediction   while   maximising   consistency   between   datasets  

Prediction   of   unobserved   phenotypes    y i    is   achieved   by   forming   a   linear   predictor   of   non-zero   slopes   in  

:  bi
→

 

 

To   which   the   appropriate   link   function    l ()   is   then   applied   to   convert   into   a   probability   (which   can   be  

converted   into   a   binary   outcome   using   a   threshold   cutoff).   

Predictors   which   are   missing   can   either   be   ignored   (set   )   or   imputed   (set   ,   where   is   0xi =     x  xi =  ̄  x̄  

the   allele   frequency   in   the   original   dataset).   For   the   unitig-caller   approach   described   below,   a   missing  

call   means   genuine   absence   in   the   data,   so   we   use   the   former   approach.   For   variant   calling   methods  

where   missing   calls   may   be   artifactual   (such   as   SNP   calls),   we   use   the   mean   value   imputation  

approach.   

To   apply   fitted   models   to   new   populations,   consistency   in   the   construction   of   genomic   variants      is  x→  

important   to   maximise   prediction   accuracy.   This   can   be   highly   challenging   for   short   variant   calls,   but  

sequence   element   presence   or   absence   is   more   amenable   to   this   analysis.   In   general,   de   Bruijn  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 23, 2019. ; https://doi.org/10.1101/852426doi: bioRxiv preprint 

https://doi.org/10.1101/852426
http://creativecommons.org/licenses/by-nd/4.0/


 

graphs   of   different   sample   sets   will   have   different   node   sequences,   and   therefore   non-overlapping  

unitig   calls.   To   solve   this   issue   we   instead   check   the   test   population   for   the   presence   of   unitigs   defined  

in   the   training   population.   To   do   this   efficiently   we   create   and   save   an   FM-index   for   each   input  

sequence    (44) ,   then   search   each   these   indexes   in   parallel   for   each   unitig   query  

( https://github.com/johnlees/unitig-caller ).   We   implemented   this   in   C++   using   the   SeqAn   library    (45) .  

For   continuous   phenotypes   we   report    R 2    to   describe   prediction   accuracy.   This   is   more   difficult   to  

interpret   with   binary   phenotypes,   especially   in   the   presence   of   class   imbalance   and   when   the  

imbalance   deviates   from   the   population-wide   prevalence.   For   binary   phenotypes   we   found   that  

reporting   positive   statistics   such   as   sensitivity   and   specificity,   or   especially   area   under   the   curve  

(AUC),   led   to   reports   in   the   top   decile   for   almost   all   datasets   and   methods,   and   were   harder   to  

intuitively   compare   between.   We   therefore   report   the   false   negative   rate   and   false   positive   rate,   along  

with   the   totals   selected.  

Implementation   details  

We   implemented   the   association   model   in   version   1.3.2   of   the   pyseer   bacterial   GWAS   package,   which  

is   written   in   python    (46) .   This   takes   care   of   reading   variants   in   many   common   formats,   including   the  

output   from   unitig-counter,   as   well   as   providing   tools   to   help   interpret   associated   sequences.   We   use  

python   bindings   to   the   fortran    glmnet    package   to   actually   fit   the   model,   as   the   use   of   warm-starts  

more   efficiently   solves   the   above   equation   at   an   array   of   values   of      (26) .   Cross-validation, λ  

parallelised   if   requested   by   the   user,   is   used   to   select   the   value   of     with   the   greatest    R 2    value,   as λ  

defined   above.  

Variants   matrices   are   potentially   very   large,   so   to   optimise   speed   and   memory   use   we   read   these   into  

a   sparse   matrix   structure.   Variants   with   allele   frequency   >   50%   have   their   genotypes   flipped   to  

increase   sparsity   –   these   sites   are   flipped   back   during   prediction.   This   sparse   structure   can   be   saved  

to   disk   to   avoid   repeated   parsing   of   variant   input   files.   Only   haploid   variant   calls   (0/1),   allele   frequency  

and   sample   order   are   saved   in   this   file.   After   extracting   the   non-zero   coefficients   from   the   fitted   elastic  

net,   the   input   variant   file   is   re-read   with   minimal   parsing   to   output   information   about   the   selected  

variants.   A   SHA256   hash   of   the   input   file   is   calculated   to   ensure   consistency   with   the   original   input  

file.  

The   fitted   models   are   saved   as   an   associative   array,   with   variants   names   as   keys   (either   sequence,   or  

alleles   combined   with   chromosome   and   position)   and   allele   frequencies   and   fitted   slopes   as   values.  

New   variant   call   files   are   read   with   minimal   parsing   to   extract   just   those   sites   which   appear   in   the  

model,   and   at   the   end-of-file   the   appropriate   imputation   procedure   is   applied   to   model   terms   which  

were   not   found.   This   allows   both   rapid   prediction   in   large   new   datasets,   and   an   easy   and   portable   way  

to   share   predictive   models.  
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For   fitted   models,   slopes,   p-values   (adjusted   by   any   of   pyseer's   other   models)   and   allele   frequencies  

are   included   in   the   output.   Where   the   true   phenotype   is   known,   prediction   accuracy   is   reported   using  

R 2 ,   and   a   confusion   matrix   if   the   phenotype   is   binary.   If   clusters   were   provided,   accuracy   statistics   for  

within   each   cluster   are   also   included   in   the   output.  

The   new   code   in   pyseer   includes   automated   tests   and   unit   tests   we   wrote   using   test   data   distributed  

with   the   package.   Documentation   and   a   tutorial   is   available   online  

( https://pyseer.readthedocs.io/en/master/predict.html ).   All   three   packages   are   available   as   source  

code   and   pre-packaged   installation   through   conda.  

Preparation   of   datasets  

Table   1   shows   a   summary   of   the   datasets   used   in   this   paper.   Sequence   assemblies   were   available  

from   the   original   publications,   with   the   exception   of   one    N. gonorrhoeae    study    (47) .   For   this   study   we  

downloaded   the   read   data,   removed   adapter   sequences   with   trimmomatic    (48)    v0.36   and   assembled  

with   SPAdes   v3.11    (49)    using   the    --only-assembler    and    --careful    options.   For   all   datasets,   we  

then   called   unitigs   from   each   sample's   sequence   assembly   using   a   k-mer   length   of   31,   and   low  

frequency   unitigs   (AF   <   1%)   were   discarded.   For   the   Massachusetts   and   TB   datasets   additional  

genetic   data   was   available.   For   the   TB   dataset,   we   used   the   variant   call   matrix   provided   by   the   study's  

authors    (5) .   For   the   Massachusetts   and   Maela   datasets,   we   used   SNP   calls   from   an   earlier   GWAS   in  

this   population    (50) .   Where   a   split   into   training   and   test   data   was   needed,   this   was   done   at   random   in  

the   ratio   2:1.   When   including   a   cluster   assignment   to   account   for   population   structure   we   used   the  

previous   assignments   from   PopPUNK   where   available    (32) .   For   TB   we   used   the   major   lineage.   When  

using   a   minimum   inhibitory   concentration   for   an   antibiotic   resistance,   this   phenotype   was   first   log  

transformed   before   any   downstream   analysis.   Other   phenotypes   were   used   as   originally   reported.  
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Table   1:    Summary   of   datasets   tested.   Each   dataset   has   a   name   it   is   referred   to   by   in   the   rest   of   this  

paper.   Most   datasets   have   multiple   phenotypes   available,   especially   where   multiple   different   antibiotic  

resistances   are   routinely   phenotyped.   Datasets   without   a   training/test   split   were   not   evaluated   for  

internal   prediction   ability,   and   all   available   samples   were   used   to   fit   the   model.  

Dataset   name  Species  Phenotype(s)  Publication  
reference  

Number   of  
samples  

Training/t 
est  

Number   of  
genetic  
features  

TB  Mycobacterium  
tuberculosis  

First   line   antibiotic  
resistance   (rifampicin,  
isoniazid,   pyrazinamide  
ethambutol)  

(5)  3566  2377   /  
1189  

6.4k   (SNPs)  

N. gonorrhoeae  Neisseria  
gonorrhoeae   

Antibiotic   resistance  
(azithromycin,   cefixime,  
ciprofloxacin,   penicillin,  
tetracycline)  

(47,   51–53)  1595  NA  550k   (unitigs)  

GAS  Streptococcus  
pyogenes  

Virulence  (54)  1730  1154   /  
576  

1.1M   (unitigs)  

SPARC  Streptococcus  
pneumoniae  

Antibiotic   resistance  
(penicillin,  
erythromycin)  

(50,   55)  603  400   /   203  90k   (SNPs)  
730k   (unitigs)  
10M   (k-mers)  

Maela  Streptococcus  
pneumoniae  

Carriage   duration  
Antibiotic   resistance  
(penicillin,  
erythromycin,  
trimethoprim)  

(12,   28)  3162  
(antibiotic  
resistance)  
2017  
(carriage  
duration)  

1404   /  
703  
(carriage  
duration)  

121k   (SNPs)  
1.6M   (unitigs)  

GPS  Streptococcus  
pneumoniae  

Antibiotic   resistance  
(penicillin)  

(1)  5820  NA  1.7M   (unitigs)  

Netherlands  Streptococcus  
pneumoniae  

Meningitis/carriage  (30)  1837  1225   /  
612  

690k   (unitigs)  

 

To   generate   simulated   data   used   for   testing   power   and   false-discovery   rate   against   a   ground-truth,   we  

simulated   phenotypes   but   used   observed   SNP   genotype   data   from   the   Maela   dataset   to   ensure   a  

realistic   genetic   model   for   bacterial   population   structure.   Phenotypes   were   simulated   using   GCTA  

(14) ,   either   as   continuous   or   as   binary   using   a   liability   threshold   model.   Then,   to   assess   the   power   of  

the   methods   with   respect   to   the   sample   sizes,   we   randomly   choose   subsamples   with   500,   1000,   2000  

and   3000   samples.   
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RESULTS  

Simulated   phenotypes   show   advantages   in   power   and   false-discovery   rate   when   using   a  

multivariate   approach  

To   test   the   characteristics   of   the   elastic   net   compared   to   previous   univariate   GWAS   approaches,   we  

simulated   phenotype   data   from   the   Maela   population,   using   the   observed   genetic   variation   from   this  

dataset.   We   chose   either   5,   25,   100   or   300   true   causal   variants   with   the   same   effect   size,   either:  

● Chosen   uniformly   at   random   across   the   genome,   after   LD-pruning   (no   variants   with    R 2    >   0.9).  

● Chosen   uniformly   at   random   from   1   to   3   pre-specified   genes   ( pbpX/pbp2x ,    penA/pbp2b ,  

pbp1a ).  

We   chose   the   first   setting   to   emulate   a   polygenic   trait,   with   many   variants   of   roughly   equal   effect  

associated   across   the   genome.   The   second   setting   more   closely   resembles   antibiotic   resistance,  

where   multiple   alleles   in   either   one   or   a   small   number   of   genes   contribute   to   the   effect.   We   ran   the  

elastic   net   ( ),   lasso   regression   ( )   as   well   as   both   univariate   models   (fixed   effects   and .01α = 0 α = 1  

linear   mixed   model)   previously   implemented   in   pyseer.   Variants   were   output   by   the   genome-wide  

model   if   they   have   a   non-zero   coefficient,   and   in   the   univariate   models   if   their   p-value   exceeds   a  

significance   threshold   of   0.05   after   Bonferroni   correction.   For   each   simulated   dataset   and   method   we  

calculated   the   power,   the   proportion   of   true   causal   variants   in   the   output,   and   the   false-positive   rate,  

the   number   of   variants   selected   in   the   output   which   are   not   true   causal   variants   divided   by   the   total  

number   of   variants   being   tested.  

Firstly,   our   simulations   were   able   to   show   that   using   the   correlation   filtering   step   (reducing   input   size  

by   25%)   reduced   power   on   average   by   4%   and   8%   in   the   worst   case   (Supplementary   tables   1-4),  

where   many   small   effect   variants   are   spread   across   the   genome,   and   with   no   appreciable   power   loss  

with   smaller   or   more   concentrated   causal   variants.   The   sample   correlation   values   are   positively  

skewed   due   to   population   structure,   so   filtering   all   variants   with   sample   correlation   below   the   mean  

value   rather   than   a   quantile   leads   to   an   unacceptably   high   loss   of   power,   as   many   causal   variants  

would   be   removed.   

Over   all   of   our   simulations,   we   found   that   either   the   elastic   net   or   the   fixed   effect   univariate   model   had  

the   highest   power   depending   on   the   setting,   and   both   always   had   higher   power   than   the   linear   mixed  

model   (Figure   1   and   Supplementary   figures   1-6).   The   elastic   net   performed   better   in   situations   where  

the   heritability   was   low,   or   causal   variants   were   spread   out   across   the   genome.   There   was   slightly  

lower   power   for   all   methods   with   binary   phenotypes,   and   this   increase   was   more   pronounced   in   the  

linear   mixed   model,   possibly   due   to   being   the   only   model   that   used   a   Gaussian   error   structure   in   both  

settings.  
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Figure   1:   Power   and   false   positive   rates   in   the   simulation   study   set   up   to   resemble   antibiotic  

resistance   genotype-phenotype   architecture.    The   top   row   shows   the   effect   of   sample   size,   with  

100   causal   variants   in   the    pbp2x    gene   and   a   binary   phenotype.   The   bottom   row   shows   the   effect   of  

phenotype   heritability,   with   50   causal   variants   spread   across   the   three    pbp    genes   and   a   continuous  

phenotype.   Multivariate   methods   tested   were   the   elastic   net   with   default   ɑ   (red   diamonds),   Lasso  

regression   (orange   lines).   Univariate   methods   were   the   fixed   effects/seer   model   (blue   circles)   and   the  

FastLMM   linear   mixed   model   (green   crosses).  

However,   in   exchange   for   reduced   power,   the   linear   mixed   model   consistently   showed   the   best   control  

of   false   positives   in   all   settings,   always   below   5%.   In   contrast   the   fixed   effect   model   had   a   much  

greater   false-positive   rate   than   any   other   method,   which   grew   both   with   sample   size   and   heritability.  

The   elastic   net's   false-positive   rate   was   typically   below   5%   and   was   robust   across   the   ranges   of  

heritability   tested,   though   did   increase   slightly   with   larger   sample   sizes   as   more   variants   were  

included   in   the   fitted   model.   With   such   a   large   number   of   variants   even   a   small   false-positive   rate   can  

be   problematic,   so   combining   with   a   ranking   by   p-value   is   important.   It   is   possible   to   do   this   with   least  
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angle   regression    (56)    in   lasso   regression,   but   in   this   case   it   is   simpler   to   provide   this   ranking   from   one  

of   the   univariate   tests.  

Whole-genome   model   of   bacterial   phenotypes   enables   heritability   estimation   and   clearer  

association   mapping  

We   also   tested   lasso   regression   as   a   GWAS   method.   For   smaller   numbers   of   causal   variants  

performance   was   similar   to   the   linear   mixed   model   both   in   terms   of   power   and   false-positive   rate,   in  

some   cases   having   slightly   higher   power.   However   when   the   number   of   causal   variants   was   higher  

the   amount   of   sparsity   introduced   was   too   high,   reducing   power   below   other   methods   (though  

false-positive   rate   was   low   in   all   settings   for   the   same   reason).   As   the   number   of   causal   variants   is  

generally   not   known   a   priori,   we   would   therefore   always   recommend   the   elastic   net   over   the   lasso.  

These   results   show   that   the   elastic   net   can   be   used   as   an   effective   tradeoff   between   the   regimes   of  

the   two   commonly   used   univariate   models,   having   higher   power   than   the   linear   mixed   model   and   a  

lower   false   positive   rate.   As   many   bacterial   GWAS   results   must   be   followed   up   with   lab   work,   these  

results   suggest   a   dual-approach   of   variable   selection   with   the   elastic   net   followed   by   ranking   results  

with   the   linear   mixed   model   may   be   useful.   This   is   possible   in   a   single   step   in   pyseer.  

GWAS   of   pneumococcal   antimicrobial   resistances.    Next,   we   tested   our   method   for   GWAS   on  

phenotypes   with   a   known   cause,   and   compared   our   results   to   those   from   previous   univariate  

approaches.   First,   we   analysed   a   well   studied   phenotype   and   dataset:   sensitivity/resistance   to  

β-lactams   in   the   SPARC   cohort   of   603    S. pneumoniae    genomes.   Resistance   is   mainly   conferred   by  

allelic   variation   of   three   genes   ( pbp1a ,    pbp2b ,    pbp2x )   which   are   easily   detected   by   most   GWAS   and  

machine-learning   methods   with   SNP   calls   as   input    (50,   57) ,   though   the   specific   variants   detected   are  

not   identical   between   methods    (58) .  

Figure   2   shows   the   results   of   this   analysis.   With   both   methods    penA / pbp2b    and    pbpX / pbp2x    are  

clearly   the   strongest   hits.    pbp1a    is   also   selected   by   both   methods,   and   while   it   can   be   seen   on   both  

Manhattan   plots   it   is   slightly   clearer   in   the   gene   summary   plot   for   the   elastic   net,   due   to   the   larger  

number   of   SNPs   selected   in   the   gene.   Taking   hits   with   a   p-value   above   a   threshold   results   in   a   very  

clean   result   for   the   LMM   with   this   strongly   selected   phenotype,   only   a   few   non-causal   genes   are  

included,   usually   with   only   a   few   SNPs   and   much   lower   ranked   than   the   causal   genes.   The   elastic   net  

selects   many   more   non-causal   SNPs   across   the   MAF   spectrum,   though   combining   with   p-values   and  

number   of   hits   allows   these   to   be   effectively   filtered.   It   should   be   noted   that   effect   size   does   not  

appear   to   be   an   effective   filtering   criterion   without   taking   into   account   minor   allele   frequency,   which  

may   have   implications   for   other   machine-learning   methods   where   a   p-value   cannot   easily   be  

integrated.   Both   methods   calculate   a   comparable   heritability   estimates   for   this   trait,   for   the   LMM    h 2    =  

0.89,   and   for   the   elastic   net    h 2    =   0.81.  
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Figure   2:    Elastic   net   and   linear   mixed   model   with   SNP-based   penicillin   resistance.    The   top  

panel   shows   a   Manhattan   plot   of   the   selected   elastic   net   variants,   with   a   Bonferroni-adjusted  

significance   threshold   in   red.   The   three   biggest   peaks   are   in   the   causal    pbp    genes.   The   middle   panel  

shows   the   same   result   with   the   univariate   LMM,   taking   only   those   SNPs   above   the   significance  

threshold.   The   bottom   panels   show   a   summary   of   the   genes   selected   by   both   methods   (left   –   elastic  

net;   right   –   LMM),   averaging   p-value   and   effect   size   within   each   gene.  
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We   then   undertook   a   more   challenging   analysis,   using   unitigs   to   investigate   antimicrobial   resistances  

in   the   larger   Maela   cohort   (3162    S.   pneumoniae    genomes).   We   have   previously   attempted   GWAS   on  

this   dataset   using   the   fixed   effects   model,   in   the   original   description   of   our   SEER   software    (12) .   We  

did   not   run   on   tetracycline   resistance   or   chloramphenicol   resistance,   as   these   are   driven   by   single  

elements   which   were   easily   detected   with   the   previous   method.   We   instead   used   trimethoprim   and  

erythromycin   resistances.   Trimethoprim   resistance   is   expected   to   have   two   causal   loci   ( folA/dyr ,    folP )  

due   to   being   administered   jointly   with   sulphamethoxazole.   Indeed,   using   our   method   on   trimethoprim,  

the   two   causal   loci   are   clearly   identified   and   are   the   most   highly   ranked   on   a   Manhattan   plot  

(Supplementary   figures   7   &   8);   applying   sequence   reweighting   makes   little   difference   to   the   result.  

Erythromycin   resistance   has   multiple   causal   mechanisms   ( ermB ,    mel ,    mef )   which   were   not   easily  

found   in   our   previous   attempt.   Again,   the   erythromycin   results   contained   many   peaks   in   their  

Manhattan   plots   (Supplementary   figures   9   &   10).   Mapping   the   unitigs   directly   to   resistance   genes   did  

find   significant   results   in    ermB    (9   hits,   min   p   =   10 -47 ),    mel    (12   hits,   min   p   =   5x10 -42 )   and    mef    (6   hits,   min  

p   =   5x10 -42 ),   and   while   this   was   clearly   more   successful   than   our   previous   analysis,   when   considering  

the   noise   when   mapping   to   a   single   reference   these   causal   mechanisms   would   not   stand   out  

(Supplementary   figures   11   &   12).   So   while   our   method   reduced   the   computational   burden   of   the  

analysis,   it   was   not   able   to   easily   resolve   the   causal   mechanisms   in   this   challenging   example.   This  

suggests   that   both   univariate   tests   and   black-box   machine   learning   type   approaches   would   struggle   to  

arrive   at   true   causal   predictions   under   such   circumstances.  

Heritability   and   mapping   of   gonococcal   resistance .   We   also   applied   our   method   to   a   combined   cohort  

of   1595    N.   gonorrhoeae     genomes   where   resistance   to   five   different   antibiotics   has   been   measured.  

This   data   has   previously   been   used   to   do   GWAS   using   a   LMM,   with   selected   loci   then   entering   a  

reduced   dimension   epistasis   analysis    (53) .   

The   mapping   of   resistance   genes   for   these   antibiotics   using   our   approach   was   also   successful.   The  

original   analysis   looked   at   ~8700   SNPs   with   MAF   >   0.5%;   we   used   5.3x10 5    unitigs   with   MAF   >   1%.  

Azithromycin   (AZI)   had   4612   unitigs   selected,   with   the   top   hits   mapping   to   the   four   23S   rRNA  

sequences   in   the   genome.   The   original   analysis   only   identified   a   SNP   in   one   of   these   repeated   rRNA  

sequences,   likely   due   to   the   impossibility   of   mapping   variation   in   these   repeats   at   a   single   base   level  

–   this   is   an   advantage   of   being   able   to   report   multiple   mappings   of   sequences   at   the   final   stage.  

Cefixime   (CFX)   identified   the    penA    region,   as   in   the   original   analysis,   and   also   suggested   an  

association   in   the   promoter   of    opaD .   Ciprofloxacin   (CIPRO)   had   hits   throughout   the   genome,   as   in   the  

original   analysis   and   similar   to   the   analysis   of   erythromycin   above   –   combining   the   LMM   with   the  

elastic   net   may   reduce   candidate   regions   in   these   cases.   Penicillin   (PEN)   had   a   hit   in   the    porB    region,  

as   in   the   original   analysis,   along   with   hits   in    lgtE ,    mexB    (and   efflux   pump)   and   a   prophage.  

Tetracycline   (TET)   similarly   had   a   replicated   hit   in   the    porB    region,   along   with   the    cysN    promoter,   an  

alternative    pilE    allele   and    remE    (a   ribosomal   methyltransferase).   Our   method   therefore   broadly  

replicated   the   results   from   the   LMM,   and   added   new   candidate   hits,   as   expected.  
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We   also   calculated   the   narrow   sense   heritability    h 2    using   our   elastic   net   and   unitig   method,   and  

compared   these   to   previous   methods   (figure   3).   Our   estimates   were   very   similar   to   those   of    h 2 
SNP    from  

the   original   paper,   though   consistently   slightly   higher   (3%   ±   7%),   which   may   be   a   result   of   including  

more   of   the   population   variation   through   unitigs.   Using   a   simple   estimate   of   shared   sequence   content  

as   the   kinship   matrix   led   to   a   likely   overestimate   of   heritability.  

 

Figure   3:   Heritability   estimates   for   antibiotic   resistance   in   the   combined    N.   gonorrhoeae  

dataset,   using   different   methods.    For   each   of   the   five   antibiotic   resistances   measured   in   this  

dataset   we   report   the   narrow-sense   heritability   ( h 2 )   from   our   elastic   net   method   and   unitigs   (grey),   the  

limix   method   implemented   in   pyseer,   using   sequence   distance   (gold)   or   phylogeny   (blue),   and   the  

restricted   maximum   likelihood   (REML)   approach   used   in   the   original   publication   (green).   For   limix  

estimates,   95%   CIs   were   calculated   with   FIESTA    (59) .   These   are   not   shown   for   the   phylogeny   method  

as   they   span   a   range   wider   than   the   plot   (0.11-1).  

Accurate   prediction   within   and   between   cohorts   without   sacrificing   model   interpretability  

These   models,   shown   above   to   be   easily   interpretable   using   standard   methods   from   bacterial   GWAS,  

can   also   be   used   to   construct   a   linear   model   to   predict   phenotypes   in   new   data.   In   this   section   we  
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evaluate   these   predictions   compared   to   other   models   and   variant   calling   methods   using   a   variety   of  

datasets   and   phenotypes.  

M.   tuberculosis   resistance   is   equally   well   predicted   by   the   elastic   net.    We   first   evaluated   the   predictive  

performance   of   these   models   compared   to   more   complex   models,   with   and   without   population  

structure   control.   We   used   an    M.   tb    dataset   with   antibiotic   resistance   to   four   first-line   antibiotics  

(rifampicin,   isoniazid,   ethambutol   and   pyrazinamide).   As    M.   tb    has   no   accessory   genome   and   minimal  

core   gene   variation    (60) ,   comparison   with   more   complex   models   and   a   SNP   alignment   is   possible.  

Previous   work   has   evaluated   the   use   of   a   multitask   deep   neural   network,   and   when   comparing   this   to  

lasso   regression   found   comparable   accuracy    (5) .   Using   the   same   input   of   ~6500   short   variants   across  

the   allele-frequency   spectrum   for   these   3566   samples   (split   into   training   and   test   datasets)   led   to   an  

average   false-negative   rate   of   2%   ±   3%   in   the   unweighted   model   3%   ±   4%   in   the   weighted   model,   and  

false-positive   rate   of   11%   ±   8%   in   the   unweighted   model,   12%   ±   10%   in   the   weighted   model  

(Supplementary   table   5).   The   elastic   net   therefore   gives   similar   performance   to   the   lasso   as   shown  

previously,   as   well   as   the   more   complex   neural   network.   It   is   however   much   easier   and   faster   to   run  

on   standard   hardware,   and   gives   GWAS   results   which   are   far   more   readily   interpretable.  

In   this   case,   the   weighting   generally   performs   slightly   worse   than   an   unweighted   model.   The  

population   structure   of   this   sample   is   relatively   simple,   with   four   distinct   lineages.   This   is   likely  

well-captured   implicitly   by   the   unweighted   model,   so   the   categorical   weighting   is   of   lower   resolution.  

Sequence   reweighting   is   instead   expected   to   be   more   effective   in   datasets   with   more   complex  

structures,   or   when   adding   in   samples   which   are   genetically   distant   from   the   training   set    (42,   43) ,  

which   we   explore   this   further   in   the   next   section.   Applying   these   weights   did   allow   us   to   easily   see   that  

the   majority   of   errors   occurred   in   lineage   I,   which   has   deep   branches   forming   genetically   separated  

subclades,   with   generally   perfect   prediction   in   the   other   three   lineages.   

Prediction   of   pneumococcal   resistance   using   different   variant   types.    We   also   investigated   the  

advantages   of   the   use   of   unitigs   over   other   variant   calling   methods.   Using   the   same   SPARC   dataset  

described   above   for   β-lactam   and   erythromycin   resistance,   we   compared   computational   resources  

and   prediction   accuracy   using   SNPs,   k-mers   and   unitigs   (table   2).  
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Table   2:   Predicting   antibiotic   resistance   in   the   SPARC   collection   using   different   variant   types.  

Using   a   training:test   split   of   2:1,   prediction   accuracy   of   two   phenotypes   was   tested   using   90k   SNP  

calls   from   mapping   to   a   reference   genome,   and   with   730k   unitigs.   We   also   tested   prediction   using  

10M   variable   length   k-mers   to   illustrate   the   heavy   computational   resource   use   in   even   a   relatively  

small   dataset.  

Variant   type  Phenotype  Number  
selected  

False-positiv 
e   rate  

False-negativ 
e   rate  

CPU   time   Memory  
usage  

SNPs  β-lactam  4374  3%  7%  4.4   mins  1.3   Gb  

 Erythromycin  2341  3%  63%  4.1   mins  1.3   Gb  

Unitigs  β-lactam  8247  5%  7%  49.7   mins  18   Gb  

 Erythromycin  1591  9%  39%  52.6   mins  6.9   Gb  

K-mers  β-lactam  15121  6%  7%  7.0   hrs  212   Gb  

 

We   found   that   for   β-lactam   resistance   all   three   variant   types   gave   similar   predictive   accuracy,   with   the  

elastic   net   able   to   select   a   small   proportion   of   the   total   input   variants   in   each   case,   and   apparently  

fairly   insensitive   to   the   far   greater   noise   present   in   the   higher   dimensional   variant   types.   As   this  

resistance   is   due   to   allelic   variation   in   core   genes   we   expect   all   three   types   to   tag   the   causal   variation  

equally   well.   For   erythromycin,   where   causal   variants   are   not   all   found   in   core   genes,   we   observed   a  

reduction   in   false   negative   rate   when   using   unitigs.   Computational   usage   increased   roughly   as    NM    ( N  

number   of   samples;    M    number   of   variants).   For   common   variants,    M    reaches   an   asymptote   for   a  

given   population,   the   main   requirement   is   therefore   based   on    N .   For   all   methods   CPU   time   was  

modest,   but   memory   usage   may   pose   a   problem.   SNPs   are   tractable   on   a   laptop,   but   unitig   analysis  

likely   requires   a   compute   cluster   for   the   model   fitting   (using   a   fitted   model   on   test   data   requires  

negligible   resources).   K-mers   require   an   enormous   amount   of   memory,   which   would   not   scale   to  

larger   datasets.   Though   the   unitig   analysis   was   easy   to   schedule   on   our   cluster,   future   improvements  

to   reduce   memory   use   could   include   accessing   the   variants   as   they   are   needed   from   disk,   or   fitting  

the   elastic   net   in   chunks    (61) .  

Reduced   inter-cohort   accuracy   is   ameliorated   with   consistent   genetic   calls   and   population   structure  

control.    Random   splits   of   single   datasets   in   test   and   training   data,   while   convenient   for   analysis,   may  

mask   inter-dataset   differences   such   as   class   imbalance   (different   resistance   rates),   unobserved  

lineages,   and   technical   errors   (variant   calling)    (10) .   To   test   a   more   realistic   example,   where   a  

previously   fitted   model   is   used   to   predict   resistance   status   in   new,   unobserved   data,   we   set   up   a  

prediction   experiment   using   genomic   data   from   three   large,   very   different   pneumococcal   cohorts   with  

β-lactam   resistance:   SPARC   (603   US   children   covering   introduction   of   vaccine);   Maela   (3162  
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unvaccinated   infants   and   mothers);   GPS   (5820   globally   distributed   samples,   mostly   vaccinated).   We  

counted   unitigs   for   each   population   and   used   these   to   train   a   predictive   model.   These   models   were  

evaluated   on   the   data   they   were   trained   on,   and   on   the   other   two   cohorts   by   using   consistently   named  

unitigs   from   unitig-caller   (table   3).  

Table   3:   Comparison   of   intra-   and   inter-cohort   prediction   accuracy.    For   each   prediction   the   error  

rates   are   listed   along   with   overall   R 2 .   Cells   in   green   are   within-cohort.   The   first   three   rows   show  

results   with   sequence   reweighting;   the   second   three   rows   without   weighting.   For   SPARC   and   Maela  

phenotype   was   binary   (resistant/sensitive),   for   GPS   phenotype   was   continuous   (MIC).   Where  

conversion   was   needed,   we   applied   the   standard   breakpoint   of   MIC   >   0.12   mg/L   for   resistance.  

FNR   –   false-negative   rate;   FPR   –   false-positive   rate.  

Model  Number   of   selected  
unitigs   (%   in   pbp  
genes)  

SPARC   data  Maela   data  GPS   data  

SPARC   (sequence  
reweighting)  

5251   (10%)  FNR 0.063   
FPR 0.024   
R 2 0.837  

FNR 0.007   
FPR 0.239   
R 2 0.439  

FNR 0.149   
FPR 0.134   
R 2 0.505  

Maela   (sequence  
reweighting)  
 

6645   (14%)  FNR 0.446   
FPR 0.005   
R 2 0.276  

FNR 0.082   
FPR 0.042   
R 2 0.760  

FNR 0.029   
FPR 0.382   
R 2 0.425  

GPS   (sequence  
reweighting)  
 

894   (4%)  FNR 0.011  
FPR 0.411   
R 2 0.447  

FNR 0.144   
FPR 0.177   
R 2 0.458  

FNR 0.094   
FPR 0.200   
R 2 0.545  

SPARC  7261   (10%)  FNR 0.040   
FPR 0.013   
R 2 0.901  

FNR 0.012   
FPR 0.163   
R 2 0.487  

FNR 0.165   
FPR 0.130   
R 2 0.487  

Maela  8705   (9%)  FNR 0.397   
FPR 0.011   
R 2 0.339  

FNR 0.063  
FPR 0.036   
R 2 0.805  

FNR 0.049   
FPR 0.322   
R 2 0.449  

GPS  7511   (2%)  FNR 0.050   
FPR 0.152   
R 2 0.656  

FNR 0.319  
FPR 0.026   
R 2 0.452  

FNR 0.129  
FPR 0.037   
R 2 0.864  

 

Between-cohort   predictive   accuracy   was   considerably   lower   than   within-cohort   accuracy,   but   still  

outperforms   an   intercept   only   model   in   all   cases.   The   use   of   unitigs   proved   successful   –   repeating   the  

SPARC-Maela   comparisons   with   SNPs   led   to   sensitive   predictions   for   every   sample,   as   the   selected  

SNPs   were   called   as   missing   in   the   other   cohort.   To   fix   this   issue   with   SNPs   would   likely   require   a  

labour   intensive   mapping   and   joint   recalling   of   variation,   whereas   using   sequence   elements   can   use  

the   simple   search   implemented   in   unitig-caller.   Depending   on   the   specific   model   and   dataset  

combination,   errors   can   be   much   more   commonly   type   I   or   type   II,   possibly   reflecting   class   imbalance,  

despite   overall   resistance   rates   in   the   pneumococcus   being   stable    (62) .   The   GPS   cohort   gave   the  

worst   performing   model,   despite   it   being   the   largest   collection.   This   is   a   very   genetically   diverse  

sample,   which   introduces   more   potential   for   confounding   lineage   effects   to   enter   the   model.  
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Furthermore,   this   cohort   is   a   mix   of   sequences   isolated   from   both   asymptomatic   carriage   and   disease,  

whereas   SPARC   and   Maela   contain   only   asymptomatic   carriage.   The   GPS   cohort   is   enriched   with  

more   virulent   strains,   which   have   more   frequently   faced   treatment   with   antibiotics,   and   have   a   higher  

rate   of   resistance    (1,   63) .   

We   also   note   that   the   AUC   of   the   ROC   curve   is   misleadingly   high   (0.9185/0.9728   for   the  

weighted/unweighted   GPS   model),   and   would   encourage   the   reporting   of   error   rates   as   more   intuitive  

summaries   of   accuracy   for   bacterial   traits   such   as   resistance.  

We   found   that   sequence   reweighting   generally   reduced   prediction   accuracy   for   this   phenotype,  

although   the   LOSO   strategy   within-cohort   gave   more   representative   accuracy   estimates   for  

out-of-cohort   prediction,   and   more   of   the   selected   variants   were   in   the   causal   loci.   There   was   little  

difference   in   accuracy   between   using   mean   AF   imputation   for   missing   unitigs,   versus   calls   of   absence  

for   all   samples.   

Virulence   phenotypes   can   be   predicted   with   sequence   reweighting   preventing   overestimation   of  

accuracy .   Most   work   on   prediction   of   bacterial   phenotypes   have   focused   on   antibiotic   resistance,   but  

many   more   complex   phenotypes   relating   to   bacterial   virulence   are   now   available.   For   these  

phenotypes,   which   are   under   weaker   or   no   selection,   instead   of   a   few   strong   effects,   multiple   smaller  

effects   are   expected   in   the   genome    (28,   30,   54) .   Therefore,   a   model   which   may   include   more   of   these  

effects,   which   would   be   missed   with   a   p-value   threshold,   may   be   expected   to   perform   well.  

We   applied   our   method   to   predict   the   duration   of   asymptomatic   carriage   in   a   subset   of   the   Maela  

cohort,   which   can   easily   be   visualised   in   the   manner   of   a   linear   regression   (figure   4).   We   show   the  

observed   versus   predicted   values   for   the   training   and   test   sets,   both   with   and   without   sequence  

reweighting.   In   the   unweighted   test   set   R 2    (and    h 2 )   was   0.89   (top   left   panel),   but   the   test   R 2    was   only  

0.27   (bottom   left   panel),   showing   clear   overfitting.   With   sequence   reweighting   and   LOSO,   the   training  

and   test   estimates   were   much   closer   (right   panels,   0.37   and   0.28,   respectively).   In   this   case,  

sequence   reweighting   gave   a   more   realistic   heritability   estimate.    h 2    was   previously   estimated   to   be  

0.634   using   phylogenetic   pairs,   and   0.445   using   REML   –   these   may   be   overestimates,   especially   as  

these   revised   estimates   used   information   from   more   of   the   genome.   
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Figure   4:   Prediction   of   carriage   duration   and   the   effect   of   sequence   reweighting   on   heritability  

estimation.    For   the   same   training:test   split,   each   panel   shows   observed   log(carriage   duration)   values  

on   the   x-axis,   and   model-predicted   values   on   the   y-axis,   with   a   fitted   linear   regression.   The   left  

column   shows   the   unweighted   model   on   the   training   data   (top)   and   test   (bottom);   the   right   column  

shows   the   same   for   the   model   with   sequence   reweighting.  

We   also   tested   virulence   prediction   in   two    Streptococcal    species,   which   would   be   a   useful   application  

for   routine   pathogen   surveillance,   but   has   not   been   as   thoroughly   explored   as   resistance   prediction.  

Using    S.   pneumoniae    isolated   from   Dutch   adults,   we   fitted   a   model   which   selected   9701   unitigs.   This  

model   was   able   to   predict   meningitis   versus   carriage   genomes   (test   FPR:   0.059;   FNR   0.12)   and   gave  

a   similar    h 2    estimate   to   that   originally   reported   (0.65   vs.   0.70).   Comparing   tissue   infection   with  

carriage   of    S.   pyogenes    gave   a   model   with   5817   unitigs   which   had   a   higher   error   rate   than   the  

S. pneumoniae    model   (test   FPR   0.24;   FNR   0.25),   but   the   phenotype   had   a   correspondingly   lower    h 2  

estimate   of   0.343.  

  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 23, 2019. ; https://doi.org/10.1101/852426doi: bioRxiv preprint 

https://doi.org/10.1101/852426
http://creativecommons.org/licenses/by-nd/4.0/


 

DISCUSSION  

In   this   paper   we   developed   a   microbe-specific   implementation   of   a   machine-learning   tool,   and   showed  

how   this   can   be   used   to   better   understand   the   link   between   bacterial   genetic   variation   and   phenotypic  

variation.   Along   with   the   statistical   advantage   of   introducing   a   full-genome   multivariate   model,   we  

further   addressed   three   key   aspects   of   these   datasets   while   producing   our   open-access   software   tool.  

Pangenomic   variation   was   covered   using   a   unitig   definition   of   population   variation,   which   we   showed  

to   be   scalable,   unlike   k-mers,   and   better   suited   to   analysing   accessory   genome   variation   and  

inter-dataset   consistency,   unlike   SNPs.   Population   structure   was   accounted   for   using   the   implicit  

properties   of   the   elastic   net,   as   well   as   explicit   options   of   sequence   reweighting   and  

leave-one-strain-out   cross-validation.   We   maintained   a   clear   link   between   our   resulting   models   and  

underlying   genetics   by   combining   linear   models   with   a   suite   of   tools   to   interpret   the   variants   selected  

in   the   model.   This   had   the   further   advantage   that   it   significantly   reduced   the   number   of   sequence  

elements   to   be   processed   after   association.   Using   selected   unitigs   allowed   for   a   much   smoother   use  

of   the   interactive   plotting   software   phandango    (64) ,   which   is   one   of   the   fastest   ways   to   interpret  

bacterial   GWAS   results.   

 

Our   method   can   be   used   in   a   GWAS   context,   as   well   as   for   prediction.   We   showed   superior  

performance   to   univariate   models   in   simulated   settings,   and   using   real   data   from   two   species   showed  

how   this   method   can   be   combined   with   previous   approaches   to   understand   resistance   and   epistasis.  

We   also   obtain   useful   estimates   of   trait   heritability,   some   of   which   show   evidence   that   previous  

approaches   may   have   overestimated   this   quantity.   For   the   purposes   of   prediction,   on   a   simple   dataset  

we   replicated   the   result   that   regularised   linear   models   perform   similarly   to   more   flexible   deep   learning  

methods.   We   also   applied   our   method   to   a   range   of   datasets   from   different   species   and   phenotypes,  

including   resistance,   carriage   duration   and   virulence.   Though   our   models   generally   performed   well  

when   measured   on   error   rates,   an   experiment   with   models   on   three   separate   cohorts   showed   how  

accuracy   falls   outside   of   the   target   dataset.   External   datasets   may   have   different   strain   compositions  

due   to   different   biases   toward   more   or   less   virulent   strains,   geographical   separation,   vaccine   use   or  

antibiotic   consumption   in   the   population.   We   would   reiterate   the   caveat   that   while   these   models   can  

be   useful,   high   accuracy   on   test   data   should   not   be   taken   as   a   general   measure   of   confidence    (9) .  

Batch   differences   such   as   genotyping   methods   between   cohorts   exaggerate   this   problem,   so   a  

consistent   approach   (such   as   the   one   we   provide   here)   should   be   used.   Unsurprisingly,   curated  

resistance   sets   –   the   result   of   decades   of   research   –   still   generally   perform   better,   although   even   this  

in   silico   method   loses   accuracy   between   datasets    (24) .   Less   well   understood   and   potentially   polygenic  

phenotypes   such   as   virulence   offer   an   attractive   target   for   our   model,   as   we   demonstrated   on   two  

Streptococcal   pathogens.  

 

Along   with   these   theoretical   advances,   our   package   has   a   number   of   practical   advantages.   All   of   the  

elements   of   our   method   are   freely   available,   well-documented   and   part   of   a   continuous   unit-testing  
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framework.   Users   can   construct   and   evaluate   models   easily,   without   the   need   for   programming  

experience,   with   options   which   retain   the   flexibility   to   modify   the   model   parameters.   There   is   no   need  

for   specialist   hardware   such   as   the   graphics   cards   needed   to   fit   large   deep   learning   models.   The  

models   themselves   are   saved   in   a   human-readable   format,   and   are   easy   to   share   and   reuse   and  

have   minimal   hardware-specific   requirements.  

 

More   broadly,   we   have   considered   techniques   which   are   routinely   used   in   the   analysis   of   modern  

datasets,   which   are   generated   continuously   with   high-throughput   methods.   These   can   be   adapted   to  

perform   fundamental   tasks   in   bacterial   genomics   in   ways   which   are   useful,   and   that   scale   with   our  

ambitions   to   discovering   causal   drivers   and   predicting   phenotypes   from   the   genome   variation.  

Collections   of   high   quality   whole   genome   sequences   are   now   available   at   a   scale   that   would   have  

been   unfathomable   just   a   few   years   ago.   Many   of   these   datasets   are   publicly   available   already,   and  

many   more   are   being   generated   from   new,   larger   projects   and   routine   surveillance   by   public   health  

agencies.   Care   must   be   taken   to   assure   the   unique   properties   of   bacterial   populations   are   properly  

modelled,   and   that   we   use   appropriate   measures   of   success.   Complex   models   should   be   compared   to  

simple   models    (65)    –   not   just   in   terms   of   accuracy,   but   also   for   their   ability   to   look   at   underlying  

biology.   In   many   cases   the   limiting   factor   is   unlikely   to   be   model   flexibility.   With   our  

pangenome-spanning   penalized   regression   models,   we   hope   to   have   made   a   useful   and   usable  

contributions   that   respect   these   principles.  
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AVAILABILITY  

The   pyseer   package   is   available   as   source   code   at   the   GitHub   repository  

( https://github.com/mgalardini/pyseer ;   Apache   2.0   license),   documented   on   readthedocs  

( http://pyseer.readthedocs.io/ ),   and   available   for   install   on   bioconda  

( https://anaconda.org/bioconda/pyseer ).   The   unitig-counter   package   is   available   at   the   GitHub  

repository   ( https://github.com/johnlees/unitig-counter ;   AGPL   3.0   license),   and   available   for   install   on  

bioconda   ( https://anaconda.org/bioconda/unitig-counter ).   The   unitig-caller   package   is   available   at   the  

GitHub   repository   ( https://github.com/johnlees/unitig-caller ;   Apache   2.0   license),   and   available   for  

install   on   bioconda   ( https://anaconda.org/bioconda/unitig-caller ).  
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