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Abstract. RNA secondary structure is helpful for understanding RNA’s functionality, thus accurate
prediction systems are desired. Both thermodynamics-based models and machine learning-based models
have been used in different prediction systems to solve this problem. Compared to thermodynamics-
based models, machine learning-based models can address the inaccurate measurement of thermody-
namic parameters due to experimental limitation. However, the existing methods for training machine
learning-based models are still expensive because of their cubic-time inference cost. To overcome this,
we present a linear-time machine learning-based folding system, using recently proposed approximate
folding tool LinearFold as inference engine, and structured SVM (sSVM) as training algorithm. Fur-
thermore, to remedy non-convergence of naive sSVM with inexact search inference, we introduce a
max violation update strategy. The training speed of our system is 41x faster than CONTRAfold on
a diverse dataset for one epoch, and 14 x faster than MXfold on a dataset with longer sequences. With
the learned parameters, our system improves the accuracy of LinearFold, and is also the most accurate
system among selected folding tools, including CONTRAfold, Vienna RNAfold and MXfold.
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1 Introduction

For past decades, our understanding of ribonucleic acid (RNA) is changing. Proofs reveal that RNAs are
involved in multiple processes, including gene expression, RNA modifications guiding [8] and particular
diseases regulating [13]. RNA’s functionalities are highly related to its secondary structures, but determining
the secondary structure using experimental methods is expensive, time-comsuming and difficult. Therefore,
being able to rapidly and accurately predict RNA secondary structures is very useful and desired.

Accurate prediction model, i.e., well-designed features (for example base pair CG and AU, terminal
mismatches, etc) and their weights, is one of the keys for solving RNA secondary structure prediction problem.
Both thermodynamics-based models and machine learning-based models have been proposed and used for
this problem, they share similar features, but use different ways to get feature weights. Thermodynamics-
based models get feature weights directly from experimentally estimated thermodynamic parameters, and
these models are widely used by RNA secondary structure prediction engines, such as Vienna RNAfold [15]
and RNAstructure [I7]. Thermodynamics-based models and engines constitute the most popular way for
secondary structure prediction, however, they may suffer from the inaccurate measurement of thermodynamic
parameters due to experimental limitation, which leads to an inaccurate prediction result [6].

Alternatively, machine learning-based models borrow feature templates from thermodynamics-based mod-
els, but use machine learning techniques to learn feature weights from known structures. The first trials are
to borrow stochastic context-free grammars (SCFGs) learning framework [7ITIIT2] from natural languag-
ing processing field, but due to the weak feature expression ability of SCFGs, their accuracies are all lower
than thermodynamics-based models. To further improve accuracy, CONTRAfold [6] proposes a new machine
learning-based method using Conditional Random Field (CRF) [I4] for training, and achieves higher accu-
racy than thermodynamic methods. However, CONTRAfold training is very slow due to CRF algorithm,
which makes it impossible for training on big dataset. A more recent machine learning-based work, MX-
fold [1I, uses structured SVM [19] instead of CRF to accelarate the training process. Though it is faster than
CONTRAfold training, it borrows the inference implementation from CONTRAfold, which runs in cubic
time and results in a costly inference process, especially when the training set includes long sequences. In
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‘ Training
System ‘ Method ‘ Inference Algorithm ‘ Speed
CONTRAfold Conditional Random Field O(n?) slowest
MXfold structured SVM O(n?) medium
Our work structured SVM LinearFold fastest

Table 1: Comparison of three machine learning-based RNA folding systems.

addition, MXfold is not a pure machine learning-based model since it integrates thermodynamic model with
learned model.

To overcome the efficiency bottleneck of training, we present a new machine learning-based RNA folding
system, using the recently proposed linear-time prediction engine LinearFold [10] for inference. We use
structured SVM algorithm for training. However, using LinearFold as inference may result in invalid updates
due to the inexact search nature of LinearFold, and break the convergence property in naive sSVM training
process. To remedy this, we utilize a max violation update strategy originally from violation-fixing structured
perceptron [3/4/9], and generalize the naive sSVM algorithm to an advanced version of sSVM.

The results show that the training speed of our system is 41x faster than CONTRAfold for one epoch
on a diverse dataset (average length 208.6 nt). On a dataset with more long sequences, our system is 14x
faster than MXfold (average length 2713.5 nt). With the learned parameters, our system is the most accurate
system among selected folding tools, including CONTRAfold, Vienna RNAfold and MXfold. Using a cross
validation training, Our system improves the off-the-shelf LinearFold-C by +4.62% in PPV and +8.55% in
sensitivity. Compared with retrained MXfold, our system gains +3.51% and +4.70% on PPV and sensitivity,
separately.

Table [I| summarize the differences between 3 systems.

Our contributions are as followed:

— We propose a fast training system which can do training and inference both in linear time. Our system
can make big dataset training and long sequences training much more efficient.

— With the learned parameters, our system is more accurate compared with existing systems.

— We prove that sSSVM converges when doing exact search for inference, but the convergence property does
not hold when the search is inexact. We use a max violation update strategy to solve the convergence
problem.

2 Methods

2.1 Structured SVM Training with Linear-Time Inference

We use structured SVM (sSVM) for training and LinearFold for linear-time inference. This makes the training
process faster than both CONTRAfold and MXfold, especially when the training dataset contains long
sequences.

Formally, we define D as the training dataset, and (z, y) as RNA sequence and its structure in D. Y(z)
is the set of all possible structures for the given sequence x. 3’ is a predicted structure, i.e., y’ € Y(x). sSSVM
training is to learn a feature weight vector w, which scores the native structure y higher than 3’ by a margin

of A(y,y'):

V(z,y) € D,Vy € V(zx),w- ®(x,y) —w-8(z,y) > Ay,y)

where @ is the feature function, mapping (x,y) (or (z,y’)) to its feature vector. A(y,y’) is the decomposable
augmented loss to measure the difference between y and 3. We define A(y,y’) as:

Aly,y') = oFP(y,y') + BEN(y, ')
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Algorithm 1 structured SVM training with SGD
Input: training set D = {x,y}
1: procedure TRAIN(D)
2 Initialize w = 0 € R™
3 while not converged do
4 SHUFFLE(D)
5: for each training example (z,y) € D do
6 § < argmax, cy,)w - ®(z, y') + Ay, y') > loss augmented inference
7 w <+ (1 —9)w +~vCA®(z,y,9) > update w

where FP(y,y’) is the number of False Positive pairs and FN(y, ') is the number of False Negative pairs. «
and [ are hyper-parameters that balance PPV and sensitivity.

For simplicity, we define A®(z,y,y’) as the feature vector difference of y and ¢/, i.e., A®(z,y,y) :=
®(z,y) — ®(z,y). A triple (z,y,y’) is called to be a violation with respect to w if:

w- A@(LE, Y, y/) < A(yv y/) (1)
Among all the violations, we define the most violated structure §:

g = argmax(w - ®(z,y") + A(y,y"))
y'€Y(z)

Previous work by MXfold gets y with loss-augmented decoding through exact search, but since the
exact search-based inference requires O(n?) runtime, the inference is slow for long sequences, leading to
a costly training process. Alternatively, we use LinearFold as a linear-time inference engine to get y*, an
approximation of g:

y" = argmax(w - (z,y') + Ay, y))
y' €Y= ()

where Y*(z) is the search space of LinearFold and Y*(z) C V().

2.2 Convergence Analysis for sSSVM with Inexact Search

Though the training process can be accelerated with linear-time inexact search-based inference, the search
error may lead to invalid updates and result in non-convergence. Next, we will show why sSVM’s convergence
property does not hold when applying inexact search.

First, we review the condition of exact search and analyze its convergence. Algorithm [I] presents the
pseudocode of naive structured SVM training via Stochastic Gradient Descent (SGD), using exact search for
loss augmented inference (line 6). We can prove that for a separable dataset sSSVM training will make finite
number of updates (before convergence) when doing exact search for inference.

Definition 1. D is structured SVM separable with a margin of A(y,y’), if there exists an oracle feature
weight vector w with |[u|| = 1, s.t. it can correctly classify all examples in D with a gap of at least A(y,y').
mazimal margin 6(D) is the maximal such margin over all unit oracle vectors:

6(D) := max min min u- A®(z,y,y 2
@) [lull=1 (z,y)€D y'€V(z)—{y} @3.9) @)
It is clear that V(z,y) € D,Vy' € Y(z) — {y},0(D) > A(y,y').
Definition 2. The diameter R(D) of D is:

R(D) = max max AD(z,y,y ;
) (z,y)€D y’Ey(x)—{y}H (z,y y)|| (3)
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Theorem 1. For a structured SVM separable dataset D with margin A(y,y'), the stochastic gradient descent
(SGD) algorithm (see Algorithm [1)) will make finite number of updates (before convergence).

Proof. Training structured SVM via SGD is to minimize:
1 4 . N
min oW w — C(w-A®(x,y,9) — Ay, 1))
The subgradient of the objective function is:
w— CA®(z,y,9)
Denote wX to be the weight vector at step k, and v to be the learning rate. At each step, w is updated as:
Wt = W — y(wh — CA®(x,y,7))
We bound ||[wk*1|| in two directions. For detailed proof please refer to supporting information.
1. Upper bound:
(IWSHH]2 = [[wh[]? = =y (2 = N[|WK[]* + (vCAR(z,y,9))? + 2(1 — 7)yOW" - A®(z,y,9)
Since the update is because of a violation, by Equation [1| we have (C > 0):
[[WEEH2 = [[wWX[[2 < =32 = )IWK]]? + (vCAB(2,y,§))* + 2(1 = 7)yCA(y, )
If we choose 0 < v < 1, by induction and Definition we can get the upper bound of:
[[W*H|? < kyC(yCR*(D) + 2(1 — 7)d(D))
2. Lower bound:
u-wktl —u-wk = —qu- wk +yCu- A®(z,y,9)

By Definition [1] and upper bound of ||[w¥||, we get the lower bound as:

[WKHL[12 > (—yak? + kyCH(D))?

where a = \/yC(vyOR2(D) + 2(1 — 7)é(D)).
3. Combine upper and lower bound together, we have:

k< (vC6(D) + a)?
(ye)?

The key step in upper bound part is that the update from wX to wk*?1 is because of a violation. When
the inference uses exact search, the most violated structure g is guaranteed to score higher than ground truth
structure y. However, when the search is inexact, for example beam search in LinearFold, it is possible that
ground truth structure is not in the search space (i.e., y € Y*(x)). Thus, even if the predicted structure y* is
different from y, it can still score lower, and the update is therefore invalid. When we do an invalid update,
we shift w towards a wrong direction and the convergence may not hold.
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Algorithm 2 structured SVM with Inexact Search Inference and Max Violation Update
Input: training set D = {x,y}

1: procedure TRAIN(D)

2 Initialize w = 0 € R"

3 while not converged do

4 SHUFFLE(D)

5 for each training example (z,y) € D do

6: (B,y") < INFERENCE(x) > can be either exact or inexact;
7 if w-A®(z,y,y") > A(y,y") then > not a violation for y*
8: w < MAXVIOLATIONUPDATE(wW, y, BB) > max violation update
9: else > a violation for y*
10: W< (1 =)W+ ~yCA®(z,y,y") > regular update

2.3 Max Violation Update Strategy

To remedy the non-convergence introduced by inexact search inference, We now propose the new framework
of sSSVM training, which uses max violation update strategy and can converge with inexact search.

The target of sSSVM training is to learn a feature weight vector w, which scores ground truth structure y
higher than any other structure, i.e., no violation for all examples. So, the main observation is each update
is due to a violation. For exact search inference, if the predicted structure § # y, it must be a violation and
1 must be the most violated structure. However, for inexact search inference, even if the predicted structure
y* # y, it is not necessary a violation since it is possible for y to have a higher score than y*.

With this observation, it is clear that the key solution is to make sure each update is for a violation, no
matter if the search is exact. We introduce a max violation update strategy, which is a successful strategy
in structured perceptron training. Basically, this strategy uses the most violated prefix of the ground truth
structure and predicted structure for update. More formally, denote ym, and y7, as the max violation prefix
of y and y*, and define them as:

(ym'ua y;knv) = arg ynaxw : Aé(xa y[l:j] 5 yfkl:j})
1<j<n

where n is the sequence length and j is each position in the sequence. y[1.5 is the prefix of y up to j. Note
that y[*1; Jl denotes the predicted substructure with the highest score up to j in the searching space, and
yf‘lz. € B, where B is the set of all such predicted substructures for every position j.

Algorithm [2] presents the pseudocode of sSSVM training with max violation updated strategy. Now in line
6 it does not require an exact search (i.e., argmax) for inference, for example, we can use LinearFold as the
inference engine. Then we check if y* results in a violation. If not, we do max violation update. Otherwise,
we do regular update as in Algorithm

3 Results

3.1 Training Time

First, we test the training time of our system, and compare with two machine learning-based systems,
CONTRAfold and MXfold. We use Archivell dataset [I6/18] EL which contains 3,857 RNA sequences from
10 different RNA families. The average and max length of the sequences are 208.6 and 2,968. The 10 families
(listed from the shortest to the longest) are tRNA, 5S rRNA, SRP, RNaseP, tmRNA, Group I Intron, Group
IT Intron, telomerase RNA, 16S rRNA and 23S rRNA.

Figure compares per iteration runtime result among all three systems. We can see that CONTRAfold
is the slowest and takes about 290 minutes, while MXfold is faster and takes about 15.37 minutes. Our
system is the fastest and takes only 7.06 minutes, which is 41x faster than CONTRAfold training and 2.2x
faster than MXfold training.

! http:/ /rna.urmc.rochester.edu/pub/archivell.tar.gz
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Fig. 1: Training runtime comparison between our system and the baselines. A: per iteration training runtime
comparison between CONTRAfold, MXfold and our system on Archivell dataset. Note that the y-axis is
in log scale. B: per iteration training runtime comparison between MXfold and our system on 23S rRNA
dataset from bpRNA. C: per sequence training runtime comparison between MXfold and our system on
these two datasets.

The speedup made by MXfold is mainly because sSVM training algorithm is faster than CRF used by
CONTRAfold. Since MXfold still uses cubic algorithm for inference, we infer that if the dataset contains more
long sequences, MXfold training will be much slower. To verify this, we collect long sequences in 23S rRNA
family from bpRNA dataset [5] E|7 and get a dataset containing 163 sequences, with average length 2713.5nt.
Figure[I]B shows the per iteration runtime comparison between MXfold and our system on this longer dataset.
Since CONTRAfold is too slow, we do not include it. We can see that our system is about 14 x faster, which
comfirms that our system is much faster for training on longer sequences.

In addition, we test the runtime for each sequence to verify the linearity of our system. Figure [L|C presents
such comparison between MXfold and our system. We can see that our system scales almost linearly with
the sequence length, while MXfold has super-quadratic runtime. The minor deviations from the theoretical
runtimes are due to the majority of short sequences in Archivell dataset. For the longest sequence with
length about 4381nt, MXfold takes about 208 seconds while our work only takes about 5 seconds, which is
about 41x faster. We also notice that the runtime deviations of sequences with similar length for MXfold
are much larger than our system, which suggests that our system can finish training within an accurate
estimated time.

3.2 Accuracy

Next, we compare accuracy with both thermodynamics-based system and machine learning-based systems.
We use cross-validation (leave-one-out) training on Archivell dataset, i.e., train on 9 families and test on the
other family, to verify the learned models have strong generalization ability. We report Positive Predictive
Value (PPV, the fraction of predicted pairs in the known structure) and sensitivity (the fraction of known
pairs predicted) for each family, and the overall PPV, sensitivity and F1-score (%) which are
averaged over families. Following previous slipping method, we allow base pair to slip by one nucleotide [I8].
MXfold extends CONTRAfold features, and we also add these extra features into LinearFold when using it
as the inference engine.

Figure 2| shows the per family and overall accuracies. We use 5 systems as baselines, the off-the-shelf ver-
sions of CONTR Afold, MXfold, LinearFold-C (LinearFold with machine learning-based model) and LinearFold-

2 |http://bprna.cgrb.oregonstate.edu/
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CONTRAfold 52.62 52.77 52.69
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LinearFold-V 48.87 57.88 53.00
cross-validation MXfold 54.95 57.63 56.26
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Fig.2: Accuracy comparison between different systems. A: per family PPV and sensitivity comparison. B:
overall PPV-sensitivity-tradeoff comparison. (0.005, 0.5) are the values of hyper-parameters (a, 8). C: table
for overall PPV, sensitivity and F1-score, averaging over all families.

V (LinearFold with thermodynamics-based model), as well as retrained MXfold. CONTRAfold is too slow
for retraining, so we do not include retrained CONTRAfold as a baseline. We do cross-validation training
for our system and MXfold for 100 epochs.

Figure shows that our system has the highest PPV on all families except 5S rRNA, Group I Intron
and telomerase RNA, as well as the highest sensitivity on all families except Group I Intron and telom-
erase RNA. Note that off-the-shelf machine learning-based systems may produce better results as they may
have corresponding families in their training sets. Our system outperforms retrained MXfold on both PPV
and sensitivity for all families, except for PPV of Group I Intron. The results verify that our linear-time
training system can learn better models, and also shows that our system has a good generalization ability
of learning models which can be used across families.

We demonstrate PPV-sensitivity-tradeoff in figure 2B, and show our work’s PPV-sensitivity with selected
hyper-parameters (o = 0.005, 3 = 0.5). We can see that our system achieves the highest overall PPV and
sensitivity among all systems, including machine learning-based systems and thermodynamics-base systems,
by big margins. Figure gives the exact number of overall PPV, Sensitivity and F1-Score in different
systems. Our system improves off-the-shelf LinearFold-C by +4.62% for PPV, +8.55% for sensitivity and
+6.51% for Fl-score, and outperforms retrained MXfold by +3.51%, +4.70%, +4.07% on PPV, sensitivity
and F1-Score, separately. Compared with some other off-the-shelf systems, the improvement is even bigger.
For example, Our system outperforms the off-the-shelf CONTRAfold by +5.84%, +9.56%, +7.64% on PPV,
sensitivity and F1-Score, separately.

We borrow MXfold feature template for all experiments in figure[2] but we notice that even with the basic
feature template in CONTRAfold (about 336 non-zero features), our system achieves a similar accuracy as
using MXfold feature template (around 4,000 non-zero features). Table [2| shows the accuracy comparison
for systems with different feature templates. We can see that PPV and sensitivity changes of our system
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Features System PPV Sensitivity F1-score
basic CONTRAfold (off-the-shelf) 52.62 52.77 52.69
our work (retrained) 58.35 62.32 60.27
MXfold (retrained, w/o thermodynamic model) 54.42 54.82 54.62
rich MXfold (retrained, w/ thermodynamic model) 54.95 57.63 56.26
our work (retrained) 58.46 62.33 60.33

Table 2: Accuracy comparison of systems with different feature templates.

Beam Size Update Strategy PPV Sensitivity F1-score

1 regular 14.94 12.25 13.46
max violation 17.38 13.62 15.27

5 regular 29.93 29.39 29.66
max violation 33.02 31.80 32.39

50 regular 55.80 59.64 57.66
max violation 56.87 60.11 58.44

100 regular 57.12 61.73 59.34
max violation 58.16 61.39 59.73

Table 3: Comparison between regular and max violation update strategy for different beam sizes on Archivell
cross validation training (run for 10 epochs).

with different feature template are very small, only 0.11% and 0.01%, separately. In addition, even with a
much smaller feature template, our system is better than MXfold. On the other hand, MXfold integrates
thermodynamic model in its system, which helps for generalization and makes it a mixture of learning-based
and thermodynamics-base system. If thermodynamic model is disabled and train for a pure learning model for
MZXfold, the PPV and sensitivity drop -0.53% and -2.81%, separately. Compared to this pure learning-based
MXfold, our system’s accuracy improvement is even more salient.

3.3 Update Strategy Impact

In section we introduce max violation update strategy as a fix for invalid update in sSSVM training with
inexact search inference. Here we investigate the impact of different update strategies, i.e., regular update
and max violation update, on accuracy.

Table [3] shows the accuracy changes between regular and max violation update strategies on Archivell
cross validation training. Since the search quality is highly related to beam size, we show the comparison
between different beam sizes too. We can see that with small beam sizes b = 1 and b = 5, the search quality
is bad, thus max violation update strategy leads to a better accuracy. With beam size increasing to b = 50
or even b = 100, the search quality for most short sequences is good (i.e., doing exact search for families
such as tRNA and 5S rRNA), and invalid update becomes fewer, resulting in closer accuracies between two
different update strategies. This confirms invalid updates are the key for sSSVM training with inexact search.

Since Archivell dataset is very diverse, which contains both very long (about 2,900 nt) and very short
(about 50 nt) sequences, it is hard to choose a balanced beam size for training, i.e., a small beam size is
suitable for short families but bad for long families, and a large beam size makes the search for most sequences
become exact search. However, on some other less diverse dataset, for example S-Processed dataset (a data
set used by CONTRAfold v2.02 training, originally from S-full dataset [2] ﬂ), the impact is more salient.

Figure [3| shows the impact of different update strategy on S-Processed dataset training. Figure shows
that for beam size b = 5, max violation update strategy leads to a better accuracy. Compared to regular
update, max violation update helps to gain about +5% increase on Fl-score. In addition, the curve of regular
update drops after 500 seconds, but max violation update curve keeps increasing in all the training process.
Figure visualizes an example from S-Processed test set. This example’s length is 106nt, and is part of

3 lhttp://www.rnasoft.ca/CG/
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Fig. 3: Impact of different update strategy on S-Processed dataset training. A: Fl-score curves of training
processes with two different update strategies for beam size 5. B: An example showing that max violation
update strategy gives a more accurate structure prediction. RNA secondary structures are drawn with
StructureEditor.

a 16S rRNA sequence. We show three structures of this example, ground truth structure, regular update
structure and max violation update structure. We can see that prediction structure with max violation
update strategy is almost the same as the ground truth structure, and its PPV and sensitivity are 96.97%
and 94.12%, separately. Not as good as max violation update structure, prediction structure with regular
update strategy is very different from the ground truth structure, which incorrectly predicts all of the base
pairs.

4 Discussion

Machine learning-based methods for RNA secondary structure prediction can learn feature weights from
known structures, and address the inaccurate measurement of thermodynamic parameters due to experi-
mental limitation. However, training with big datasets containing diverse sequences, which is beneficial for
learning-based methods, is either impossible or very expensive due to the slowness of current learning sys-
tems. To address this issue, we propose a new machine learning-based system, which can learn to fold in
linear time. Our system uses the successful linear-time prediction engine LinearFold as inference, and uses
structured SVM, a much faster machine learning algorithm than CRF used by CONTRAfold, for training
procedure. Furthermore, we utilize a max violation update strategy to address the non-convergence issue
introduced by using LinearFold as inexact search inference, and generalize the naive sSVM algorithm to a
max violation update version of sSVM.
We confirm that:

1. The training speed of our system is 41 faster than CONTRAfold for one epoch even on a diverse dataset
(average length 208.6 nt). On a dataset with more long sequences (average length 2713.5 nt), our system
is 14x faster than MXfold. The training time for each sequence increases linearly with sequence length.
See figure [I]

2. The accuracy of our system outperforms both thermodynamics-based systems and machine learning-
based systems, and achieves the highest accuracy in most families. Our system has a strong generalization
ability, which can learn good models from cross-validation training. See figure

3. Max violation update strategy leads to accuracy improvement. See figure

Our system can be extended to deep learning-based RNA folding system. Now our model still uses
manually designed features, but it can also be built on some well-designed neural networks, which can
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automatically extract implicit features. With these features, it is possible to get a more accurate RNA
folding prediction system.
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