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Abstract 11 

1. Remote detectors are being used increasingly often to study aquatic and aerial species, 12 

for which movement is significantly different from terrestrial species. While terrestrial camera-trapping 13 

studies have shown that capture frequency, along with the species’ movement speed and detector 14 

specifications can be used to estimate absolute densities, the approach has not yet been adapted to 15 

cases where movement occurs in three dimensions. Frameworks based on animal movement patterns 16 

allow estimating population density from camera-trapping data when animals are not individually 17 

distinguishable.  18 

2. Here we adapt one such framework to three-dimensional movement to characterize the 19 

relationship between population density, animal speed, characteristics of a remote sensor’s detection 20 

zone, and detection frequency. The derivation involves defining the detection zone mathematically and 21 

calculating the mean area of the profile it presents to approaching individuals.  22 

3. We developed two variants of the model – one assuming random movement of all 23 

individuals, and one allowing for different probabilities for each approach direction (e.g. that animals 24 

more often swim/fly horizontally than vertically). We used computer simulations to evaluate model 25 

performance for a wide range of animal and detector densities. Simulations show that in ideal 26 

conditions the method approximates true density well, and that estimates become increasingly accurate 27 

using more detectors, or sampling for longer. Moreover, the method is robust to invalidation of 28 

assumptions, accuracy is decreased only in extreme cases where all detectors are facing the same way. 29 

4. We provide equations for estimating population density from detection frequency and 30 

outline how to estimate the necessary parameters. We discuss how environmental variables and 31 

species-specific characteristics affect parameter estimates and how to account for these differences in 32 

density estimations.  33 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2019. ; https://doi.org/10.1101/852475doi: bioRxiv preprint 

https://doi.org/10.1101/852475
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

5. Our method can be applied to common remote detection methods (cameras and 34 

acoustic detectors), which are currently being used to study a diversity of species and environments. 35 

Therefore, our work may significantly expand the number and diversity of species for which density can 36 

be estimated.   37 

Keywords 38 

3D movement, ideal gas model, population density, population surveys, random encounter model, 39 

remote detectors 40 

  41 
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Introduction 42 

Remote detection methods like camera-traps originated for studying surface-dwelling species 43 

but are increasingly being used to study aquatic, arboreal, and airborne species. These technologies 44 

require considerably less effort and resources than alternatives like transects, particularly for long-term 45 

studies, and are less invasive. In aquatic studies, remote underwater video has allowed more efficient, 46 

extensive, and less biased sampling than diver-based surveys (King, George, Buckle, Novak, & Fulton, 47 

2018; Mallet & Pelletier, 2014). Similarly, acoustic detectors are becoming a more accessible and 48 

popular tool for studying and monitoring a variety of taxa such as birds (Blumstein et al., 2011; Celis-49 

Murillo, Deppe, & Allen, 2009), echolocating bats (Marques et al., 2013), and even fishes that produce 50 

species-specific sounds, especially with the aid of automatic identification algorithms (Lindseth, Lobel, 51 

Lindseth, & Lobel, 2018). Camera-traps in turn have been useful to study the demographics of elusive 52 

species or to learn about biodiversity across different spatial scales (Ahumada et al., 2011; Barea-Azcón, 53 

Virgós, Ballesteros-Duperón, Moleón, & Chirosa, 2007; Karanth, Nichols, Kumar, & Hines, 2006).  In 54 

every case, the technologies, software and analysis methods are constantly evolving (Burton 2015).  55 

Two decades of theoretical developments have created a vast literature of methods for 56 

estimating the density of wild populations from camera-trapping data, and some of these methods can 57 

be adapted to other types of detectors. Mark-recapture methods, for example, have been used to study 58 

aquatic species with individually recognizable spots like whale sharks (Rhincodon typus) and eagle rays 59 

(Myliobatidae) (González-Ramos, Santos-Moreno, Rosas-Alquicira, & Fuentes-Mascorro, 2017; Meekan 60 

et al., 2006). However, most species lack individual markings and are therefore not amenable to these 61 

approaches (e.g., Karanth et al. 2006). For these species, existing frameworks for estimating density 62 

either provide relative estimates only [e.g. detection frequency, minimum number of detected 63 

individuals (Sherman, Chin, Heupel, & Simpfendorfer, 2018), maximum number of conspecifics in a 64 

single frame (Willis, Millar, & Babcock, 2000)], or make assumptions about how animals move for 65 
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estimating absolute density [e.g. movement around a home range centre (Campos-Candela, Palmer, 66 

Balle, & Alós, 2018), random walks (Nakashima, Fukasawa, & Samejima, 2018), ideal gas movement 67 

(Rowcliffe, Field, Turvey, & Carbone, 2008)]. These movement-based frameworks need to be adapted 68 

for key differences between terrestrial and aquatic or aerial species that perceive the world and move in 69 

three dimensions. 70 

One approach for estimating population density when individuals cannot be distinguished is the 71 

Random Encounter Model (REM), formalized for encounters between animals and camera-traps by 72 

Rowcliffe et al. (2008). The model assumes that animals move like ideal gases (in straight lines, in 73 

random directions, with constant speed) and as a result the frequency at which a species is 74 

photographed by camera-traps (henceforth, “detection frequency”) scales positively with the number of 75 

individuals present in an area (i.e. population density), the species’ mean speed, and the size of the 76 

camera’s detection zone. This relationship can therefore be used to estimate density from the detection 77 

frequency. While this method requires more information about a study species than relative abundance 78 

measures, it considerably expands the number of species for which density can be estimated using 79 

camera-traps. The REM framework can be adapted to species that move in three dimensions rather than 80 

two, considering the three-dimensional shape and size of the detection zone.  81 

Here, we present such an adaptation to estimate absolute density for aquatic species, using 82 

underwater cameras, and for birds and echolocating species, using acoustic sensors. Our adaptation 83 

substantially expands possibilities for estimating density from remote detection methods when species 84 

can be identified but individuals cannot. This method only requires the detection frequency of a species, 85 

information about the sensor’s detection zone, and an estimate of the species’ speed. We provide two 86 

alternatives; the first assumes completely random movement (within the specifications of the ideal gas 87 

framework, cf. below), while the second allows accounting for biases in movement direction (e.g. that 88 

fish more often swim parallel, rather than perpendicular, to the bottom). First, we will explain the 89 
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framework in detail, highlighting the importance of an accurate mathematical description of the 90 

detection zone. We will then develop the formulae for density for two types of detectors and test our 91 

estimator’s performance using computer simulations. 92 

Materials and Methods 93 

1. Model Derivation 94 

1.1. The Random Encounter Model framework 95 

The REM method for estimating density of unmarked animals from camera-trapping data is 96 

based on the idea that the encounter rate between a stationary detector and animals of a given species 97 

scales linearly with the species’ density (see Hutchinson & Waser, 2007), with a scaling factor that 98 

depends on the species’ movement characteristics and the detector’s ability to record animals that are 99 

passing by at various distances (Rowcliffe et al., 2008). This relationship is summarized as: 100 

𝐷 =
𝑓

�̂��̅�
 (1) 111 

where D is animal density, f is detection frequency, and v ̄is mean animal movement speed (See Table 1 101 

for description of parameters). The scaling constant �̂� can be thought of as the mean distance (in 2D) or 102 

area (in 3D) sampled instantaneously by the detector over all possible directions, and therefore depends 103 

on the sensor’s technical specifications (opening angles and maximum detection distance) and on 104 

environmental variables (e.g. water clarity, foliage or clutter). Here, we will derive an equation for �̂� for 105 

the three-dimensional case. The main steps are 1) determining the shape of the detection zone, 2) 106 

describing it mathematically, and 3) calculating the mean area of its two-dimensional projection. The 107 

result is used directly in equation 1 to estimate density from capture frequency. We explain in more 108 

detail the projection of the detection zone in Section 2 and derive the density estimator in Section 3. We 109 

then test the performance of our estimator with computer-simulated capture data. 110 
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Table 1. Parameters used in the derivation of the 3D random encounter method for estimating 112 

animal densities. 113 

Parameter Description 

�̂� Mean area of the 2D projection of the 3D detection zone.  

S, Si Surface area of the detection zone, and of its components i. 

s Maximum distance from the detector at which animals can be 

detected 

𝜙 Opening angle of the detector, corresponding to the diagonal field of 

vision in a camera. 

κ, λ, γ Horizontal, vertical and diagonal fields of vision of a cropped (camera) 

detector.  

μ, ν Opening angles of the disc sectors that make up the sides of a 

camera’s detection zone 

ω, θ Angles describing the direction of an animal approaching the detection 

zone, relative to the detector’s direction.  

D Population density [animals per unit volume] 

�̅� Mean movement speed of the study species 

f Detection frequency: the number of independent recordings of a 

species by a detector, divided by deployment time 

 114 

1.2. Profile of the detection zone, extension from 2D to 3D 115 

For terrestrial camera-traps, where animals move in two dimensions only, �̂� in equation 1 is the 116 

mean profile width of the camera’s detection zone, as presented to approaching animals. Given the 117 

shape of the detection zone, the profile width depends on the direction of approach (Fig. 1). While not 118 

explicitly stated by Rowcliffe et al. (2008), the “profile” is the projection of the detection zone onto a 119 

line perpendicular to the direction of approach. One can therefore use Cauchy’s surface area theorem 120 

(Cauchy, 1841) to calculate the mean profile width. This theorem states that the average projected area 121 

of a convex body is proportional to its surface area. The mean profile width of the two-dimensional 122 

detection zone is its perimeter P multiplied by a constant: 123 

�̂� =
1

𝜋
𝑃 (2) 124 
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which is the same as equation 2 in Rowcliffe et al. (2008). The theorem can readily be applied to 125 

determine the mean profile of a three-dimensional detection zone.  126 

 127 

Figure 1. The different profiles presented by the detection zone of a remote detector to an approaching animal 128 

in two (left) or three dimensions (center). In 2D, profiles are lines, while in 3D they are surfaces. The silhouettes 129 

A and B (right) show the profiles presented to individuals approaching from directions A and B, respectively.  130 

 131 

 132 

In the case of a three-dimensional detection zone, equation (1) still holds, with the difference 133 

that �̂� corresponds to an area instead of a length. This area is nonetheless the projection of the 134 

detection zone onto a lower-dimensional object, i.e. onto a plane. According to Cauchy’s theorem, the 135 

mean projected area of a three-dimensional object is obtained from the surface area S as: 136 

�̂� =
1

4
𝑆 (3) 137 

(Cauchy, 1841; Vouk, 1948). To calculate S, we will define the detection zone for two types of sensors: a 138 

generic sensor with a conical detection zone (acoustic detectors), and the special case of a sensor with a 139 

cropped image (i.e. cameras). For acoustic detectors we also determined how to calculate density when 140 
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there is bias in directions of approach relative to the direction of the detector, for example bats flying 141 

most frequently horizontally into a detection zone facing up. 142 

 143 

2. Definition of the detection zone  144 

A remote detector’s detection zone is generally determined by two parameters: detection angle 145 

and maximum distance from which a signal is detectable. Geometrically, this translates into a cone with 146 

a convex base. Acoustic detectors report signals no matter where in this zone they occur, but for 147 

cameras some near-boundary signals are lost when images are cropped to a rectangular frame. As such, 148 

acoustic detectors have the full “conical-with-hat-shaped” detection zone (Fig. 2A), whereas cameras 149 

have a subset of this region defined by the horizontal and vertical angles of view (Fig. 2D). In Section 3.1, 150 

we derive expressions to calculate the surface area for both detector types and use Cauchy’s theorem to 151 

calculate the respective mean profile area. This method applies if we assume that all directions of 152 

approach are equally likely. In section 3.2, we relax this assumption and consider potential biases in the 153 

direction of approach. 154 
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 155 

Figure 2. Perspective of the detection zone of (A) an acoustic detector and (D) a camera, where the image is 156 

cropped into a rectangle. We decomposed both types of detection zone into bottom and top sections to 157 

calculate their surface areas: for acoustic detectors, we considered the lateral surface area 𝑺𝑺 of a cone (B), and 158 

the area 𝑺𝑪 of a spherical cap (C); for cameras, we considered the surface area 𝑺𝑳 of four disc segments (E) and 159 

the area 𝑺𝑹 of a spherical rectangle (F). Parameters are φ: opening angle of the detector, s: slant height of cone, 160 

b: basal radius of the cone, h: height of the spherical cap, μ and ν: angles of the disc segments that make up the 161 

sides of the cropped detection zone, κ and λ: horizontal and vertical fields of vision of the camera  162 

 163 

2.1. Uniformly distributed approach directions 164 

To calculate the surface area of an acoustic sensor’s detection zone, we divide the detection 165 

zone into two components: a conic base (Fig. 2B) and a spherical cap (Fig. 2C). The lateral surface area of 166 

the cone is calculated from the slant height, s (i.e. the maximum detection distance), and the cone’s 167 

basal radius, b, as:  168 
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𝑆𝐶 = 𝜋𝑏𝑠

𝑆𝐶  = 𝜋𝑠
2 sin

𝜙

2
(4)

 169 

where 𝜙 is the detector’s opening angle. The spherical cap’s surface area is 𝑆𝑆 = 2𝜋𝑠ℎ (Kern & Bland, 170 

1938), where h is the cap’s height, given by ℎ = 𝑠(1 − cos
𝜙

2
) (Appendix A1), so: 171 

𝑆𝑆 = 2𝜋𝑠
2 (1 − cos

𝜙

2
) (5) 172 

Combining equations (4) – (5), we obtain the mean profile area of an acoustic detector’s detection zone:  173 

𝑝𝑎�̂� =
1

4
(𝑆𝐶 + 𝑆𝑆) 174 

𝑝𝑎�̂� =
1

4
(𝜋𝑠2 sin

𝜙

2
+ 2𝜋𝑠2 (1 − cos

𝜙

2
)) 175 

𝑝𝑎�̂� =
1

4
𝜋𝑠2 (2 − 2 cos

𝜙

2
+ sin

𝜙

2
) (6) 176 

Cauchy’s theorem is only valid for convex bodies, so equation 6 only applies when the detection 177 

angle is smaller than π (180°) or equal to 2π (360°). The latter occurs when signals can be detected from 178 

any direction, as is the case with omnidirectional microphones. Consider for example an acoustic 179 

detector with a detection angle of 90° (π/2 rad) that can detect signals from 10 meters away. 180 

Substituting s and ϕ in eq. 6 we obtain:  181 

𝑝𝑎�̂� =
1

4
𝜋 × 102 (2 − 2 cos (

1

2
×
𝜋

2
) + sin (

1

2
×
𝜋

2
)) 182 

𝑝𝑎�̂� = 101.5 𝑚
2 183 

To calculate the surface area of a camera’s detection zone, we note that image cropping creates 184 

a detection zone bounded by a spherical rectangle cap sitting atop two pairs of disc sectors of radius s 185 

and delimited by angles μ and ν (Fig. 2D). These angles are related to the vertical (λ), horizontal (κ), and 186 

diagonal (γ) fields of vision of the camera, of which at least one is normally provided by the 187 
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manufacturer (see Appendix A3 for how to calculate the unknown angles). As the surface areas of the 188 

disc sectors are given by 𝑆𝜈 = 𝜋𝑠
2 𝜈

2𝜋
 or 𝑆𝜇 = 𝜋𝑠

2 𝜇

2𝜋
, respectively, the total lateral surface area of the 189 

camera’s detection zone, SL (Fig. 1E), becomes 190 

𝑆𝐿 = 2𝑆𝑣 + 2𝑆𝜇 = 𝑠
2(𝜇 + 𝜈) (7) 191 

Furthermore, the surface area of the spherical rectangle cap, SR (Fig. 1F), is obtained by multiplying the 192 

surface area of a sphere of radius s by the proportion of the sphere occupied by the spherical rectangle: 193 

𝑆𝑅 = 4𝜋𝑠
2  
Ω

4𝜋
 194 

= s2Ω (8) 195 

where Ω is the solid angle delimited by the horizontal and vertical fields of vision, κ and λ, given by 196 

(Appendix A2): 197 

Ω = 4arcsin
tan

𝜅
2 tan

𝜆
2

√1 + tan2
𝜅
2
√1 + tan2

𝜆
2

(9) 198 

The mean profile area for a camera is therefore: 199 

𝑝𝑐𝑎�̂� =
1

4
(𝑆𝐿 + 𝑆𝑅)

𝑝𝑐𝑎�̂� =
1

4

(

 
 
𝑠2(𝜇 + 𝜈) + 4𝑠2 arcsin

tan
𝜅
2 tan

𝜆
2

√1 + tan2
𝜅
2
√1 + tan2

𝜆
2)

 
 

𝑝𝑐𝑎�̂� =
1

4
𝑠2

(

 
 
𝜇 + 𝜈 + 4arcsin

tan
𝜅
2 tan

𝜆
2

√1 + tan2
𝜅
2
√1 + tan2

𝜆
2)

 
 

(10)

 200 

Consider for example an underwater camera with horizontal and vertical fields of vision (FOV) of 201 

122.6° (2.1 rad) and 94.4° (1.6 rad), respectively (these correspond to a GoPro Hero 7 using a wide 4:3 202 
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aspect ratio). Using eq. S3.2 we obtain a diagonal FOV of 154.5° (2.7 rad) and using eq. S3.4 we obtain 203 

the lateral angles μ = 142.1° = 2.5 rad and ν = 125.2° = 2.2 rad. Substituting these values in eq. 10, 204 

assuming again a detection distance of 10 m, we obtain the mean profile area for this camera: 205 

𝑝𝑐𝑎�̂� =
1

4
× 102

(

 2.5 + 2.2 + 4 arcsin
tan

2.1
2
 tan

1.6
2

√1 + tan2
2.1
2
√1 + tan2

1.6
2 )

  206 

𝑝𝑐𝑎�̂� = 186.6 𝑚2 207 

2.2. Bias in direction of movement 208 

The method described above for calculating the detection zone’s mean profile area �̂� assumes 209 

that every direction of approach is equally likely. However, some angles of approach could occur more 210 

frequently than others depending both on the study species and the placement and orientation of the 211 

detector. Picture, for example, fish moving in a stream in the direction of the current. The profile 212 

presented to all of them by a camera is the same and the effective mean profile area is greater or lower 213 

than the expected mean profile area, depending on which way the detector is facing. To account for 214 

these biases, we derive formulae to calculate the detection zone’s projected area 𝑝 for any direction of 215 

approach and then weight these according to the probability of approach directions. As these 216 

calculations quickly become lengthy and complicated, we here summarize the approach for acoustic 217 

detectors and provide detailed calculations in Appendix A4.  218 

The mean profile area is given by: 219 

�̂� =
1

π
∫ 𝑃(𝜔)𝑝(𝜔) 𝑑𝜔
𝜋

0

(11) 220 

where P(ω) is the probability that an individual approaches the detector at angle ω, and p(ω) gives the 221 

profile area corresponding to that direction. Depending on ω – the angle relative to the direction of the 222 
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detector – the different components of the detection zone may be visible or hidden.  We obtain 223 

therefore four different formulae to calculate p(ω): 224 

𝑝(𝜔) =

{
 
 
 

 
 
 𝑎𝑒 , sin𝜔 ≤ sin

𝜙

2
 𝑎𝑛𝑑 sin𝜔 ≤ cos

𝜙

2

𝑎𝑒 + 𝑎𝑑 , sin𝜔 ≤ sin
𝜙

2
 𝑎𝑛𝑑 sin𝜔 > cos

𝜙

2

𝑎𝑒 + 𝑎ℎ , sin𝜔 > sin
𝜙

2
 𝑎𝑛𝑑 sin𝜔 ≤ cos

𝜙

2

𝑎𝑒 + 𝑎𝑑 + 𝑎ℎ , sin𝜔 > sin
𝜙

2
 𝑎𝑛𝑑 sin𝜔 > cos

𝜙

2

(12) 225 

The first element, 𝑎𝑒, corresponds to the area of the projection encompassed by the base of the cone 226 

(area I in Fig. 3), while the areas 𝑎ℎ and 𝑎𝑑 are the projections of the visible parts of the spherical cap 227 

(area II) and the cone (area III). The derivation of ae, ah, ad, and the rationale behind them are given in 228 

Appendix A4. 229 

 230 

Figure 3. Perspective of a conic detection zone (left), showing the angles ω and θ that define the direction of 231 

approach of an individual. Different angles ω result in different profiles (right). The labels indicate the different 232 

areas that need to be calculated in each case; I is the area of the projection encompassed by the circle at the 233 

base of the cone, II is the projection of the spherical cap, III is the projection of the cone’s sides. 234 

 235 
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3. Simulation tests 236 

We tested the formula for estimating density from detection frequency using computer 237 

simulations. Firstly, these serve to confirm that the method performs well under ideal conditions (i.e. 238 

when all model assumptions are met and perfect information about the species’ movement is available) 239 

and secondly to test the robustness to invalidation of assumptions. The assumptions regarding animal 240 

movement are those of the ideal gas model: individuals moving in a straight line, in random directions, 241 

and at a constant speed. We assumed perfect detection and an exact knowledge of the detection 242 

distance and opening angle and evaluated the method’s performance for a range of animal densities 243 

and detector numbers. Furthermore, to determine the robustness of our method, we evaluated its 244 

performance for the following scenarios: (i) allowing variation in speed by randomly selecting different 245 

individual speeds; (ii) allowing a non-random distribution of approach directions by randomly selecting 246 

individual ‘tilt’ angles, combined with realistic scenarios of detector placement and orientation.  247 

We set up the simulation as follows: Individuals were distributed at random locations within a 248 

cube of side 10, and each one was assigned a random direction (x, y, z vector components drawn from a 249 

uniform distribution from -1 to 1). All individuals moved at the same speed and bounced back into the 250 

cube if they reached the reflective boundaries. We tested the density estimator for a range of densities 251 

between 0.1 and 10 ind.uv-1 (individuals per unit volume), i.e. between 100 and 10000 individuals.  252 

We placed between 5 and 25 detectors facing in random directions at random locations within 253 

the ‘sampling zone’, a cube of side 4 situated at the centre of the larger cube. We set a detection 254 

distance of 0.5 ud (unit distance) and a detection angle of 45°, which yields a mean profile area of 0.105 255 

ua (unit area) (equation 6).  256 

We set movement speed equal to one length of the detection radius per time step and ran each 257 

simulation for 40 steps. We counted an encounter whenever an individual entered a detection zone. 258 
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Thus, we obtained for each step and each detector the total number of detections up to that time point. 259 

We calculated the detection frequency f by dividing this cumulative count by the number of steps and 260 

then divided f by the mean profile area and the movement speed to estimate density (eq. 1). We 261 

recorded the mean estimated density across all detectors at every time step. We also determined how 262 

performance changed with effort both in terms of the number of detectors and sampling time. 263 

To test how variability in speed among individuals affected density estimates, we ran 264 

simulations assigning each individual a speed drawn at random from a normal distribution with mean 265 

0.5 ud/step, and with standard deviation between 0 and 0.1 ud/step. Similarly, to determine the effect 266 

of having biased movement directions, we drew the vertical (z) component of the individual direction 267 

vectors from a truncated normal distribution centred around 0 and bounded between -1 and 1, so that 268 

most individuals would move near horizontally. We assessed the effect of this bias on the performance 269 

of the estimator for several scenarios of detector distribution (regular spacing of detectors in 2D on a 270 

plane, regular spacing in 3D throughout the sampling cube, random distribution in 3D) and orientation 271 

(all horizontal, all vertical, random). These simulations were run with ten detectors. 272 

We iterated each scenario 100 times, and assessed model performance by calculating the bias, 273 

precision and accuracy of the density estimate relative to the real density at the end of each simulation. 274 

We used the scaled mean error (SME), the coefficient of variation (CV) and the scaled mean square error 275 

(SMSE) as indicators of bias, precision, and accuracy, respectively: 276 

𝑆𝑀𝐸 =
1

𝐴𝑛
∑(𝐸𝑗 − 𝐴)

𝑛

𝑗=1

 277 

𝐶𝑉 =
𝑆𝐷

�̅�
 278 

𝑆𝑀𝑆𝐸 =
1

𝐴2𝑛
∑(𝐸𝑗 − 𝐴)

2
𝑛

𝑗=1

 279 
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where Ē is the mean density estimate, Ej is the density estimate of the jth iteration, SD is the standard 280 

deviation of density estimates across iterations, A is the real density, and n is the number of iterations 281 

(Walther & Moore, 2005). The bias metric SME indicates whether the true value is over- or 282 

underestimated, the precision metric CV indicates the variability among estimates, and the accuracy 283 

metric SMSE measures both bias and precision in a single index. The closer to zero each index is, the 284 

better the performance of the estimator.  285 

 286 

Results 287 

Simulations show that, under ideal conditions, the estimated density closely approximates the 288 

real density. Regardless of the number of detectors used, the estimate density was within 5% of the real 289 

value at the end of each simulation (Fig. 4A), and the standard deviation was no larger than 30% of the 290 

mean estimate (Fig. 4B). The overall performance of the method nonetheless depended on sampling 291 

effort, both in terms of the number of detectors and the sampling time. The lowest number of detectors 292 

yielded the greatest bias and the lowest precision and accuracy, and all indices improved substantially 293 

with the deployment of additional detectors (Fig. 4A-C).  Moreover, bias also decreases, and precision 294 

and accuracy increase, as sampling time increases (Fig. 4D-F), meaning that in real-life applications a low 295 

availability of detectors could at least be partially compensated for by longer sampling times.  296 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 23, 2019. ; https://doi.org/10.1101/852475doi: bioRxiv preprint 

https://doi.org/10.1101/852475
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

 297 

Figure 4. Performance of the 3D density estimation method for different levels of effort. The top row shows the 298 

mean bias, precision, and accuracy metric values at the end of the simulations as a function of the number of 299 

detectors deployed. The bottom row shows the change in these metrics as time progresses in the simulation.  300 

 301 

The real density did not seem to bias the estimator, except at extremely low densities (Fig. 5A). Precision 302 

(Fig. 5B), and thus overall accuracy (Fig. 5C), however, depended strongly on the population’s density, 303 

with the estimator’s CV decreasing by a factor of more than 9 between the lowest (0.1 ind.uv-1) and 304 
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highest (10 ind.uv-1) densities considered.305 

 306 

Figure 5. Effects of population density (top row), and among-individual variability in movement speed (bottom 307 

row) on the performance of the 3D density estimation method. All parameters were as described in the text, 308 

using in particular a constant mean speed of 0.5 ud/step in the top row, and varying the speed among 309 

individuals by drawing from a normal distribution with standard deviation between 0 and 0.1 ud in the bottom 310 

row.  311 

 312 

 The simplifying assumption of equal movement speeds among individuals appears to be robust, 313 

as introducing among-individual variance in speed did not noticeably affect the estimator’s bias, 314 

precision, or accuracy (Figs. 5D-F).  315 

Having biases in the direction of movement, however, did decrease performance in some scenarios, 316 

particularly when all individuals were moving horizontally, i.e. with a standard deviation of zero around 317 
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the mean direction. In this case, precision and accuracy decreased when detectors were placed on a 318 

single plane and oriented vertically (Fig. 6D, G) or horizontally (Fig. 6E, H). Conversely, detectors 319 

distributed regularly or randomly across the 3D space yielded similar accuracy and precision estimates 320 

for all cases of movement direction bias. Nevertheless, there was virtually equal performance regardless 321 

of detector placement when detectors faced in random directions (Fig. 6F, I). Moreover, the random 322 

orientation of detectors also generally lowered the estimator’s bias compared to the scenarios where all 323 

detectors were facing vertically or horizontally (contrast Figs. 6A-C).324 

 325 

Figure 6. Effects of sampling strategies and animal movement bias on the performance of the 3D 326 

density estimation method. Columns represent the orientation of detectors: all vertical (left), all horizontal 327 
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(middle) or all random (right). Symbols show the distribution of detectors: regular spacing on a 2D plane 328 

(circles), regular spacing in 3D throughout the sampling cube (triangles), and random distribution in 3D 329 

(squares). Parameters are as described in the text, using in particular a vertical direction component drawn at 330 

random from a truncated normal distribution centred at 0 with standard deviations between 0 and 5 to show 331 

direction bias. 332 

 333 

Discussion 334 

We have outlined a method to use remote detectors such as underwater cameras or acoustic 335 

sensors to estimate population density from an encounter rate. The underlying random encounter 336 

model was originally proposed and tested as a density estimator for species moving in a two-337 

dimensional terrestrial environment by Rowcliffe et al. (2008), and our calculations now allow its 338 

adaptation to species that move in three dimensions such as fishes, birds and bats.  The basic 339 

requirements regarding detector specifications and information on movement speed remain the same 340 

as for the two-dimensional case. 341 

Simulations show good performance of the estimator, low levels of bias, and a high degree of 342 

precision. Such consistent performance was expected when all assumptions were met, which may not 343 

be the case in real-life applications. We showed, however, that the method is robust to violations of 344 

assumptions. There was very little effect of increased variance in speed among individuals, or of bias in 345 

direction. Furthermore, our simulation results suggest that any effect could be limited or altogether 346 

eliminated simply by orienting detectors in different directions, even when detectors are placed on a 347 

single plane (on the ground, for example).  348 

Performance is significantly influenced by sampling effort as it relates to the real density, in 349 

terms of both time and number of detectors. At low densities especially, insufficient effort could result 350 
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in an over- or underestimation of density. An advantage of using a method based on movement models 351 

is that researchers can use the same framework to calculate the effort needed beforehand. Rearranging 352 

eq. 1 and substituting density and speed with prior information allows calculating an expected capture 353 

frequency. We saw no bias at higher densities, but we expect that in practice extremely high densities 354 

(e.g. in fish schools) may prevent properly counting individuals, resulting in underestimated densities. In 355 

these cases, researchers could first estimate a density of groups and obtain overall density by 356 

multiplying this estimate by an independently calculated mean group size (Rowcliffe et al. 2008).  357 

Our method can be applied in cases where a lack of individual markings impedes the use of 358 

mark-recapture techniques. It is also an improvement over indices of relative abundance such as the 359 

maximum or mean number of conspecifics in a single frame (Schobernd, Bacheler, & Conn, 2014; 360 

Sherman et al., 2018). These metrics are commonly used to analyse footage from baited-remote-361 

underwater-video-stations (BRUVS), but can underestimate true abundance (Cappo, Harvey, Malcolm, & 362 

Speare, 2003; Stobart et al., 2015). We know of no similar tools to estimate abundance from acoustic 363 

detectors. These sensors allow to identify species and count passages through the detection zone, so 364 

our method is also applicable with these technologies, provided the detection zone and mean species 365 

speed can be accurately measured. 366 

For many species, mean speed will not be immediately available in the literature but could be 367 

approximated with additional measurements. For example, using two cameras in a stereo arrangement, 368 

the footage from both could be used to estimate speed (Somerton, Williams, & Campbell, 2017; 369 

Williams, Rooper, & Towler, 2010) and – using only one of the two cameras – population density in the 370 

same study.. Movement If detectors are deployed for several days the estimation of mean speed must 371 

include periods of inactivity (see Carbone, Cowlishaw, Isaac, & Rowcliffe, 2005). Ideally, surveys should 372 

be conducted at the same time of day when working in different sites, during the species’ daily activity 373 

peak. 374 
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Additional to speed, an exact characterization of the detection zone is required to estimate 375 

density accurately. This zone is determined first by the opening angle (for acoustic detectors), or the 376 

horizontal and vertical fields of vision (for cameras), usually given by the manufacturer. However, action 377 

cameras commonly used in remote underwater surveys have wide-angle lenses, which distort the 378 

image. Because of this, the diagonal field of vision will not correspond to the angle calculated assuming 379 

a rectilinear lens (see Appendix A3). The additional area in the projection due to the distortion should be 380 

small, so we suggest assuming a rectilinear lens for consistency.  381 

The second element needed to characterize the detection zone is the detection radius. Unlike 382 

the opening angles the detection radius is influenced by environmental variables. For example, for 383 

underwater cameras, detection distance depends on visibility (i.e. turbidity), which should be 384 

considered when comparing densities across sites. Similarly, for acoustic detectors, atmospheric 385 

conditions like temperature and humidity affect how far an acoustic signal travels, effectively influencing 386 

the detection distance for birds and bats (Lawrence & Simmons, 1982; Snell-Rood, 2012). In both 387 

aquatic and aerial surveys, physical obstacles such as vegetation will also limit detectability; for instance, 388 

detection of bats with low-frequency calls (25 kHz) is significantly hindered by habitat structure 389 

(Patriquin, Hogberg, Chruszcz, Barclay, & Barclay, 2003; Weller & Zabel, 2002).  390 

Environmental variables also interact with species-specific traits, generating different detection 391 

distances even under comparable environmental conditions. For example, cameras can detect larger 392 

species further than smaller species, and acoustic detectors will detect species with lower frequency or 393 

more intense calls at greater distances from than species with high-frequency calls (Jakobsen, Brinkløv, 394 

& Surlykke, 2013; Lawrence & Simmons, 1982; Snell-Rood, 2012; Surlykke & Kalko, 2008). Given the 395 

multiple factors that influence detection distance, we suggest an ad-hoc calculation for every system, for 396 

example placing a model of the study species progressively further from a camera until it is no longer 397 

recognizable. With acoustic detectors the same can be done using a speaker at a range of distances. 398 
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Our calculations are performed for individual detectors, but, as our simulations show, the best 399 

results are obtained when averaging across multiple detectors. Improved performance using more 400 

detectors is to be expected, as averaging across detectors minimizes possible sampling errors (Rowcliffe 401 

et al., 2008). Using more detectors also reduced variability across trials, implying that less effort is 402 

required to obtain accurate density estimates. Sampling designs should seek to maximize the number of 403 

encounters with a target species. using a number and spacing of detectors that capture the movement 404 

of the species of interest, while maintaining independence across detectors (Keiter et al., 2017). 405 

Finally, we note that detection zones can also be affected by placement. Cameras placed in 406 

shallow streams, for example, could have their detection zone cut at the top by the surface and at the 407 

bottom by the substrate. In these cases, the resulting video frames can be cropped so that neither the 408 

ground nor the surface are visible, and the fields of vision and capture frequency recalculated 409 

accordingly (this would be equivalent to having a camera with narrower field of vision).  If topography 410 

permits, one can prevent the issue of an incomplete detection zone by placing the camera in mid-water 411 

such that neither the water surface nor the bottom are visible. This would be a departure from current 412 

designs that set cameras on the ground but would avoid the issue of cropping the detection zone. For 413 

benthic species or very shallow streams none of these solutions might be feasible, and we would 414 

recommend using a 2D approach. 415 

In summary, we have proposed a method for estimating density in three dimensions using data 416 

from remote detectors, which can be used in ecological and conservation research and as a monitoring 417 

tool. The description of detection zones provided will be useful in translating other density estimation 418 

methods that are also based on the ideal gas model (Campos-Candela et al., 2018; Moeller, Lukacs, & 419 

Horne, 2018). There is an extensive and growing literature characterizing sampling requirements for 420 

camera-traps in two dimensions, but such considerations are practically non-existent for species moving 421 

in three dimensions (Burton et al., 2015; O’Connell, Nichols, & Karanth, 2010). Our analyses allow 422 
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extending these considerations to three dimensions, and it is our hope that our work will prompt new 423 

study designs and applications of remote detection methods to study a broader range of species and 424 

environments. We lay out the theoretical foundation of the method but recognize that it will require 425 

empirical validation. The sampling of aquatic, airborne, and arboreal species each comes with intrinsic 426 

challenges and field trials must be conducted to confirm that the method performs in real conditions as 427 

well as predicted by simulations. Given the existing camera-trapping literature and the use of 428 

underwater cameras to estimate abundance, we believe the application of our method will be more 429 

straightforward in underwater censuses. The application to acoustic detectors will require further work 430 

to characterize the detection zone, as currently there is no quantitative way to measure the detection 431 

distance under different environmental conditions. Thus, the requirements of our method open new 432 

avenues of research in remote detection.  433 
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