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1 Abstract5

A multiple-trait Bayesian LASSO (MBL) for genome-based analysis and prediction of quanti-6

tative traits is presented and applied to two real data sets. The data-generating model is a7

multivariate linear Bayesian regression on possibly a huge number of molecular markers, and8

with a Gaussian residual distribution posed. Each (one per marker) of the T × 1 vectors of9

regression coeffi cients (T : number of traits) is assigned the same T−variate Laplace prior dis-10

tribution, with a null mean vector and unknown scale matrix Σ. The multivariate prior reduces11

to that of the standard univariate Bayesian LASSO when T = 1. The covariance matrix of the12

residual distribution is assigned a multivariate Jeffreys prior and Σ is given an inverse-Wishart13

prior. The unknown quantities in the model are learned using a Markov chain Monte Carlo sam-14

pling scheme constructed using a scale-mixture of normal distributions representation. MBL is15

demonstrated in a bivariate context employing two publicly available data sets using a bivariate16

genomic best linear unbiased prediction model (GBLUP) for benchmarking results. The first17

data set is one where wheat grain yields in two different environments are treated as distinct18

traits. The second data set comes from genotyped Pinus trees with each individual was mea-19

sured for two traits, rust bin and gall volume. In MBL, the bivariate marker effects are shrunk20
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differentially, i.e., "short" vectors are more strongly shrunk towards the origin than in GBLUP;21

conversely, "long" vectors are shrunk less. A predictive comparison was carried out as well where,22

in wheat, the comparators of MBL where bivariate GBLUP and bivariate Bayes Cπ, a variable23

selection procedure. A training-testing layout was used, with 100 random reconstructions of24

training and testing sets. For the wheat data, all methods produced similar predictions. In25

Pinus, MBL gave better predictions that either a Bayesian bivariate GBLUP or the single trait26

Bayesian LASSO. MBL has been implemented in the Julia language package JWAS and is now27

available for the scientific community to explore with different traits, species and environments.28

It is well known that there is no universally best prediction machine and MBL represents a new29

piece in the armamentarium for genome-enabled analysis and prediction of complex traits.30

2 Introduction31

Two main paradigms have been employed for investigating statistical associations between mole-32

cular markers and complex traits: marker-by-marker genome-wide association studies (GWAS)33

and whole-genome regression approaches (WGR). GWAS is dominant in human genetics; Viss-34

cher et al. (2017) present a perspective and Gianola et al. (2016) formulate a statistically35

orientated critique. WGR was developed mostly in animal and plant breeding (e.g., Lande and36

Thompson 1990; Meuwissen et al. 2001; Gianola et al. 2003) primarily for predicting future37

performance, but it has received some attention in human genetics as well (e.g., Lee et al. 2011;38

Yang et al. 2010; de los Campos et al. 2011; Makowsky et al. 2011; López de Maturana et al.39

2014). de los Campos et al. (2013), Gianola (2013) and Isik et al. (2017) reviewed an extensive40

collection of WGR approaches. Other studies noted that WGR can be used both for "discovery"41

of associations and for prediction (Moser et al. 2015; Goddard et al. 2016; Fernando et al.42

2017). Hence, WGR methodology is an active area of research.43

Multiple-trait analysis has been of great interest in plant and animal breeding for a long-44

time, mainly from the point of view of joint selection for many traits (Smith 1936; Hazel 1943;45

Walsh and Lynch 2018). Henderson and Quaas (1976) developed multi-trait best linear unbiased46

prediction of breeding values for all individuals and traits measured in a population of animals,47

a methodology that gradually became routine in the field. For example, Gao et al. (2018),48

described an application of a 9-variate model to data representing close to seven million and49

four million Holstein and Nordic Red cattle, respectively; the nine traits were milk, fat and50

protein yields in each of the first three lactations of the cows.51

A multiple-trait analysis is also a natural choice in quests for understanding and dissecting52

genetic correlations between traits using molecular markers, e.g., evaluating whether pleiotropy53

or linkage disequilibrium are at the roots of between-trait associations (Gianola et al. 2015;54

Cheng et al. 2018a). For instance, Galesloot et al. (2014) compared six methods of multivariate55
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GWAS via simulation and found that all delivered a higher power than single-trait GWAS,56

even when genetic correlations were weak. Many single-trait WGR methods extend directly to57

the multiple-trait domain, e.g., genomic best linear unbiased prediction (GBLUP; Van Raden58

2007). Other procedures such as Bayesian mixture models are more involved, but extensions59

are available (Calus and Veerkamp 2011; Jia and Jannink 2012; Cheng et al. 2018a). The60

mixture model of Cheng et al. (2018a) is particularly interesting because it provides insight into61

whether markers affect all, some or none of the traits addressed. For example, the proportion of62

markers in each of the (0, 0) , (0, 1) , (1, 0) and (1, 1) categories, where (0, 0) means "no effect"63

and (1, 1) denotes "effect" on each of two disease traits in Pinus taeda was estimated by Cheng64

et al. (2018a) using SNPs (single nucleotide polymorphisms). The proportion of MCMC samples65

falling into the (1, 1) class was less than 3%, with about 140 markers appearing as candidates for66

further scrutiny of pleiotropy; 97% of the SNP were in the (0, 0) class and 0.5% were in the (0, 1)67

and (1, 0) classes. It must be noted that Cheng et al. (2018a) used Bayesian model averaging,68

so posterior estimates of effects and of their uncertainties constitute averages over all possible69

configurations. The resulting "average model" is not truly sparse as Bayesian mixture models70

always assign some posterior probability to each of the possible configurations. An alternative71

to a mixture is to use a prior distribution that produces strong shrinkage towards the origin of72

"weak" vectors of marker effects; here, each marker has a vector with dimension equal to the73

number of traits.74

The LASSO (least absolute shrinkage and selection operator) presented by Tibshirani (1996)75

is a single-response method based on minimizing a linear regression residual sum of squares76

subject to a constraint based on an L1 norm. It can produce a sparse model, i.e., if the linear77

regression model has p regression coeffi cients, the LASSO yields a smaller model (i.e., model78

selection) but with a complexity that cannot exceed N, the number of observations. Tibshirani79

(1996) noted that the LASSO solutions can also be obtained by calculating the mode of the80

conditional posterior distribution of the regression coeffi cients in a Bayesian model in which81

each coeffi cient is assigned the same conditional double exponential or Laplace prior. Using a82

ridge regression reformulation of LASSO, it can be seen (Tibshirani 1996; Gianola 2013) that its83

Bayesian version shrinks small-value regression coeffi cients very strongly towards zero, whereas84

large-effect variants are regularized to a much lesser extent than in ridge regression. Yuan and85

Lin (2006) and Yuan et al. (2007) considered the problem of clustering regression coeffi cients into86

groups (factors), with the focus becoming factor selection, as opposed to the predictor variable87

selection that takes place in LASSO. For instance, a cluster could consist of a group of markers in88

tight physical linkage. These authors noted that, in some instances, grouping enhances prediction89

performance over ridge regression, while in others, it does not. Such finding is consisting with90

knowledge accumulated in close to two decades of experience with genome-enabled prediction in91

animal breeding: there is no universally best prediction machine. A multiple-trait application92
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of a LASSO penalty on regression coeffi cients was presented by Li et al. (2015). These authors93

assigned a multivariate Laplace distribution to the model residuals and a group-LASSO penalty94

(Yuan and Lin 2006) to the regression coeffi cients. The procedure differs from Tibshirani’s95

LASSO in that the model selects vectors of regressors (corresponding to regressions of a given96

marker over traits) as opposed to single-trait predictor variables.97

Park and Casella (2008) introduced a fully Bayesian LASSO (BL). Contrary to LASSO, BL98

produces a model where all regression coeffi cients are non-null (even if p > N); most regressions99

are often tiny in value, except those associated with covariates (markers) with strong effects.100

In short, LASSO produces a sparse model whereas BL yields an effectively sparse specification,101

similar to Bayesian mixture models such as Bayes B (Meuwissen et al. 2001). The fist application102

of the BL in quantitative genetics was made by Yi and Xu (2008) in the context of quantitative103

trait locus (QTL) mapping, with subsequent applications in de los Campos et al. (2009), Legarra104

et al. (2011), Li et al. (2011) and Lehermeier et al. (2013).105

It appears that a multiple-trait generalization of the BL has not been reported hereto. The106

present paper describes a multi-trait Bayesian LASSO (MBL) model based on adopting a mul-107

tivariate Laplace distribution with unknown scale matrix as prior distribution for the markers108

or variants under scrutiny. The MBL is introduced and compared with a multiple-trait GBLUP109

(MTGBLUP) using wheat and pine tree data sets. Section "The multi-trait regression model"110

describes MBL, including a Markov chain Monte Carlo sampling algorithm. Subsequently, MBL111

is compared with MTGBLUP using a wheat data set. Finally, bivariate MBL and bivariate112

MTGBLUP are contrasted from a predictive perspective, showing a better performance of MBL113

over BLUP and over a single-trait Bayesian LASSO specification, corroborating the usefulness114

of multiple-trait analyses. The paper concludes with a general discussion and technical details115

are presented in Appendices.116

3 The multi-trait regression model117

Assume there are T traits observed in each of N individuals and let βj =
{
βjt
}
be a T ×1 vector118

of allelic substitution effects at marker j = 1, 2, ..., p, with βjt representing the effect of marker119

j on trait t (t = 1, 2, ..., T ). The multi-trait regression model (assuming no nuisance location120

effects other than a mean) for the T responses is121

yi = µ+

p∑
j=1

xijβj + ei; i = 1, 2..., N ; j = 1, 2, ..., p, (1)122

where yi is a T × 1 vector of responses observed in individual i; µ = {µt} is the vector of trait123

means and xij is the genotype individual i possesses at marker locus j. The residual vector124
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ei (T × 1) is assumed to follow the Gaussian distribution ei|R0 ∼ N (0,R0) , where R0 is a125

T ×T covariance matrix. All ei vectors are assumed to be mutually independent and identically126

distributed.127

If traits are sorted within individuals, the probability model associated with (1) can be128

represented as129

p
(
y1,y2, ...,yN |µ,β1,β2, ...,βp,R0

)
130

∝ 1

|R0|
N
2

exp

[
−1

2

N∑
i=1

(
yi − µ−

p∑
j=1

xijβj

)′
R−10

(
yi − µ−

p∑
j=1

xijβj

)]
131

∝ 1

|R0|
N
2

exp

{
−1

2
tr
[
R−10 Se

]}
, (2)132

where133

Se =
N∑
i=1

(
yi − µ−

p∑
j=1

xijβj

)(
yi − µ−

p∑
j=1

xijβj

)′
(3)134

is a T × T matrix of sums of squares and products of the unobserved regression residuals.135

The regression model can be formulated in an equivalent manner by sorting individuals within136

traits; we will use T = 3 hereinafter. Let y∗1, y∗2 and y∗3 be response vectors of order N each137

observed for traits 1, 2, and 3, respectively. The representation of the model is138  y∗1

y∗2

y∗3

 =

 1N 0 0

0 1N 0

0 0 1N


 µ1

µ2

µ3

+

 X 0 0

0 X 0

0 0 X


 β

∗
1

β∗2

β∗3

+

 e∗1

e∗2

e∗3

139

= (I3 ⊗ 1N)µ+ (I3 ⊗X)β∗ + e∗, (4)140

where 1N is an N × 1 vector of 1′s, X = {xij} is an N × p matrix of marker genotypes, and141

β∗t (p× 1) and e∗t (N × 1) are vectors of regression coeffi cients and of residuals for trait t,142

respectively. Above, β∗ = vec (β∗1,β
∗
2,β

∗
3) is a 3p×1 vector and e∗ = vec(e∗1, e

∗
2, e
∗
3) has dimension143

3N × 1. Note that V ar (e∗) = R0 ⊗ I = R. Putting y∗ (µ,β∗) = (I3 ⊗ 1N)µ+ (I3 ⊗X)β∗, the144

probability model is145

p (y∗|µ,β∗,R0) ∝
1

|R0|
N
2

exp

[
−1

2
(y∗ − y∗ (µ,β∗))′R−1 (y∗ − y∗ (µ,β∗))

]
. (5)146

We will work with either (1) or (4), depending on the context.147
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3.1 Bayesian prior assumptions148

3.1.1 Parameters µ and R0149

The vector µ will be assigned a "flat" improper prior and Jeffreys non-informative prior (e.g.,150

Sorensen and Gianola, 2002) will be adopted for R0 so that their joint prior density is151

p (µ,R0) ∝ |R0|
−

T + 1

2


. (6)152

3.1.2 Multivariate Laplace prior distribution (MLAP) for marker effects153

The same T -variate Laplace prior distribution with a null mean vector will be assigned to each154

of the T × 1 vectors βj (j = 1, 2, ..., p), assumed mutually independent, a priori. Gómez et al.155

(2007) presented a multi-dimensional version of the power exponential family of distributions;156

one special case is the multivariate Laplace distribution (MLAP). The density of the MLAP157

with a zero-mean vector used here is158

p(βj|Σ) =
TΓ
(
T
2

)
|Σ|

1
2 π

T
2 Γ (1 + T ) 2(1+T )

exp

(
−1

2

√
β′jΣ

−1βj

)
; j = 1, 2, ..., p, (7)159

where Σ = {Σtt′} is a T × T positive-definite scale matrix. The variance-covariance matrix of160

MLAP is161

V ar(βj|Σ)=4 (T + 1) Σ = B; (8)162

note that the absolute values of the elements of B, the inter-trait variance-covariance of marker163

effects, are larger than those of Σ. Hence, βjt ∼
(
0, σ2β,t

)
for ∀j, where σ2β,t = 4 (T + 1) Σtt is the164

appropriate diagonal element of B; likewise, σβ,tt′ = 4 (T + 1) Σtt′ is the covariance of marker165

effects between traits t and t′, for all j. Putting T = 1 in (7) yields166

p(β|Σ) =
1

2
√

4Σ
exp

(
− |β|√

4Σ

)
. (9)167

The preceding is the density of a double exponential (DE) distribution with null mean, parameter168 √
4Σ and variance V ar(β) = 8Σ. As mentioned earlier, Tibshirani (1996) and Park and Casella169

(2008) used the DE distribution as conditional (given Σ) prior for regression coeffi cients in the170

BL, a member of the "Bayesian Alphabet" (Gianola et al. 2009). Gianola et al. (2018) assigned171

the DE distribution to residuals of a linear model for the purpose of attenuating outliers and Li172

et al. (2015) used the MLAP distribution for the residuals in a "robust" linear regression model173

for QTL mapping.174

MLAP is therefore an interesting candidate prior for multi-trait marker effects in a multiple175

trait generalization of the Bayesian LASSO (MBL). A zero-mean MLAP distribution has a176
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sharp peak at the 0 coordinates. Although when T = 1 MLAP reduces to a DE distribution,177

the marginal and conditional densities of MLAP are not DE. Gómez et al. (2007) showed that178

such densities are elliptically contoured, and thus not DE. Appendix A and Figures S1-S3 in the179

Supplemental material give background on MLAP.180

Gómez-Sánchez-Manzano et al. (2008) showed that MLAP can be represented as a scaled181

mixture of normal distributions under the hierarchy: 1)
[
βj|Σ,v2j

]
= NT

(
0,v2jΣ

)
, and 2) v2j ∼182

Gamma

(
T + 1

2
,
1

8

)
for j = 1, 2, ..., p; NT

(
0,Σv2j

)
denotes a T−variate normal distribution183

with null mean and covariance matrix Σv2j . The density of v
2
j is184

h
(
v2j
)
∝
(
v2j
)T+1

2
−1

exp(−
v2j
8

) . (10)185

Let the collection of all marker effects over traits be represented by the Tp× 1 vector186

β =
[
β′1 β′2 . . . β′p

]′
. (11)187

If independent and identical MLAP prior distributions are assigned to each of the sub-vectors,188

the joint prior density of all marker effects, given Σ, can be represented as189

p (β|Σ) =

p∏
j=1

p
(
βj|Σ

)
190

=

p∏
j=1

∞∫
0

NT

(
βj|0,Σv2j

)
h
(
v2j
)
dv2j , (12)191

and the joint density of β and v2 =
[
v21 v22 . . . v2p

]′
is192

p
(
β,v2|Σ

)
=

p∏
j=1

NT

(
0,Σv2j

)
h
(
v2j
)
. (13)193

When individuals are sorted within traits (e.g., T = 3), note that
[
β∗|Σ,v2

]
is a Tp−dimensional194

normal distribution with null mean vector and covariance matrix195

V ar


 β

∗
1

β∗2

β∗3

 |Σ,v2
 =

 DΣ11 DΣ12 DΣ13

DΣ21 DΣ22 DΣ23

DΣ31 DΣ32 DΣ32

 = Σ⊗D, (14)196
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where D = diag
(
v21, v

2
2, ..., v

2
p

)
is a diagonal matri. Hence,197

p
(
β∗|Σ,v2

)
∝ exp

[
−1

2
β∗′
(
Σ−1⊗D−1

)
β∗
]
. (15)198

3.1.3 Scale matrix Σ199

The scale matrix Σ of MLAP can be given a fixed value (becoming a hyper-parameter) or200

inferred, in which case a prior distribution is needed. Here, an inverse-Wishart (IW ) distribution201

with scale matrix Ωβ and νβ degrees of freedom will be assigned as prior. The density is202

p (Σ|Ωβ, νβ) ∝ |Σ|
−

T + νβ + 1

2


exp

[
−1

2
tr
(
Σ−1Ωβ

)]
. (16)203

3.2 Joint posterior and fully-conditional distributions204

The joint posterior distribution, including v2 =
{
v2j
}
from the scale-mixture of normals repre-205

sentation of the prior distribution of β, was assumed to take the form206

p
(
µ,β∗,R0,Σ,v

2|y∗, H
)
∝ p (y∗|µ,β∗,R0) p (R0|H) p

(
β∗|Σ,v2

)
p
(
v2
)
p (Σ|H) , (17)207

where H denotes the hyper-parameters; recall that y∗ is the data vector sorted by individuals208

within trait The fully conditional distributions are presented below, with ELSE used to denote209

all parameters that are kept fixed, together with H, in a specific conditional distribution.210

3.2.1 Parameters µ and β∗ given ELSE211

From (17) and using representations (4) and (15), the fully conditional posterior distribution of212

µ and β∗ has density213

p (µ,β∗|ELSE) ∝ p (y∗|µ,β∗,R0) p
(
β∗|Σ,v2

)
214

∝ exp

[
−1

2
(y∗ − y∗ (µ,β∗))′R−1 (y∗ − y∗ (µ,β∗))

]
215

× exp

[
−1

2
β∗′
(
Σ−1⊗D−1

)
β∗
]
. (18)216

The preceding is a multivariate normal density (e.g., Sorensen and Gianola 2002). The mean217

vector of the distribution is218 [
µ

β
∗

]
=

[
R−10 N R−10 ⊗ 1′NX

R−10 ⊗X′1N R−10 ⊗X′X + Σ−1⊗D−1

]−1 [ (
R−10 ⊗ 1′N

)
y∗(

R−10 ⊗X′
)′

y∗

]
, (19)219
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and the variance-covariance matrix is220

V ar

([
µ

β

]
|ELSE

)
=

[
R−10 N R−10 ⊗ 1′NX

R−10 ⊗X′1N R−10 ⊗X′X + Σ−1⊗D−1

]−1
= C−1. (20)221

A more explicit representation is presented in Appendix B for the case T = 3.222

3.2.2 Fully conditional distributions of partitions of the location vector223

For details, see Van Tassell and Van Vleck (1996) and Sorensen and Gianola (2002). Since224

the joint posterior of the location parameters, given Σ, v2 and R0, is multivariate normal, all225

conditionals and linear combinations thereof are normal as well. In particular (T = 3),226

E (µt|ELSE) =
1

rttN

[
1′N

3∑
t′=1

rtt
′
(y∗t −Xβt)−N

∑
t′ 6=t

rtt
′
µt′

]
; i = 1, 2, 3, (21)227

and228

V ar (µt|ELSE) =
1

rttN
; t = 1, 2, 3. (22)229

Likewise

E (β∗t |ELSE) =

(
rttX′X+

D−1

Σtt

)−1
×
[
X′

3∑
t′=1

rtt
′ (

y∗j − 1Nµj
)
−
∑
t′ 6=t

(
rtt

′
X′X+

D−1

Σtt′

)
β∗t′

]
; i = 1, 2, 3, (23)

and230

V ar (β∗t |ELSE) =

(
rttX′X+

D−1

Σtt

)−1
; t = 1, 2, 3. (24)231

3.2.3 Fully conditional distributions of R0 and Σ232

From (17) using (2) and (6)233

p (R0|ELSE) ∝ |R0|
−

N + T + 1

2


exp

{
−1

2
tr
[
R−10 Se

]}
, (25)234

so [R0|ELSE] is an IW distribution with N + T degrees of freedom and scale matrix Se. In235

IW, the kernel of the density is often written as exp
{
−1
2
tr
[
R−10 (N + T )) Se

]}
, where Se =236

Se/ (N + T ) .237

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/852749doi: bioRxiv preprint 

https://doi.org/10.1101/852749
http://creativecommons.org/licenses/by-nc-nd/4.0/


Recall that238

p
(
β∗|Σ,v2

)
=

p∏
j=1

NT

(
βj|0,Σv2j

)
, (26)239

so from (17)240

p (Σ|ELSE) ∝ p
(
β∗|Σ,v2

)
p (Σ|H)241

∝
p∏
j=1

1∣∣Σv2j ∣∣ 12 exp

[
−1

2
β′j

(
Σ−1

v2j

)
βj

]
242

× |Σ|
−

T + νβ + 1

2


exp

[
−1

2
tr
(
Σ−1Ωβ

)]
243

∝ |Σ|
−

p+ T + νβ + 1

2


exp

{
−1

2
tr
[
Σ−1Sβ

]}
, (27)244

where245

Sβ =

p∑
j=1

(
βjβ

′
j

v2j

)
+ Ωβ (28)246

is a T × T matrix. Hence the conditional posterior distribution of Σ is IW (p+ T + νβ,Sβ).247

The kernel of the density of Σ is often represented as exp
{
−1
2
tr
[
Σ−10 (p+ T + νβ) Sβ

]}
, where248

Sβ = Sβ/ (p+ T + νβ) .249

3.2.4 Fully conditional distribution of v2250

From (17) and using (13)251

p
(
v2|ELSE

)
∝ p

(
β∗|Σ,v2

)
p
(
v2
)

252

∝
p∏
j=1

NT

(
βj|0,Σv2j

)
h(v2j )253

∝
p∏
j=1

1(
v2j
)T
2

exp

[
−
β′jΣ

−1βj
2v2j

] (
v2j
)T+1

2
−1

exp(−
v2j
8

)254

∝
p∏
j=1

(
v2j
)− 1

2 exp

−β′jΣ−1βj +
v4

4
2v2j

 . (29)255

The preceding density is not in a recognizable form. Appendix C gives details of a Metropolis-256

Hastings algorithm tailored for making draws from the distribution having density (29). A brief257

description of the procedure follows.258
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3.3 MCMC algorithm259

• Starting values for R0 and Σ can be obtained "externally" from some estimates of R0260

and B (the T × T matrix of variances and covariances of marker effects) calculated with261

standard methods such as maximum likelihood. Recall that Σ = B/[4(T + 1)].262

• Sample each v2j (j = 1, 2, ..., p) using the following Metropolis-Hastings sampler:263

1. At round t, draw y from Y ∼ IG(α = 1
2
, β = 1

4
) and evaluate y as proposal; IG264

stands for an inverse-gamma distribution.265

2. Draw U ∼ U (0, 1) , with the probability of move being min(1, R), with R as in266

Appendix C.267

3. If U < R, set w[t+1]j = y and form v
2[t+1]
j = 2/w

[t]
j as a new state. Otherwise, set268

v
2[t+1]
j = v

2[t]
j ; j = 1, 2, ..., p.269

• In a "single-pass" sampler, use (19) and (20) for sampling the entire location vector jointly.270

Otherwise, adopt a blocking strategy; for example draw µ and β∗ using (21), (22), (23)271

and (24).272

• Sample R0 from IW (N + T,Se) and Σ from IW (p+ T + νβ,Sβ).273

3.4 Remarks274

Appendix E shows that the degree of shrinkage of marker effects results from a joint action275

between Σ and the strength of marker effects. A vector of effects of a marker with a short276

Mahalanobis distance away from 0 is more strongly shrunk towards the origin (i.e., the mean of277

prior distribution) than vectors containing strong effects on at least one trait. MLAP preserves278

the spirit of BL, producing "pseudo-selection" of covariates: all markers stay in the model, but279

some are effectively nullified. A marker with strong marginal and joint effects on the traits under280

consideration could flag potentially pleiotropic regions.281

3.5 Missing records for some traits282

Often, not all traits are measured in all individuals, a situation that is more common in animal283

breeding than in plant breeding. A standard approach ("data augmentation") treats missing284

phenotypes as unknowns in an expanded joint posterior distribution. As shown in Appendix F,285

a predictive distribution can be used to produce an imputation of missing data.286
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4 Alternative formulation in TN dimensions287

The MCMC sampler described above is based on a regression on markers formulation stemming288

from either (1) or (4). In a "single-pass" sampler, T (1 + p) parameters must be drawn together;289

when p is very large, direct inversion is typically unfeasible so the scheme must be reformulated290

into a "block-sampling" one, i.e., by drawing some of the location parameters jointly by condi-291

tioning on the other location parameters, or by using a single-site sampler (Sorensen and Gianola292

2002). Blocking or single-site sampling facilitate computation at the expense of slowing down293

convergence to the target distribution. Appendix D gives a scheme in which T (1 + N) effects294

(trait means and bivariate genomic breeding values) are inferred, and the Tp marker effects are295

calculated indirectly, following ideas of Henderson (1977) and adapted by Goddard (2009) to a296

genome-based model.297

5 Data availability statement298

The wheat yield data set in the R package BGLR (Pérez and de los Campos 2014) was employed299

to contrast MBL with GBLUP and Bayes Cπ. This wheat data set has been studied extensively,300

e.g., by Crossa et al. (2010), Gianola et al. (2011), Long et al. (2011) and Gianola et al.301

(2016). There are n = 599 wheat inbred lines, each genotyped with p = 1279 DArT (Diversity302

Array Technology) markers and each planted in four environments. The DArT markers are303

binary (0, 1) and denote presence or absence of an allele at a marker locus in a given line. Grain304

yields in environments 1 and 2 were employed to compare outcomes between analyses based on305

bivariate GBLUP and the bivariate BL. In the bivariate model, yields in the two environments306

are treated as distinct traits, conceptually, an idea that dates back to Falconer (1952). This type307

of setting arises in dairy cattle-breeding, where milk production of daughters of bulls in different308

countries are regarded as different traits and in multi-environment situations in plant breeding;309

both instances can be represented as special cases of a multiple-trait mixed effects model.310

A publicly available Loblolly pine (Pinus taeda) data described in Cheng et al. (2018a)311

was used to carry out a predictive comparison between a Bayesian bivariate GBLUP with the312

bivariate Bayesian LASSO, as well as the latter versus a single-trait Bayesian LASSO. After313

edits, there were n = 807 individuals with p = 4828 SNP markers with measurements on rust314

bin scores and rust gall volume, two disease traits; see Cheng et al. (2018a).315
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6 Bivariate analysis of wheat yield: MBL versus GBLUP316

6.1 Genomic BLUP and Bayesian BLUP317

The bivariate model was318 [
y1

y2

]
=

[
1µ1

1µ2

]
+

[
g1

g2

]
+

[
e1

e2

]
, (30)319

where y1 (y2) is the vector of grain yields in environment 1 (2) of the 599 inbred lines; µ1 and µ2320

are the trait means in the two environments and 1 is a 599× 1 incidence vector of ones; g1 and321

g2 are the "additive genomic values" of the lines and e1 and e2 are model residuals. In GBLUP322

(Van Raden 2008) the genetic signals captured by markers are represented as g1 = Xβ1 and323

g2 = Xβ2 where X is a 599 × 1279 centered and scaled matrix of genotype codes, and β1 (β2)324

contains the marker allele substitution effects on trait 1 (2) . The residual distribution was325 [
e1

e2

]
∼ N (0,R0 ⊗ I) , (31)326

where, as-before, R0 is the 2 × 2 between-trait residual variance-covariance matrix. Effects of327

environment 1 are expected to be uncorrelated with those of environment 2. However, allowance328

was made for a non-null residual covariance because the additive genomic model may not capture329

extant epistasis involving additive effects, potentially creating correlations among residuals of330

the same lines in different environmental conditions.331

GBLUP assumed β1 ∼ N
(
0, Iσ2β1

)
, β2 ∼ N

(
0, Iσ2β2

)
and Cov (β1,β

′
2) = Iσβ1β2 , so332

B =

[
σ2β1 σβ1β2
σβ1β2 σ2β2

]
(32)333

is the variance-covariance matrix of marker effects. It follows that334 [
g1

g2

]
∼ N

([
0

0

]
,G0 ⊗G

)
, (33)335

where336

G0 = pB =

[
σ2g1 σg12

σg12 σ2g2

]
, (34)337

is a between-trait variance-covariance matrix of the additive genomic values (here, e.g., σ2g1 =338

pσ2β1) and G = XX′/p is a genomic-relationship matrix describing genome-based similarities339

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2019. ; https://doi.org/10.1101/852749doi: bioRxiv preprint 

https://doi.org/10.1101/852749
http://creativecommons.org/licenses/by-nc-nd/4.0/


among the 599 lines. The preceding assumptions induce the marginal distribution340 [
y1

y2

]
∼ N

([
1µ1

1µ2

]
,V = G0 ⊗G + R0 ⊗ I

)
, (35)341

where V is the phenotypic covariance-matrix. The bivariate best linear unbiased predictor of g1342

and g2 (Henderson 1975)343 [
ĝ1

ĝ2

]
= (G0 ⊗G) V−1

([
y1 − 1µ̂1

y2 − 1µ̂2

])
, (36)344

where345 [
µ̂1

µ̂2

]
=

([
1′ 0

0 1′

]
V−1

[
1 0

0 1

])−1([
1′ 0

0 1′

]
V−1

[
y1

y2

])
, (37)346

is the bivariate generalized least-squares (GLS) estimator of the trait means.347

BLUP and GLS require knowledge of G0 and R0 and we replaced these unknown matri-348

ces by estimates obtained using a crude but simple procedure. Genomic and residual vari-349

ance components were obtained by univariate maximum likelihood analyses of traits 1, 2 and350

1 + 2, and covariance component estimates were calculated from the expression Cov(X, Y ) =351

[V ar(X + Y )− V ar(X)− V ar(Y )] /2. The resulting estimates ofG0 andR0 were inside of their352

corresponding parameter spaces. An estimate of B was obtained by applying relationship (34)353

to the estimated G0.354

Henderson (1977) showed how BLUP of vectors that are not likelihood identified can be

obtained from best linear unbiased predictions of likelihood-identified random effects (see Gianola

2013). Goddard (2009) and Strandén and Garrick (2009) used this property to obtain predictions

of marker effects (β) given predictions of signal (g). If β and g have a joint normal distribution,

under (30) one has

E

([
β1

β2

]
|
[

g1

g2

])
=
(
BG−10 ⊗X′G−1

) [ g1

g2

]
.

Using iterated expectations and recalling that BLUP can be viewed as an estimated conditional355

expectation (with fixed effects replaced by their GLS estimates), BLUP of marker effects is356

expressible as357 [
β̂1

β̂2

]
= Ê

([
β̂1

β̂2

]
|
[

y1

y2

])
=
(
BG−10 ⊗X′G−1

) [ ĝ1

ĝ2

]
358

=
(
BG−10 ⊗X′G−1

)
V−1

([
y1 − 1µ̂1

y2 − 1µ̂2

])
, (38)359
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with β̂i = Ê (βi|y1,y2) , i = 1, 2. After lengthy algebra and using Henderson (1975), the predic-360

tion error variance-covariance matrix of the BLUP of marker effects is given by361

V ar

([
β̂1 − β1
β̂2 − β2

])
362

= (B⊗ Ip)− (B⊗X′)

[
I2n + V−1 − V−111′V−1

1′V−11

]
(B⊗X′)

′
. (39)363

A set of t − statistics can be formed by taking the ratio between the BLUP of a given marker364

effect as in (38) and the square root of the corresponding diagonal element of (39). The statistic365

is a crude criterion for association between marker and phenotype as it ignores uncertainty366

associated with the fact that B and R0 are estimated from the data, as opposed to being "true367

values" required by BLUP theory.368

The Bayesian bivariate GBLUP model used standard assumption as in Sorensen and Gianola369

(2002), i.e., it was a multivariate normal-inverse Wishart hierarchical specification. The only370

difference with GBLUP is that, in the Bayesian treatment, G0 and R0 were treated as unknown371

parameters, with the uncertainty about their values accounted for.372

6.2 Bivariate LASSO373

Our MCMC implementation for MBL was applied to markers directly, as opposed to inferring374

their effects from signal indirectly, as it is done for GBLUP. The model was as in (4) with T = 2.375

Each marker was assigned a conditional bivariate Laplace prior distribution with scale matrix376

Σ; in turn, Σ was given a two-dimensional inverse Wishart distribution on νβ = 4 degrees of377

freedom and with scale matrix Ωβ = νβB/12 = B/3. The residual variance-covariance matrix378

R0 was assigned the two-dimensional Jeffreys improper prior in (6).379

The MCMC scheme employed the scale mixture of normals representation of the bivariate380

Laplace distribution. First, six independent chains of 1500 iterations each were run. The shrink-381

age diagnostic metric of Gelman and Rubin (1992) was calculated for µ1, µ2, R0 and Σ, for382

the effect of marker 10 on trait 1, and for the effect of marker 200 on trait 2; the R package383

CODA was used for this purpose. Supplementary Figures 4-13 gave no strong evidence of lack384

of convergence, as indicated by shrinkage factor values close to 1.385

Post-burn in samples were collected for an additional 2000 iterations in each chain, so a total386

of 12,000 samples (without thinning) was used for inference. Supplementary Figures 14 and387

15 depict post burn-in trace plots for the elements of R0 and Σ, respectively. The six chains388

"joined" eventually and sample values thereafter fluctuated within what seemed to be stationary389

distributions. To assess convergence further, a test suggested by Geweke (1992) was applied to390

the combined 12000 samples from the posterior distributions of µ1, re12 (residual correlation391
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between yields in environments 1 and 2) and rβ12, the correlation between effects of a marker392

on the two traits. The test compared means of two parts of the combined collection of 12,000393

samples at each of 10 segments of the collection: there was no evidence of lack of convergence.394

In short, the implementation met successfully the convergence tests applied.395

Figures 1 and 2 display estimated posterior densities of re12 and rβ12 . Mixing for rβ12 was396

poorer than for re12; the effective number of samples was 220.6 and 979.0, respectively, and Monte397

Carlo errors were small enough. The residual correlation (posterior mean, 0.17) was positive and398

different from 0, whereas the rβ12 parameter was estimated at -0.35, also different from zero.399

However, the posterior densities were not sharp enough for precise inference, probably due to400

the small sample size (n = 599) and low density of the marker panel (p = 1279). The quality of401

these estimates is of subsidiary interest here as our objective was to demonstrate the MBL in a402

comparison with bibariate BLUP of marker effects.403

Location parameters mixed well. For example, the average effective sample size of µ1 over404

the 6 chains during burn in was 1499 for a nominal 1500 iterations. For marker 10 effect on405

trait 1 it was 962 out of 1500, and for marker 200 effect on trait 2 effective size was 1130 out406

of 1500. These numbers suggest that all 2558 marker effects were estimated with a very small407

Monte Carlo error in our MBL implementation with 12,000 samples used for inference.408

6.3 MBL vs BLUP estimates of marker effects409

Figure 3 gives a comparison between bivariate BLUP and posterior mean estimates of effects410

from MBL. The upper panel shows good alignment between estimates, except at the extremes411

of the scatter plots. The lower panel depicts that markers with the strongest absolute effects, as412

estimated by BLUP, had an even stronger effect when estimated under the bivariate BL. Figure413

4 presents standardized estimates of each of the 1279 marker effects, by trait. For GBLUP the414

t − statistic was the estimated marker effect divided by the square root of its prediction error415

variance; for MBL it was the posterior mean divided by its posterior standard deviation. There416

is no evidence that any of the markers had an effect differing from 0, corroborating the view that417

wheat yield is a typical quantitative trait affected by many variants each having a small effects418

(Singh et al. 1986; Sleper and Poehlman 2006). Using a univariate least-squares, GWAS-type419

analysis, there were 29 (yield 1) and 56 (yield 2) significant hits after a Bonferroni correction420

(1279 tests, α = 0.05). A comparison between the t − statistics from the GWAS-type analysis421

with the standardized BLUP and MBL effects is provided in Figure 5. As expected, shrinkage422

towards null-mean distributions (bivariate Gaussian in BLUP and bivariate Laplace in MBL)423

made t− statistics much smaller in absolute value than the corresponding ones from GWAS.424

Standard GWAS aims to find connections between markers and genomic regions having an425

effect on a single trait (e.g., Manolio et al. 2009, Visscher et al. 2012; Gianola et al. 2016; Schaid426

et al. 2018) A search for pleiotropy, on the other hand, focuses on markers having multi-trait427
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effects. The latter can be viewed as a search for vectors of effects with non-null coordinates that428

are distant from a T−dimensional 0 origin. Mahalanobis squared distances
(
m2
j

)
away from (0, 0)429

for each the 1279 bivariate vectors of marker effects were calculated for both BLUP andMBL. For430

BLUP and marker j, the squared distance was computed as m2
Blup,j = β′Blup,jB

−1βBlup,j, and for431

MBL it was m2
MBL,j = β′MBL,j

(
12Σ

)−1
βMBL,j where β.,j are effect estimates for marker j and432

Σ is the estimated posterior expectation of Σ. For BLUP, m2
Blup,j had median and maximum433

values of 0.16 and 2.94, respectively, over markers. For MBL the corresponding values were434

0.14 and 3.83. Figure 6 shows that the largest estimated distances were obtained with MBL,435

supporting the view that the method produces less shrinkage of multiple-trait effect sizes than436

BLUP. If the 95% percentile of a chi-squared distribution on 2 degrees of freedom (5.99 and 14.4437

without and with a Bonferroni correction at α = 0.05) is used as "significance threshold", none438

of the 1279 markers could be claimed to have a bivariate effect on the trait, which is consistent439

with the t− statistics.440

7 Predictive comparison between MBL, MTGBLUP and441

MT-BayesCπ: wheat442

Bivariate Bayesian GBLUP and BayesCπ models (Cheng et al. 2018a) were also fitted to the443

wheat data set. Multiple-trait Bayesian linear models are well known (e.g., Sorensen and Gianola444

2002); BayesCπ consisted of a bivariate mixture in which each of the 1279 markers was allowed445

to fall, a priori, into one of four disjoint classes: (0, 0) , (0, 1) , (1, 0) , (1, 1), where (0, 0) means446

that a marker has no effect on either trait, (0, 1) indicates that a marker affects yield 2 only, and447

so on. The prior for the four probabilities of membership was a Dirichlet (1, 1, 1, 1) distribution.448

All three methods were run in each of 100 randomly constructed training sets and predictions449

were formed for lines in corresponding testing sets. Training and testing set sizes had 300 and450

299 wheat lines, respectively, in each of the 100 runs. For all methods, the MCMC scheme was451

a single long chain of 50,000 iterations, with a burn-in period of 1,000 draws. The analyses were452

run using the JWAS package written in the JULIA language (Cheng et al. 2018b).453

Figures 7 and 8 present pairwise plots (bivariate Bayesian GBLUP denoted as RR-BLUP454

in the plots) of predictive correlations and predictive mean-squared errors, respectively; the455

plots display less than 100 (X, Y ) points because numbers were rounded to two decimal points.456

There were no appreciable differences in predictive performance between the three methods,457

supporting the view that cereal grain yield is multi-factorial and that there are none, if any,458

genomic regions, with large effects. The variability among replications of the training-testing459

layout is essentially random, reinforcing the notion of the importance of measuring uncertainty460

of prediction (Gianola et al. 2018). Many studies fail to replicate and often claim differences461
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between methods based on single realizations of predictive analyses.462

8 Predictive comparison between MBL vs MTGBLUP463

and MBL vs single trait Bayesian LASSO: Pinus464

Figures 9 and 10 present scatter-plots of the predictive performance (mean squared error and465

correlation, respectively) of the bivariate Bayesian LASSO and bivariate Bayesian GBLUP (MT-466

GBLUP, denoted as RR-BLUP in the plots) in the 100 testing sets. There were no obvious467

differences in mean-squared error for either rust bin or gall volume although, for the latter trait,468

a slight superiority of MBL was noted (Figure 9); the plot contains distinct 12 points because469

the overlap in numerical values produced "clusters" of points. On the other hand, there was a470

decisive superiority (Figure 10) of MBL over MTGBLUP in predictive correlation.471

Figure 11 contrasts the predictive performance of the bivariate Bayesian LASSO over the472

single trait Bayesian LASSO for gall volume. The two trait analysis tended to produce larger473

predictive correlations and smaller mean-squared errors, illustrating an instances in which a474

multiple-trait specification clearly constitutes a better prediction machine.475

9 Conclusion476

Our study is possibly the first report in the quantitative genetics literature of a multiple-trait477

Bayesian LASSO (MBL), inspired by the BL of Park and Casella (2008). MBL assumes that478

vectors of marker effects on T traits follow a null-mean multivariate Laplace distribution, a479

priori. This distribution has a sharp peak at the origin and reduces to the double exponential480

prior of the BL when applied to a single trait. The implementation of MBL requires Markov481

chain Monte Carlo sampling and a relative simple Metropolis-Hastings algorithm based on a482

scaled mixture of normals representation (Gómez-Sánchez-Manzano et al. 2008) was presented.483

The algorithm was tested thoroughly with a wheat data set and found to mix well, with no484

evidence of lack of convergence to the posterior distribution and with a small Monte Carlo error.485

A question that arises often in practice, is the extent to which a multiple-trait method486

will produce a better performance than a single-trait specification. If the parameters of the487

model (assuming it holds) representing the inter-trait distribution are either known or well488

estimated, one should expect more power for QTL detection and a better predictive performance489

for the multivariate specification. In our study we found that MBL outperformed the single490

trait in terms of delivering a better predictive performance for gall volume but not for rust491

bin in Pinus. On the other hand, a multiple-trait analysis is more complex and requires more492

assumptions, so it may be less robust than a single trait procedure and fail to deliver according493
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to expectation in real-life circumstances. It is risky to make sweeping statements arguing in favor494

of a specific treatment of data as outcomes are heavily dependent on the biological architecture495

of the traits considered, and on the data structure as well. The picture emerging from two496

decades of experience in genome-enabled prediction in the fields of animal and plant breeding497

is that is largely futile to categorize methods in terms of expected predictive performance using498

broad criteria, in view of the large variability of performance with respect to data structure for499

any given prediction machine (Morota and Gianola 2014; Gianola and Rosa 2015; Momen et al.500

2018; Montesinos-López et al. 2019 a,b,c,d; Azodi et al. 2019).501

MBL is expected to shrink more strongly towards zero vectors of markers with small effects502

in their coordinates, thus producing differential shrinkage and preserving the modus operandi of503

BL. Mimicking the single-trait argument in Tibshirani (1996) which shows equivalence between504

LASSO and a posterior mode, the representation in Appendix E illustrates that the degree of505

shrinkage of the vectorial effects of a marker (j, say) on a set of traits is inversely proportional to506

the quadratic form β′jΣ
−1βj. Thus, multivariate Bayesian pseudo-sparsity is induced by MBL507

to an extent depending on the heterogeneity of β′jΣ
−1βj over markers. We note, in passing, that508

the term
p∑
j=1

√
β′jΣ

−1βj given in (66) of Appendix E is the counterpart of
G∑
g=1

√√√√ T∑
t=1

β2gt, part of509

the "group-penalty" in Li et al. (2015), where g is some meaningful group of markers arrived at,510

say, on the basis of biological considerations, and β2gt is the group regression coeffi cient for trait511

t. The latter penalty assigns the same weight to these regressions over trains, contrary to MBL512

where weights and co-weights are driven by Σ−1. The BL or MBL can be adapted to situations513

where a group structure may be needed via hierarchical modeling; this fairly straightforward issue514

is outside of the scope of the paper but may pursued in future extensions of MBL. Actually,515

Liquet et al. (2017) described a Bayesian multiple-trait analysis where a LASSO-type penalty516

is assigned to group effects and a spike-slab prior induces additional Bayesian sparsity at the517

level of individual regression coeffi cients. The authors did not address the predictive ability518

of their method so it would be interesting to compare it against MBL and the multiple-trait519

mixture model of Cheng et al. (2018). We plan to carry out this comparison in collaboration520

with CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo, México) using a large521

number of data sets in various cereal crops.522

Knowledge of the genetic basis of complex traits is limited and not vast enough to enable523

formulation of a priori prescriptions for any specific trait or situation. The number, location524

and effects of causal variants, the linkage disequilibrium structure between such variants and525

markers, and the mode of gene action of QTL are largely unknown, this holding for all species of526

domesticated plants and animals and for most common diseases in humans. Theoretically, MBL527

is expected to perform better than multiple-trait BLUP whenever appreciable heterogeneity528

exists over the effects of the markers in the panel employed, while behaving as multiple-trait529
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GBLUP when all markers have tiny and similar effects. This consideration follows directly from530

the structure of the method, and computer simulations could be easily tailored to create scenarios531

where MBL has a better or a worse performance simply by design but without necessarily being532

relevant to a real-life inferential or predictive problem.533

The expectation stated above was verified empirically: markers with stronger (positive or534

negative) effects on the wheat yields examined had larger Mahalanobis distances away from zero535

than markers with small effects. Further, markers with short distances in GBLUP had even536

shorter distances under MBL. None of the two methods was able to detect variants having a537

strong effect on wheat yield, contrary to least-squares GWAS. However, outcomes from GWAS538

are not strictly comparable with those from shrinkage-based procedures. In single-marker least-539

squares the estimator is potentially biased because other genomic regions are ignored in the540

model; further, short and long range linkage disequilibria create statistical ambiguity (Gianola541

et al. 2016). In WGR, on the other hand, regressions are akin to partial derivatives, i.e., the542

coeffi cient gives the net effect of the marker given that the other markers are fitted; typically,543

regressions become smaller as p is increased at a fixed n.544

In plant and animal breeding, a focal point is the evaluation of genetic merit of candidates545

for artificial selection, and the prediction of expected performance in either collateral relatives546

or in descendants. Under the assumptions of additive inheritance, genome-enabled prediction547

(Meuwissen et al. 2001) produces estimates of marked additive genomic value, g, or signal as548

referred to in our paper. In MBL, g and marker effects can be inferred from their posterior mean549

or from a modal approximation (MAP-MBL) that does not involve MCMC which is described550

in Appendix E. A rough comparison between GBLUP, MBL and MAP-MBL was carried out551

with the wheat data. For the latter, we used Σ = G0/(12p), and starting values for the iteration552

were calculated using BLUP estimates of marker effects. MAP with T = 2 were iterated for 500553

rounds. Supplementary Figure S16 shows that, at iteration 500, the metric used for monitoring554

convergence had stabilized at the third decimal place, but iteration could have stopped after555

200 rounds, for our purposes. Supplementary Figure S17 presents a scatter plot of the 2558556

(bivariate) marker effect solutions at iterations 1 and 500 against the corresponding BLUP557

or MBL posterior mean estimates. Clearly, MAP approach gave markedly different results,558

producing a stronger shrinkage to 0 of small-effect markers an, thus, an effectively more sparse559

model. Supplementary Figure S18 gives a comparison of the fitted genomic values, i.e., g1 = Xβ∗1560

and g2 = Xβ∗2 for the two traits. GBLUP and MBL estimates were closely aligned and fitted the561

data in a similar manner. On the other hand, MAP-MBL gave a larger mean-squared error of fit562

and a smaller correlation between fitted and observed phenotypes, possibly because of the larger563

effective sparsity of MAP-MBL. A worse fit to the data does not necessarily imply a poorer564

predictive ability. A thorough comparison of predictive ability between MBL and MAP-MBL565

will be carried out in future research.566
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Our predictive comparison in wheat involved three bivariate models: GBLUP, MBL and567

BayesCπ, which employs Bayesian model averaging. A training-testing validation replicated 100568

times at random indicated no differences among methods. However, it was found that MBL569

was better than MT Bayesian BLUP for the two pine tree traits. After almost two decades570

of genome-enabled prediction it is now clear that no universally best prediction machine exists571

(Gianola et al. 2011; Heslot 2012; de los Campos et al. 2013; Momen et al. 2018; Bellot et572

al. 2018; Montesinos-López et al. 2018a, b, c, d) even when non-parametric or deep learning573

techniques are brought into the comparisons.574

As far as we know, our paper represents the first report in the quantitative genetics literature575

of a multiple-trait LASSO, implemented in a Bayesian or empirical Bayes (Appendix E) manner.576

MBL adds to the armamentarium of genome-enabled prediction and expands the family of mem-577

bers of the Bayesian alphabet (Gianola et al. 2009; Habier et al. 2011; Gianola 2013). Further,578

it has been implemented in the publicly available JWAS software (Cheng et al. 2018b). We take579

the view that every prediction problem is unique and that no claims about the superiority of a580

specific procedure over others should be made without qualifications. For instance, MBL could581

perform worse or better than here when applied to other species, traits, or when confronted582

with different data structures. Most quantitative and disease traits are truly complex and it is583

dangerous to offer simplistic solutions or predictive panaceas (Goddard et al. 2019).584
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11 Legend for Figures594

Figure 1. Bivariate Bayesian LASSO: trace plot and posterior density of residual correlation.595

Figure 2. Bivariate Bayesian LASSO: trace plot and posterior density of correlation between596

marker effects.597

Figure 3. Bivariate GBLUP versus bivariate Bayesian LASSO (posterior mean) estimates of598

marker effects on wheat grain yield.599
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Figure 4. t-statistics for marker effects on wheat grain yield: GBLUP versus bivariate600

Bayesian LASSO (MBL)601

Figure 5. t-statistics for marker effects on wheat grain yield: ordinary leas-squares (OLS)602

versus bivariate Bayesian LASSO (MBL) and bivariate GBLUP.603

Figure 6. Mahalanobis squared distance (M) away from (0,0) for bivariate effects on grain604

yield of 1279 markers: GBLUP versus bivariate Bayesian LASSO (BLASSO)605

Figure 7. Predictive correlations for wheat grain yield: bivariate Bayesian LASSO (Bayes L)606

versus bivariate GBLUP (RR-BLUP).607

Figure 8. Predictive mean-squared error for grain yield: bivariate Bayesian LASSO (Bayes608

L), bivariate GBLUP (RR-BLUP) and bivariate Bayes Cπ.609

Figure 9. Mean-squared error of prediction for rust bin and gall volume in pine trees: bivariate610

Bayesian LASSO (Bayes L) versus bivariate Bayesian GBLUP (RR-BLUP).611

Figure 10. Predictive correlation for rust bin and gall volume in pine trees: bivariate Bayesian612

LASSO (Bayes L) versus bivariate Bayesian GBLUP (RR-BLUP).613

Figure 11. Predictive mean squared error and correlation for gall volue in pine trees: bivariate614

Bayesian LASSO (MTBayesL) versus univariate Bayesian LASSO (STBayesL)615
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13 Appendices796

13.1 Appendix A: Excursus on the MLAP distribution797

13.1.1 Three bivariate Laplace distributions798

For illustration, consider three bivariate Laplace distributions, all having null means but distinct799

scale matrices, as follows:800

Σ1 =

[
1 0

0 1

]
; Σ2 =

[
1 0.2

0.2 1

]
; Σ3 =

[
1 −0.8

−0.8 1

]
. (40)801

Using (7), the density under Σ1 is802

p (β1, β2|Σ1) =
1

8π
exp

(
−1

2

√
β21 + β22

)
. (41)803

The covariance matrix here, B1 = 12Σ1, is diagonal, so the random variables are uncorrelated804

but not independent since (41) cannot be written as the product of two marginal densities.805

Under Σ2 and Σ3, the densities are806

p (β1, β2|Σ2) =
5
√

6

96π
exp

(
−1

2

√
25

24
β21 −

5

12
β1β2 +

25

24
β22

)
, (42)807

and808

p (β1, β2|Σ3) =
5

24π
exp

(
−1

2

√(
25

9
β21 +

40

9
β1β2 +

25

9
β22

))
, (43)809

Five bivariate Laplace densities are shown in Supplementary Figure 1. (a) gives the density of810

the distribution of the two uncorrelated bivariate Laplace random variables (Σ1), and (b) and (c)811

show the positively (i.e., with Σ2) and negatively (with Σ3) correlated situations, respectively.812

These three densities have a sharp mode at β1 = β2 = 0 indicating that a bivariate Laplace813

prior would strongly shrink vectors to the (0, 0) point, acting similarly to the DE prior in the814

univariate Bayesian LASSO. (d) and (e) displays bivariate Laplace densities of distributions with815

non-null means.816

13.1.2 Conditional distributions817

Dropping subscript j denoting a specific marker, partition the T × 1 vector of effects into β′ =818

(β′1,β
′
2) where the sub-vectors have orders T1 and T2, respectively; recall that T is the number819

of traits. Correspondingly, put820

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (44)821
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According to J. M. Marín (personal communication), the conditional distribution [β2|β1] has822

density823

p
(
β2|β1,µ2|1,Σ2|1

)
=

Γ

(
T − T1

2

)

|Σ22|
1

2 π

T − T1
2

∞∫
0

t

T − T1
2

−1
exp

{
−1
2

√
t+ q1

}
dt

824

× exp

{
−1

2

[√(
β2 − µ2|1

)′
Σ−12|1

(
β2 − µ2|1

)
+ q1

]}
, (45)825

where µ2|1 = Σ22Σ
−1
11 β1, Σ2|1 = Σ22 −Σ21Σ

−1
11 Σ12 and q1 = β′1Σ

−1
11 β1. Similar to multivariate826

normal distribution, the conditional expectation is linear on the conditioning variable and Σ2|1827

does not involve β.828

13.1.3 Simulation of a multivariate Laplace distribution829

Gómez et al. (2007) showed that S independent draws from a MLAP distribution with a null830

mean vector can be made as831

βi=riC
′ui; i = 1, 2, ..., S, (46)832

where C′ results from the Cholesky decomposition Σ = C′C, u is a T × 1 vector uniformly833

distributed on a T -dimensional unit sphere and r is a realization of a Gamma distribution834

with shape parameter T and scale 2. Vector u can be simulated by effecting T independent835

draws (xi; i = 1, 2, ..., T ) from a N (0, 1) distribution, and then forming the tth element of u as836

ut = xt/

√√√√ T∑
t=1

x2t , t = 1, 2, ..., T.837

Marginal distributions for the three bivariate Laplace distributions with scale matrices Σ1,838

Σ2 and Σ3 given above were estimated by sampling S = 300, 000 independent realizations;839

(46) was employed. Using the samples, zero-mean DE and normal distributions with the same840

variances were fitted, and the resulting densities were compared with the estimated densities841

based on the draws. As shown in Supplementary Figure 2, a normal distribution provided a842

poor approximation to the marginals from the three bivariate Laplace cases, and the sharp peak843

at 0, characteristic of a DE density, was not matched by such marginals. This is a corroboration844

of theoretical results in Gómez et al. (2007): marginals from MLAP distributions are elliptically845

contoured and not DE.846
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13.2 Appendix B: Mean vector of location parameters given ELSE847

Consider (19). For T = 3, let848

R−10 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 and Σ−1 =

 Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 (47)849

Expansion of the Kronecker products in (19) produces the system850



r11N r12N r13N r111′NX r121′NX r131′NX

r21N r22N r23N r211′NX r221′NX r231′NX

r31N r32N r33N r311′NX r321′NX r331′NX

r11X′1N r12X′1N r13X′1N r11X′X+Σ11D−1 r12X′X+Σ12D−1 r13X′X+Σ13D−1

r21X′1N r22X′1N r23X′1N r21X′X+Σ21D−1 r22X′X+Σ22D−1 r23X′X+Σ23D−1

r31X′1N r32X′1N r33X′1N r31X′X+Σ31D−1 r32X′X+Σ32D−1 r33X′X+Σ33D−1





µ1

µ2

µ3

β
∗
1

β
∗
2

β
∗
3


851

=



1′N(r11y∗1 + r12y∗2 + r13y∗3)

1′N (r21y∗1 + r22y∗2 + r23y∗3)

1′N (r31y∗1 + r32y∗2 + r33y∗3)

X′ (r11y∗1 + r12y∗2 + r13y∗3)

X′ (r21y∗1 + r22y∗2 + r23y∗3)

X′ (r31y∗1 + r32y∗2 + r33y∗3)


. (48)852

Observe how phenotypes for all traits contribute to the solutions of trait-specific effects.853

13.3 Appendix C: Sampling from the conditional posterior distribu-854

tion of v2j855

Consider (29). Let Q = β′jΣ
−1βj take values

1
2
, 1, 4, and 10, say. Numerical integration of856

(29) between 0 and 1000 produces 3.5203, 3.040 7, 1.844 3, 1.031 4 as reciprocal of the resulting857

integration constants, with the normalized densities shown in Supplementary Figure 3. The858

distributions are skewed, and as Q increases the density becomes flatter.859

Let S 1
2

(y;σ) be the Lévy density of a positive random variable Y having a positive stable860

distribution with parameter σ (Samorodnitsky and Taqqu 2000). From Gómez et al. (2007) and861
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Gómez-Sánchez-Manzano et al. (2008) the Lévy density is862

S 1
2

(y;σ) =

(σ
4

)1

2

Γ
(
1
2

) y− 1
2
−1 exp

(
− σ

4y

)
, (49)863

which is that of an inverse Gamma (IG) distribution with parameters α =
1

2
and β =

σ

4
.864

Consider now the transformation (Gómez et al. 2007) wj = 2/v2j so using (29)865

p (wj|ELSE) ∝
(

2

wj

)− 1
2

exp

−Qj +
1

w2j
4

wj

 2

w2j
866

∝ w
− 1
2
−1

j exp

[
−wjQj

4

]
exp

[
− 1

4wj

]
. (50)867

Consider a Metropolis-Hastings ratio R using (49) with σ = 1 as proposal distribution, and (18)868

let yj be a proposed value and wj be a member of the target distribution. The ratio is then869

R =
y
− 1
2
−1

j exp
[
−yjQj

4

]
exp

[
− 1
4yj

]
w
− 1
2
−1

j exp
[
−wjQj

4

]
exp

[
− 1
4wj

] × w
− 1
2
−1

j exp
(
− 1
4wj

)
y−

1
2
−1 exp

(
− 1
4y

)870

= exp

[
Qj

4
(wj − yj)

]
; j = 1, 2, ..., p. (51)871

Hence if a proposal yj is drawn from IG( α =
1

2
, β =

1

4
), it can be accepted as belonging to872

the conditional posterior distribution of wj, with probability equal to R above. If accepted, a873

"new" v2j = 2/wj is a member of p
(
v2j |ELSE

)
with probability R as well; otherwise stay with874

the current v2j .875

13.4 Appendix D: Alternative algorithm for indirect sampling of876

marker effects877

An alternative sampling scheme that uses an equivalent formulation of the model is presented;878

a two-trait (T = 2) situation is employed for ease of presentation. Let g1 = Xβ∗1 and g2 = Xβ∗2879

be the genomic values of the N individuals for each of the traits. A model could be880 (
y1

y2

)
=

(
1µ1

1µ2

)
+

(
g1

g2

)
+

(
e1

e2

)
, (52)881
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where residuals are as before. In a standard genomic best linear unbiased prediction (GBLUP,882

Van Raden 2008) setting, it is assumed that883 [
g1

g2

]
|G,G0 ∼ N

([
0

0

]
,G0 ⊗G,

)
(53)884

where G is an N ×N marker-based matrix of "genomic relationships", and885

G0 =

[
σ2g1 σg12

σg12 σ2g2

]
(54)886

is a matrix containing the trait-specific genomic variances and their covariances. Specifically,887

from the definition of g1 and g2, and assuming that β
∗
t |σ2βt ∼ N

(
0, Iσ2βt

)
(t = 1, 2)888

V ar
(
gt|X,σ2βt

)
=

1

p
XX′

(
pσ2βt

)
= Gσ2gt ; t = 1, 2, (55)889

for G = XX′/p and σ2gi = pσ2βi . Similarly, Cov
(
g1,g

′
2|X,σβ12

)
= Gσg12, where σg12 = pσβ12 and890

σβ12 is the covariance between marker effects on traits 1 and 2. Let B =
{
σβtt′

}
be the 2 × 2891

variance-covariance matrix of marker effects892

For a bivariate Bayesian LASSO model, conditionally on the p× 1 vector v2, one has893 [
β∗1

β∗2

]
|Σ,v2 ∼ N

([
0

0

]
,Σ⊗D,

)
. (56)894

Hence895 [
g1

g2

]
|Σ,v2896

∼ N

([
0

0

]
,

[
X 0

0 X

]
(Σ⊗D)

[
X′ 0

0 X′

])
897

= N

([
0

0

]
,Σ⊗XDX′

)
. (57)898

Let CCond = Σ⊗XDX′. Further,899

E

([
y1

y2

]
|Σ,v2,R0

)
=

(
1µ1

1µ2

)
, (58)900
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and901

V ar

([
y1

y2

]
|Σ,v2,R0

)
= CCond + R0 ⊗ I = VCond. (59)902

After assigning a flat prior to each of µ1 and µ2, standard results give that posterior distribution903

of the genotypic values given Σ,v2,R0 is normal, with mean vector904

E

([
g1

g2

]
|Σ,v2,R0,y

)
= CCondV

−1
Cond

([
y1 − 1µ̃1

y2 − 1µ̃2

])
=

[
g̃1

g̃2

]
, (60)905

where906 [
µ̃1

µ̃2

]
=

{[
1′ 0

0 1′

]
V−1Cond

[
1 0

0 1

]}−1
907

×
{[

1′ 0

0 1′

]
V−1Cond

[
y1

y2

]}−1
.908

Further (Henderson 1975)909

V ar

([
g1

g2

]
|Σ,v2,R0,y

)
910

= CCond −CCondV
−1
CondCCond + CCondV

−1
Cond1

(
1′V−1Cond1

)
1′V−1CondCCond911

= CCond −CCond

[
V−1Cond −V−1Cond1

(
1′V−1Cond1

)
1′V−1Cond

]
CCond. (61)912

Hence, draws from the conditional posterior distribution of g =
[

g1 g2

]′
given Σ,v2 and R0913

can be obtained by sampling from a multivariate normal distribution with mean vector (60) and914

covariance matrix (61).915

Assuming that, given Σ,v2 and R0, the vector
[
β∗′1 β∗′2 g′1 g′2

]′
has a multivariate916

normal distribution, and let β∗′ =
[
β∗′1 β∗′2

]′
. Hence917

E
(
β∗|Σ,v2,R0,y

)
= Eg|Σ,v2,R0,y

[
β∗|g,Σ,v2,R0

]
918

= Eg|Σ,v2,R0,y

[
Cov (β∗,g′) (Σ⊗XDX′)

−1
g
]

919

= Cov (β∗,g′) (Σ⊗XDX′)
−1

g̃ = β̃
∗
. (62)920

Now,921

Cov (β∗,g′) = Cov

([
β∗1

β∗2

]
,
[

g′1 g′2

])
922

= B⊗X′, (63)923
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so924

β̃
∗

= (B⊗X′) (Σ⊗XDX′)
−1

=
(
BΣ−1 ⊗X′XDX′

)
g̃ (64)925

Similarly926

V ar
(
β∗|Σ,v2,R0,y

)
= V arg|Σ,v2,R0,y

[
E
(
β∗|g,Σ,v2,R0

)]
927

+Eg|Σ,v2,R0,yV ar
[
β∗|g,Σ,v2,R0

]
928

= V arg|Σ,v2,R0,y

[(
BΣ−1 ⊗X′XDX′

)
g
]

929

+ (B⊗ I) (Σ⊗XDX′)
−1

(B⊗ I)930

= BΣ−1B⊗ (XDX′)
−1
. (65)931

13.5 Appendix E: A conditional posterior mode approximation to932

marker effects933

In spite of important advances in high-throughput computing, routine genetic evaluation of934

plants and animals is seldom done with MCMC methods. As an alternative to MCMC, we935

describe an iterative algorithm that produces point estimates of marker effects (and of linear936

functions thereof) and approximate measures of uncertainty in a computationally simpler man-937

ner. The algorithm uses a re-weighted set of linear "mixed model equations", for which extremely938

effi cient solvers exist. It is assumed that "good" estimates of R0 (the residual covariance ma-939

trix) and of B (the T ×T variance-covariance matrix of markers effects) are available. From (8)940

Σ = B/ [4 (T + 1)] , e.g., for T = 3 then Σ = B/16; hence, an assessment of the scale matrix of941

the MLAP distribution is easily available.942

We make use of (2) and of (7) but employ the "markers within trait" representation given in943

(4). Letting θ = (µ′,β′)
′
, the logarithm of the joint (conditionally on the dispersion matrices)944

posterior density of location effects, apart from a constant, is945

log [p(θ|R0,Σ,DATA)]946

= −1

2
{y∗ − (I3 ⊗ 1N)µ− (I3 ⊗X)β∗}′

(
R−10 ⊗ IN

)
{y∗ − (I3 ⊗ 1N)µ− (I3 ⊗X)β∗}947

−1

2

p∑
j=1

√
β′jΣ

−1βj = L(θ) (66)948

Let949

L(θ) = Llik(µ,β
∗) + Lprior(β), (67)950
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where Llik(µ,β
∗) and Lprior(β) are the two terms in (66). Then951

∂Llik(µ,β
∗)

∂µ
=
(
R−10 ⊗ 1′N

)
[y∗ − (I3 ⊗ 1N)µ− (I3 ⊗X)β∗] . (68)952

and953

∂Llik(µ,β
∗)

∂β∗
=
(
R−10 ⊗X′

)
[y∗ − (I3 ⊗ 1N)µ− (I3 ⊗X)β∗] (69)954

Observe now that the relationship between β and marker effects sorted within traits (β∗) can955

be expressed as β = Lβ∗ where L is a 3p× 3p non-singular matrix of elementary operators that956

rearrange rows and columns. For example, for T = 3 and p = 2 and with βjt representing the957

effect of marker j on trait t,958 

β11

β12

β13

β21

β22

β23


=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1





β∗11

β∗21

β∗12

β∗22

β∗13

β∗23


. (70)959

Since L is a matrix of elementary operators, L−1 = L′ (orthogonality) and β∗ = L′β; the absolute960

value of the Jacobian of the transformation from β to β∗ is equal to 1. The contribution of the961

prior to the gradient for marker effects is then962

∂

∂β
Lprior(β) = −Σ−1

1

mj

βj =


1

mj

(
Σ11βj1 + Σ12βj2 + Σ13βj3

)
1

mj

(
Σ21βj1 + Σ22βj2 + Σ23βj3

)
1

mj

(
Σ31βj1 + Σ32βj2 + Σ33βj3

)

 ; j = 1, 2..., p. (71)963

where mj = 2
√
β′jΣ

−1βj is proportional to the the Mahalanobis distance of βj away from964

(0, 0, 0) for T = 3. Hence, the 3p × 1 vector of derivatives with respect to all marker effects,965

sorted by traits within individuals is966

∂

∂β
Lprior(β) = −



Σ−1m1β1

Σ−1m2β2

.

.

.

Σ−1mpβp


= −

(
M−1⊗Σ−1

)
β, (72)967
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where M = Diag {mj} is a p × p diagonal matrix with typical element mj. Rearranging the968

differentials such that the sorting is by markers within traits969

∂

∂β∗
Lprior(β

∗) = −
(
Σ−1⊗M−1)β∗. (73)970

Collecting (69) and (73),971

∂

∂β∗
L(θ) =

∂

∂β∗
Llik(θ) +

∂

∂β∗
Lprior(β

∗)972

=
(
R−10 ⊗X′

)
[y∗ − (I3 ⊗ 1N)µ− (I3 ⊗X)β∗]−

(
Σ−1⊗M−1)β∗, (74)973

Setting (68) and (74) simultaneously to 0 produces the system of equations (not explicit)974 [
R−10 ⊗N R−10 ⊗ 1′NX

R−10 ⊗X′1N (I3 ⊗X′X) +
(
Σ−1⊗M−1)

] [
µ

β
∗

]
=

[ (
R−10 ⊗ 1′N

)
y∗(

R−10 ⊗X′
)

y∗

]
. (75)975

Expanding the equations above for T = 3 yields976



r11N r12N r13N r111′NX r121′NX r131′NX

r21N r22N r23N r211′NX r221′NX r231′NX

r31N r32N r33N r311′NX r321′NX r331′NX

r11X′1N r12X′1N r13X′1N X′r11X+Σ11M−1 X′r12X+Σ12M−1 X′r13X+Σ13M−1

r21X′1N r22X′1N r23X′1N X′r12X+Σ21M−1 X′r22X+Σ22M−1 X′r23X+Σ23M−1

r31X′1N r32X′1N r33X′1N X′r31X+Σ31M−1 X′r32X+Σ32M−1 X′r33X+Σ33M−1



[b]

×



µ1

µ2

µ3

β
∗
1

β
∗
2

β
∗
3



[b+1]

=



1′N(r11y∗1 + r12y∗2 + r13y∗3)

1′N (r21y∗1 + r22y∗2 + r23y∗3)

1′N (r31y∗1 + r32y∗2 + r33y∗3)

X′ (r11y∗1 + r12y∗2 + r13y∗3)

X′ (r21y∗1 + r22y∗2 + r23y∗3)

X′ (r31y∗1 + r32y∗2 + r33y∗3)



[b]

, (76)

where b is iterate round. MatrixM =Diag(mj) changes at every round of iteration, so the system977

needs to be reconstituted repeatedly. Marker effects producing small values of the Mahalanobis978

distance away from 0 result in tiny m−values and, consequently, M−1 will have large diagonal979

elements. Hence, vectors of markers with weak effects are more strongly shrunk towards the 0980

coordinate than those having strong effects in at least one trait981

The variance-covariance matrix of the conditional posterior distribution can be approximated982
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as983

V ar





µ1

µ1

µ1

β∗1

β∗2

β∗3


|R0,Σ,DATA


≈ K−1[∞], (77)984

with ∞ indicating parameters evaluated at converged values, assuming that convergence has985

been attained at a hopefully global mode.986

13.6 Appendix F: Treatment of missing data987

Let a multi-trait data point (T × 1) on individual i be represented as988

ycompletei =
(
ymissi ,yobsi

)
, (78)989

where ”miss” denotes a missing record, e.g., if T = 2, a record could be missing for trait 1 or990

for trait 2; yobsi represents the phenotypes for the traits observed in individual i. The posterior991

predictive distribution of ymissi has density992

p
(
ymissi |y,R0,Σ

)
=

∫
<µ

∫
<β
p
(
ymissi |µ,β,R0,y

obs
i

)
p (µ,β,R0,Σ|y) dµdβdR0dΣ, (79)993

provided that data points in i are conditionally (given µ,β,R0) independent of any other i
′ in994

the sample, and with y being all observed data. The preceding formulae implies that ymissi can995

be imputed by sampling µ,β,R0,Σ from their posterior distribution and then drawing from996

ymissi |y,R0,Σ ∼ N
(
E
(
ymissi |µ,β,R0,y

obs
i

)
, V ar

(
ymissi |µ,β,R0,y

obs
i

))
(80)997

Since the sampling model is normal, for T = 3 one has998

E
(
ymissi |µ,β,R0,y

obs
i

)
=

 δ1µ1

δ2µ2

δ2µ3

+

 δ1x
′
i 0 0

0 δ2x
′
i 0

0 0 δ3x
′
i


 β

∗
1

β∗2

β∗3

999

+R
[miss,obs]
0

(
R
[obs,obs]
0

)−1
e[obs], (81)1000

where δ1, δ2, δ3 take the value 1 when a given trait is missing in case i, or denote "exclude from1001

formula" otherwise; R
[obs,obs]
0 is the part of R0 pertaining to observed phenotypes for case i, and1002
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R
[miss,obs]
0 is the submatrix of residual covariances between missing and observed traits. Further,1003

V ar
(
ymissi |µ,β,R0,y

obs
i

)
= R

[miss,miss]
0 −R

[miss,obs]
0

(
R
[obs,obs]
0

)−1
R
[obs,miss]
0 (82)1004

For example, let T = 3 and suppose that trait 1 is missing in case 250 but that traits 2 and1005

3 have been recorded; here1006

E
(
ymiss250 |µ,β,R0,y

obs
250

)
= µ1 + x′250β

∗
1 +

[
r12 r13

] [ r22 r23

r32 r33

]−1 [
e2,250

e3,250

]
, (83)1007

and1008

V ar
(
ymiss250 |µ,β,R0,y

obs
250

)
= r11 −

[
r12 r13

] [ r22 r23

r32 r33

]−1 [
r12

r13

]
. (84)1009

In the MCMC algorithm, missing data are sampled independently across cases, but dependently1010

within case by addressing the pattern of missingness peculiar to each observation. Samples1011

for missing observations can be used to estimate predictive distributions for the missing data1012

(Gelfand et al. 1992; Sorensen and Gianola 2002; Gelman et al. 2014).1013

14 Legend for Supplemental Figures1014

Figure S1. Five bivariate Laplace densities.1015

Figure S2. Double exponential versus marginal (from bivariate Laplace) versus normal den-1016

sities1017

Figure S3. Normalized densities of mixing variable in MCMC algorithm1018

Figure S4. Shrinkage factor: mean trait 11019

Figure S5. Shrinkage factor: mean trait 21020

Figure S6. Shrinkage factor: marker 10, trait 11021

Figure S7. Shrinkage factor: marker 200, trait 21022

Figure S8. Shrinkage factor: R0[1,1]1023

Figure S9. Shrinkage factor: R0[1,2]1024

Figure S10. Shrinkage factor: R0[2,2]1025

Figure S11. Shrinkage factor: SIGMA[1,1]1026

Figure S12. Shrinkage factor: SIGMA[1,2]1027

Figure S13. Shrinkage factor: SIGMA[2,2]1028

Figure S14. Trace plots of R0[1,1], R0[1,2], R0[2,2]1029

Figure S15. Trace plots of SIGMA[1,1], SIGMA[1,2], SIGMA[2,2]1030

Figure S16. Path to convergence inMAP-MBL (maximum a posteriori-multiple trait Bayesian1031

LASSO)1032
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Figure S17. BLUP of marker effects versus MBL posterior means and MAP-MBL solutions1033

Figure S18. Fitted genetic values: BLUP, MBL and MAP-MBL1034
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Figure 1. Bivariate Bayesian LASSO: trace plot and posterior density of
residual correlation.
Figure 2. Bivariate Bayesian LASSO: trace plot and posterior density of

correlation between marker effects.
Figure 3. Bivariate GBLUP versus bivariate Bayesian LASSO (posterior

mean) estimates of marker effects on wheat grain yield.
Figure 4. t-statistics for marker effects on wheat grain yield: GBLUP versus

bivariate Bayesian LASSO (MBL)
Figure 5. t-statistics for marker effects on wheat grain yield: ordinary leas-

squares (OLS) versus bivariate Bayesian LASSO (MBL) and bivariate GBLUP.
Figure 6. Mahalanobis squared distance (M) away from (0,0) for bivariate

effects on grain yield of 1279 markers: GBLUP versus bivariate Bayesian LASSO
(BLASSO)
Figure 7. Predictive correlations for wheat grain yield: bivariate Bayesian

LASSO (Bayes L) versus bivariate GBLUP (RR-BLUP).
Figure 8. Predictive mean-squared error for grain yield: bivariate Bayesian

LASSO (Bayes L), bivariate GBLUP (RR-BLUP) and bivariate Bayes Cπ.
Figure 9. Mean-squared error of prediction for rust bin and gall volume

in pine trees: bivariate Bayesian LASSO (Bayes L) versus bivariate Bayesian
GBLUP (RR-BLUP).
Figure 10. Predictive correlation for rust bin and gall volume in pine trees:

bivariate Bayesian LASSO (Bayes L) versus bivariate Bayesian GBLUP (RR-
BLUP).
Figure 11. Predictive mean squared error and correlation for gall volue in

pine trees: bivariate Bayesian LASSO (MTBayesL) versus univariate Bayesian
LASSO (STBayesL)
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Standardized marker effects (1279) on yield 1: OLS vs BLUP
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Standardized marker effects (1279) on yield 2: OLS vs MBL
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