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Abstract

Prediction of subject age from brain anatomical MRI has the potential to provide a sensitive

summary of brain changes, indicative of different neurodegenerative diseases. However, existing

studies typically neglect the uncertainty of these predictions. In this work we take into account

this uncertainty by applying methods of functional data analysis. We propose a penalised func-

tional quantile regression model of age on brain structure with cognitively normal (CN) subjects

in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and use it to predict brain age in Mild

Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) subjects. Unlike the machine learning

approaches available in the literature of brain age prediction, which provide only point predictions,

the outcome of our model is a prediction interval for each subject.

Keywords: brain age, scalar-on-image regression, prediction intervals, quantile regression.

1. Introduction

The process of brain ageing is known to be associated to a general decline in cognitive functions

and higher risk of neurodegenerative diseases (Yankner et al., 2008; Denver and McClean, 2018).
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In some cases, both ageing and dementia affect the same areas in the brain (Lockhart and DeCarli,

2014). For these reasons, a deeper understanding of brain ageing in healthy conditions could

potentially improve the diagnosis of neurodegeneration at early stages. Neuroimaging provides a

non-invasive and safe way to study brain structure and functioning. A large part of the research

in neuroimaging data analysis has been focused on explanatory analyses aimed at describing the

relationship between the brain and some variables of interest (such as neurodegenerative diseases,

sex, physical activity). With the advent of large imaging databases, a prediction-oriented focus has

been also considered, in order to detect individual differences among subjects that could be used

in clinical practice (for example Yoo et al., 2018; Zhou et al., 2019). The study of brain ageing has

recently gained attention in the neuroscientific community thanks to the availability of this large

amount of data and of computational tools for their analysis. A growing body of research employs

neuroimaging to develop a biomarker of individual brain health, called “brain age” (Franke and

Gaser, 2019; Cole et al., 2017). In the absence of a clear definition and assessment of biological

brain age, a brain-derived prediction of chronological age is considered. In order to be integrated

in clinical practice, a brain age biomarker should be easily accessible from brain data (or better,

images), harmless for the subjects, computationally not demanding and correlated with other brain

health indicators (Franke and Gaser, 2019). In addition, since there is a high variability between

subjects in terms of their brain ageing, a useful biomarker should predict cognitive decline better

than the chronological age itself.

In this work we propose a statistically grounded workflow that produces brain age individual

predictions from 3-dimensional brain images. Furthermore, we go beyond simple point predictions

by also providing prediction intervals of the brain age to quantify the uncertainty. Our model is

trained on a control group with no ongoing brain diseases in order to avoid spurious effects due

to other conditions. The same model can be used to predict age in neurodegenerative diseases,

in order to provide a “baseline” brain age, whose difference from the individual chronological age

(brain-predicted age difference or brainPAD as in Cole et al., 2017) might inform about the extent

of the effect induced by the pathology. The joint use of point and interval brain age predictions

could therefore be employed to easily assess departures from a normal ageing process.

The approach developed in this paper is based on modern statistical tools. In order to use 3D

brain images without the need to summarise information by regions of interest, a functional data

analysis (FDA) framework is adopted (Ramsay and Silverman, 2005; Horváth and Kokoszka, 2012).
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Functional data get this name because the observation for each statistical unit is a function2 (a

curve, surface, or image). These data are usually considered as infinite dimensional and intrinsically

continuous, even if the data collection process reduces them to a discrete series of observed points

(Ramsay and Silverman, 2005, Section 3.2). In other words, the whole function is considered as the

object of interest, and not only the specific value observed at a discrete location for each image.

A common model in FDA is scalar-on-function regression (see Morris, 2015 for a review), which

provides an effective way to predict a scalar quantity of interest from a functional observation,

by fitting a regression model using the whole function as a covariate. In our context we call it

scalar-on-image regression. The non-identifiability problem (Happ et al., 2018) arising from having

sample size lower than the number of voxels for each image can be circumvented by imposing some

assumptions on the data generating process (for example smoothness).

We obtain prediction intervals by integrating the FDA framework with quantile regression

(Koenker and Bassett, 1978; Koenker and Hallock, 2001), a model that is largely used in fields

such as economics (Fitzenberger et al., 2013) and ecology (Cade and Noon, 2003) to derive a more

complete picture of the relationship between a covariate and the response variable. Quantile re-

gression does not model the expected value (or a function of it) of the outcome of interest given the

predictors, but some selected quantiles of the conditional distribution (for example the median).

This model can be adapted for functional covariates: in a functional quantile regression model we

explore the linear relationship between a certain quantile of the outcome and the 3D image. By

fitting several quantile regression models we can build the prediction intervals given the covariates.

Prediction intervals from quantile regression (or similar models) have received some attention in

recent decades (Zhou and Portnoy, 1996; Meinshausen, 2006; Mayr et al., 2012), but not within

the framework of functional data. In addition, the scalar-on-image quantile regression generates a

regression coefficient with the same dimensionality as the brain image, providing an interpretable

map that shows how the changes in each brain structure are related to the predicted age.

Our FDA-based approach departs considerably from other methods that are commonly used in

the neuroimaging literature. The current state-of-the-art method in neuroimaging data analysis is

the so-called mass-univariate approach implemented in the Statistical Parametric Mapping software

(Ashburner et al., 2014). A model is fitted to predict the signal at each voxel independently using

2the word “functional” in this case is used in a mathematical sense and is not related to functional MRI.
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the clinical or demographic information as covariate, then a significance map is produced (see for

further details Friston et al., 1994; Penny et al., 2011). Although computationally efficient, this

approach does not explicitly model the spatial correlation of adjacent pixels and is not tailored

for prediction purposes (Reiss and Ogden, 2010). The functional data approach allows instead the

incorporation of the spatial structure by using smoothing techniques and in this way the fit of a

global model for a scalar outcome given the entire brain image.

Another popular approach is based on machine learning algorithms. Franke and Gaser (2019)

review a collection of studies published in the last decade based on a technique called relevance

vector regression. They review a number of studies that examine associations with brain age,

including effects of meditation and playing an instrument. Cole et al. (2019) collects a larger

number of studies dealing with brain age prediction conducted from 2007 to 2018 with different

imaging modalities and pathologies. Many of them adopt support vector regression (as the ones

listed in Franke et al., 2012; Franke and Gaser, 2019 or Sone et al., 2019) or more recently Gaussian

processes and convolutional neural networks (Cole et al., 2017; Cole, 2017; Varatharajah et al., 2018;

Wang et al., 2019). A comparison between the predictive performances of these methods is difficult

due to the use of different datasets and different age ranges, but according to Cole et al. (2019)

the choice of the algorithm does not seem to play a fundamental role. However, these approaches

provide only a point prediction with little knowledge of the internal procedure that returned it, and

in particular deep learning methods are often criticised as “black boxes”. Our approach attempts

to provide a better picture of the set of information on which brain age is based, introducing a

straightforward quantification of uncertainty and at the same time producing a visual display of

the regions that are most relevant for the prediction. In addition, the features of each step of the

workflow proposed here can be evaluated, therefore improving the interpretability of the results.

This last aspect is crucial in medical sciences and is particularly welcome for predictive modelling

in neuroscience (Scheinost et al., 2019).

Another important distinction with the available literature on brain age prediction relates to the

imaging techniques used. Although several models use functional imaging or multiple modalities,

a large share of studies focused on structural magnetic resonance imaging (MRI), in particular T1-

weighted images, usually segmentated into grey and white matter. Unprocessed MR images have

also been employed with some degree of success (Cole et al., 2017). In this work we still remain

in the family of structural imaging but we use tensor-based morphometry (TBM) images, that are
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obtained after a transformation of standard MRI images. TBM images give information about

relative volumes of brain structures with respect to a common template; for this reason the images

are all spatially registered. To the best of our knowledge, this is the first study addressing brain

age prediction from TBM images. The dataset used in this manuscript comes from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI, Mueller et al., 2005).

The work is structured as follows. Section 2 gives an overview of functional data analysis and

quantile regression. Section 2.4 introduces the plan of the analysis and discusses details of the

implementation. The main characteristics of the ADNI dataset are described in Section 3, while

the results of the analysis are reported in Section 4 in terms of the predictions, their robustness

with respect to the choices of the parameters in the model and their correlation with standard

cognitive measures. Finally, Section 5 discusses the main findings, summarises the work and briefly

introduces further research directions.

2. Materials and Methods

2.1. Functional data analysis

Functional data are realisations of a random function X ∈ L2(T ), the space of square–integrable

functions f : T → R, for which ∫
T

[f(t)]
2
dt <∞. (1)

Typically in FDA we assume T ⊆ Rd (Kokoszka and Reimherr, 2017; Ramsay and Silverman,

2005; Ferraty and Vieu, 2006). We define the inner product

〈f, g〉 =

∫
T

f(t)g(t)dt, (2)

and the norm

‖f‖L2 =

(∫
T

[f(t)]
2
dt

) 1
2

, (3)

where f, g ∈ L2(T ). The first order moment of X is the mean function µ(t) = E [X(t)]; the second

order variations of X are encoded in the covariance function

v(s, t) = E [(X(s)− µ(s)) (X(t)− µ(t))] , s, t ∈ T (4)

of which the variance function is a special case (s = t). A central object when dealing with

functional data is the covariance operator, whose kernel is the covariance function v(s, t). It is
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defined as

Γ(f) = E [〈X − µ, f〉(X − µ)] , ∀f ∈ L2(T ). (5)

The covariance operator transforms a function f in another function Γ(f) whose values are

Γ(f)(t) =

∫
T

v(t, s)f(s)ds, ∀t ∈ T . (6)

The covariance operator plays a key role in the Karhunen–Loève expansion for square–integrable

functions,

X(t) = µ(t) +
∞∑
m=1

νmψm(t), (7)

expressing X as an infinite linear combination of the deterministic eigenfunctions {ψm(t)} of Γ

with random and uncorrelated weights νm. The eigenfunctions are the solutions of the eigendecom-

position problem ∫
T

v(t, s)ψj(s)ds = λjψj(t), ∀t ∈ T . (8)

The eigenfunctions are orthogonal and rescaled to have unit norm, and their corresponding eigen-

values {λj} are in decreasing order.

The results of the eigendecomposition of the covariance operator can be interpreted under the

framework of functional principal component analysis (FPCA), which aims at studying the principal

modes of variation of the random function X. The eigenvalue λm is the part of the variance of

X explained by the m-th eigenfunction, also called functional principal component. The random

variables

νm = 〈X − µ, ψm〉 (9)

are called scores. The scores are uncorrelated and centered with variance λm.

2.2. Quantile regression

Regression models are used to study the relationship between some fixed and known predictors

Z = (z1, ..., zM )T ∈ RM and an outcome variable Y . For example, linear models are used to

evaluate the change in the expected value of the continuous outcome conditioned on the values of

the predictors, under specific assumptions on the error term. Nevertheless, there are occasions in

which either these assumptions do not hold (for example, when there is heteroskedasticity in the

residuals) or simply the main interest is to model specific quantiles of the conditional distribution

of the response variable in order to produce a deeper analysis of the randomness of Y |Z that goes
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beyond the conditional mean3. Quantile regression (Koenker and Bassett, 1978) can effectively deal

with these cases by specifying the model:

QY |Z(τ) = α(τ) +
M∑
m=1

zmβm(τ), τ ∈ (0, 1), (10)

where

FY |Z(y|z) = Pr(Y ≤ y|z) (11)

is the conditional cumulative distribution function of Y |Z and

QY |Z(τ |z) = inf{y : FY |Z(y|z) ≥ τ} (12)

is the τ -th conditional quantile of Y |Z = z. For example, QY |Z(0.5) is the median of the conditional

distribution of Y |Z. The interpretation of βm(τ) is similar to the one in linear models: it corresponds

to the marginal effect on the conditional quantile due to a one-unit increment in the m-th covariate.

Given n observations, the estimation procedure for the model in Equation (10) is based on the

following minimisation problem:

(α̂(τ), β̂1(τ), . . . , β̂M (τ)) = arg min
a,β1,...,βM

[
n∑
i=1

ρτ

(
yi − α−

M∑
m=1

zimβm

)]
, (13)

where ρτ (u) =
[
τ − 1{u≤0}

]
u is the check (or quantile loss) function (Koenker and Bassett, 1978).

There is a relationship between the linear formulation Y = Zβ + ε and the quantile formulation in

Equation (10). Under a linear data generating process with known α and β, we can write

Y = α+ Zβ + ε ⇔ QY |Z(τ) = α+ Zβ + F−1ε (τ), (14)

with ε being the mean zero random term of the model with cumulative distribution function (CDF)

Fε. In this simple setting, the marginal effect of the covariate is constant across quantiles. Note

that the result in Equation (14) holds for any distribution of the error term. Quantile regression

can nonetheless accommodate more complicated data generating processes, like for example the

location-scale model where ε is replaced by σ(Z)ε, with σ(Z) > 0 and ε ⊥⊥ Z. In this case the

variance of the random term depends on Z and it can be shown that the estimated slope in the

quantile regression model will be governed by the quantiles of ε.

3From Mosteller and Tukey (1977): ‘Just as the mean gives an incomplete picture of a single distribution, so the

regression curve gives a correspondingly incomplete picture for a set of distributions.’
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All the quantile regression models return as output a prediction at a specific quantile level. For

example, the model with τ = 0.5 gives the conditional median prediction for each experimental

unit given particular values of the covariates. Predictive accuracy of the conditional median can

be measured through the mean absolute error (MAE) and the root mean square error (RMSE)

between the point predictions and the observed responses. By fitting a model for several values of

τ , we can also build prediction intervals for new observations (y∗, z∗) (Davino et al., 2013; Mayr

et al., 2012). For example, if we fit a model on the same data for two quantile levels τ1 = δ/2 and

τ2 = 1− δ/2 (with δ ∈ (0, 1)), the interval

PI1−δ(z
∗) =

(
Q̂Y |Z(τ1|z∗), Q̂Y |Z(τ2|z∗)

)
(15)

should contain the observed response value for new data (1− δ)100% of the time (provided Equa-

tion (10) is true). For example, a 90% prediction interval can be obtained by fitting a model

for τ1 = 0.05 and τ2 = 0.95. This prediction model can effectively handle heteroskedasticity or

skewness, since in quantile regression there are no assumptions on the response distribution: using

simulated data Davino et al. (2013) provide examples in which prediction intervals obtained via

quantile regression achieve the nominal levels where ordinary least squares prediction intervals fail.

These aspects ensure also that the empirical coverage level of the prediction intervals is close to the

nominal level: Zhou and Portnoy (1996) show that the coverage probability tends to 1− δ with an

error of O(n−1/2), as the sample size of the training set n→∞.

2.3. Functional quantile regression

A large body of literature has been developed in order to translate regression models into the

functional framework. For example, functional GLMs are now well established in the theory, both in

the frequentist and Bayesian approaches (Müller and Stadtmüller, 2005; Crainiceanu et al., 2009).

Quantile regression (Koenker and Bassett, 1978) has also been extended in the functional data

paradigm: first with Cardot et al. (2005), then with Kato (2012), the model has been readapted

for the case of functional covariates with scalar response. The model illustrated in Kato (2012)

shares the main characteristics with the scalar-on-function regression of Müller and Stadtmüller

(2005), except for the assumption that the conditional quantile is a linear function of the (centered)

covariates. In particular, the conditional quantile of the response is expressed as a linear function

8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/853341doi: bioRxiv preprint 

https://doi.org/10.1101/853341
http://creativecommons.org/licenses/by/4.0/


of the scalar product between the functional data and a coefficient function β(τ, ·) ∈ L2(T ):

QY |X(τ) = α(τ) +

∫
T

X(t)β(τ, t)dt, τ ∈ (0, 1). (16)

The functional nature of the coefficient makes its interpretation less straightforward than in stan-

dard regression. In the regions where β(τ, t) = 0 any increment in the covariate produces no

marginal change on the quantile of the conditional distribution Y |X. On the other hand, if β(τ, t)

is constant over a region T ∗ ⊂ T and null elsewhere, then only the region T ∗ plays a role in the

prediction of the conditional quantile. Despite the differences between quantile and linear scalar-on-

function regression, the same difficulties of the interpretation of the functional coefficients discussed

in James et al. (2009) apply.

In order to estimate the parameters in Equation (16), both the predictors and the coefficient

functions (that we can assume without loss of generality to be centered) are represented in the

truncated Karhunen–Loève expansion in Equation (7):

Xi(t) ≈
M∑
m=1

νimψm(t), β(τ, t) ≈
M∑

m′=1

bm′(τ)ψm′(t).

Thanks to the orthonormality of the eigenfunctions ψm,∫
T

Xi(t)β(τ, t)dt ≈
M∑
m=1

M∑
m′=1

νimbm′(τ)

∫
T

ψm(t)ψm′(t)dt

=
M∑
m=1

νimbm(τ). (17)

Thus the functional model in (16) becomes a standard quantile regression problem of the form

QY |X(τ) = α(τ) +
M∑
m=1

νimbm(τ), (18)

where α(τ) and b1(τ), . . . , bm(τ) are estimated as in Equation (13). The estimated functional

coefficient is then reconstructed by computing

β̂(τ, t) =
M∑
m=1

b̂m(τ)ψm(t); (19)

for a given τ the estimated value for the quantile function is obtained by plugging in the estimated

coefficient into (16):

Q̂Y |X(τ) = α̂(τ) +

∫
T

X(t)β̂(τ, t)dt. (20)
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In this functional principal components regression (FPCR) setting, the number of principal com-

ponents M to be used as regressors controls the smoothness and the approximation error with

respect to the real images. The choice of M could be automated by using information criteria or

percentage of variance explained; nevertheless, there is no guarantee that the first M components

(which explain the most of the variability of X) are also able to capture effectively the relationship

between the functional predictor and the scalar response (Febrero-Bande et al., 2017; Delaigle and

Hall, 2012). For this reason, a simple option could be to select M such that a very large share of

explained variability is represented and then use LASSO regularisation within the quantile regres-

sion model (Belloni and Chernozhukov, 2011; Wang, 2013). Since for each τ a different model has

to be fitted, the regularisation might produce a different subset of selected variables across different

quantile levels τ . For the same reason the plug-in estimator Q̂Y |X(τ |X) is not guaranteed to be

monotonically increasing in τ as the conditional quantile function QY |X(τ |X) is by construction.

2.4. Data analysis workflow

2.4.1. Imaging

The brain images are acquired using structural MRI. This workflow does not depend on any

specific preprocessing stages, except for intersubject registration to an atlas image, such that voxels

from different images are aligned.

More transformations can be operated on the structural MR images. For example, the analysis

can be based on tensor-based morphometry (TBM) images. TBM is an image technique that aims

at showing local differences in brain volume from structural imaging. In a cross-sectional setting

(one image for each subject), each image is aligned to a common MRI template called minimal

deformation template (MDT). The deformation induced by this alignment can be represented by a

function that maps a 3-dimensional point in the template to the corresponding one in the individual

image. The Jacobian matrix of the deformation can be used to inform about volume differences in

terms of shearing, stretching and rotation. The determinant of the Jacobian matrix for each voxel

is then a summary of local relative volumes compared to the MDT: a value greater than 1 indicates

expansion, while a value less than 1 means contraction. Further details about TBM are available

in Ashburner and Friston (2004).
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In order to reduce the dimensionality of the problem, the voxels outside the brain can be

excluded from the analysis imposing a mask on the images. We used FSL (through its R interface

fslr, Muschelli et al., 2015) to obtain a mask on the template image with smooth boundaries.

2.4.2. Basis expansion

A common assumption in FDA is that the observed data are a noisy, discretised version of

the true underlying signal function that is of interest in the analysis. In other words, the values

observed at a specific voxel may be contaminated with some measurement error that could have an

impact on the spatial correlation structure within the images. Removing this measurement error

leads therefore then to smoother images, improving the performances of FPCA.

For this reason, nonparametric basis expansion techniques such as B-splines or wavelets are

usually employed. The latter are chosen mainly when the underlying function is thought to be

characterised by rapid changes in behavior (Ramsay and Silverman, 2005); B-splines are instead

preferred for their properties (compact support, unit sum) when less abrupt changes in the function

are expected. In this case, TBM images are already smooth by construction, so we can use B-spline

basis functions with the main aim to obtain a parsimonious representation (under the fairly safe

assumption that the main sources of error have been already removed).

In order to get a 3-dimensional basis function, a tensor product of univariate B-spline basis

functions is considered. Denote by B
(j)
1 (t(j)), . . . , B

(j)
Qj

(t(j)) the univariate basis functions for the

j-th dimension (j = 1, 2, 3). The number of basis functions for each dimension is Qj = lj + r − 1,

where lj is the number of knots and r is the degree of the spline. We now define the set of basis

functions

Bq1q2q3(t(1), t(2), t(3)) = B(1)
q1 (t(1))B(2)

q2 (t(2))B(3)
q3 (t(3)) (21)

for qj = 1, . . . , Qj , for j = 1, 2, 3. Now we can evaluate this set of basis function at every voxel

setting (t(1), t(2), t(3)) equal to its 3 coordinates.

In order to derive the projection of each image onto this set of basis functions, we define the

following matrix of basis functions using the Kronecker product

φ = S(3) ⊗ S(2) ⊗ S(1). (22)

where S(j) is the Pj × Qj-dimensional matrix whose qj-th column contains the evaluation of the

function B
(j)
qj (t(j)) at each point t(j) (for j = 1, 2, 3) and Pj is the number of points for the j-th
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dimension. The matrix φ has dimensions P1P2P3 × Q1Q2Q3 (the number of rows is equal to the

number of voxels and the number of columns is equal to the number of basis functions). Once the

basis set is determined, this can be used as set of regressors where the original (vectorised) image

is the response variable. Estimation can be performed via ordinary least squares:

x̂i(t) =
K∑
k=1

c̃ikφk(t), (23)

where K = Q1Q2Q3, c̃i is the K-dimensional vector containing the coefficients of the projection

for the i-th image and φk(t) is the k-th basis function. In compact form, all the N images are

represented by the product of the N ×K coefficient matrix C̃ and the matrix of basis functions φ.

We center the projected data (equivalent to centering the raw data since the projection is linear).

This apparently negligible aspect is actually very relevant in the big data context as it allows to

parallelise the basis expansion stages without the need to import and store simultaneously all the

images. We call the centered coefficient matrix C.

In this work we used a 3D isotropic tensor product with quadratic B-spline univariate basis

functions with equidistant knots. The number of knots (or analogously their spacing) can be fixed

in advance, but a poor choice might heavily affect the number of basis functions that are needed to

represent the functions and consecutively the computational time and the quality of projection. For

this reason a preliminary study on a subset of the data is recommended. Outcomes of interest for

this preliminary study could be the number of non-zero basis functions within the masked image,

the average time needed for the projection of an image and the percentage of variance explained

(that in linear regression is equivalent to R2). At this stage, it is highly recommended to retain as

much variability as possible: a 95% threshold should work for many applications and should ensure

a manageable set of basis functions. Alternative criteria could be established in terms of full width

at half maximum (FWHM).

2.4.3. Functional PCA

The coefficients of the projection are the quantities needed to solve the eigendecomposition prob-

lem in Equation (8). In this section, we rely heavily on Ramsay and Silverman (2005, Section 8.4.2),

with minor modifications to make this high dimensional problem computationally feasible. The pro-

cedure is described also in Chen et al. (2018).

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/853341doi: bioRxiv preprint 

https://doi.org/10.1101/853341
http://creativecommons.org/licenses/by/4.0/


The sample variance-covariance function can be written as

v̂(s, t) =
1

N − 1
φ(s)TCTCφ(t) (24)

using the same decomposition in (23). Suppose then that the eigenfunctions in Equation (8) can

be expressed as linear combinations of the same basis functions φ:

ψ(s) =
K∑
k=1

ξkφk(s) = φ(s)T ξ. (25)

Then the eigenanalysis of the covariance operator described in Equation (8) takes the following

form: ∫
T

[
1

N − 1
φ(s)TCTCφ(t)

] [
φ(t)T ξ

]
dt = λφ(s)T ξ. (26)

Denoting by W the K ×K symmetric basis product matrix with elements

wkl = 〈φk,φl〉, (27)

Equation (26) can be rewritten as

1

N − 1
φ(s)TCTCWξ = λφ(s)T ξ. (28)

The entries in W are usually computed with some numerical quadrature rules (Ramsay and Sil-

verman, 2005) but these procedures are computationally demanding in our 3D context. The cross

product, although less accurate at the boundaries with respect to the trapezoidal rule, offers a good

result in shorter time. Simplifying both sides of Equation (28) by φ(s)T (the relationship must

hold for all s) we obtain
1

N − 1
CTCWξ = λξ. (29)

In order to get orthonormal eigenfunctions, some constraints must be imposed:

ξTi Wξi = 1 and ξTi Wξj = 0.

These are fulfilled by setting u = LT ξ, where L is obtained through the Cholesky decomposition

W = LLT (Ramsay and Silverman, 2005, p. 181); solving the equivalent problem

1

N − 1
LTCTCLu = λu, (30)

the original eigenfunctions are obtained using ξ =
(
LT
)−1

u.
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We note that for A = (N − 1)−1/2CL the eigendecomposition problem consists in finding the

eigenvalues and eigenvectors of ATA. These can be obtained in a computational efficient way by

using the SVD of the matrix A. In particular, the non-zero eigenvalues λ are equal to the squared

non-zero singular values, whereas the eigenvalues u of ATA are equal to the right singular vectors

of A. The m-th score for the i-th image is then

νim = 〈Xi − µ, ψm〉

=

∫
T

∑
j

cijφj(t)

[∑
k

ξmkφk(t)

]
dt

= cTi Wξm. (31)

2.4.4. Functional Quantile Regression

The scores obtained after FPCA are plugged into a standard quantile regression problem. We

create the design matrix for the quantile regression model using the first M scores for each image

such that the first M eigenfunctions represent at least 80% of the variability within the sample (see

Section 4.3 for a sensitivity analysis). LASSO regularisation can be applied within the quantile

regression framework. The minimisation problem in Equation (13) can be readapted therefore to

our situation by writing

(α̂(τ), b̂1(τ), ..., b̂M (τ)) = arg min
α,b1,...,bM

{
n∑
i=1

ρτ

(
yi − α−

M∑
m=1

νimbm

)
+ hLASSO

M∑
m=1

|bm|

}
(32)

where hLASSO is the LASSO tuning parameter. For a specific value of hLASSO, a solution path

is found, where the Lasso penalty will induce the shrinkage of the estimates towards zero, but also

sparsity, as some estimates are exactly zero (Tibshirani, 1996).

Several R packages offer built-in functions that perform automatic selection of the tuning param-

eter. For this purpose, we use the package rqPen (Sherwood and Maidman, 2017), that produces

penalized quantile regression models for a range of tuning parameters and then selects the one with

minimum cross-validation error.

2.4.5. FPCA and functional quantile regression in a prediction setting

The scores are projections of images onto the subspace defined by the eigenfunctions estimated

on the training set. For this reason, analogous scores can be obtained for images from other datasets
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with the same formula, even if the properties of zero mean and variance equal to the eigenvalues

apply only for the training dataset. The scores are in turn produced within the FPCA step, where

the estimation of the eigenfunctions depends on the training data as well.

This workflow is aimed at deriving brain age prediction intervals for healthy individuals. This

means that FPCA and functional quantile regression should be based on a dataset of control

subjects. In order to get predictions for this dataset, 10-fold cross validation can be used, removing

in this way the risk of overfitting. Age predictions for subjects with neurodegenerative diseases

can also be obtained. In this case the full dataset of control subjects can be used for FPCA and

functional quantile regression and the brain age is to be interpreted as the equivalent brain age of

a healthy individual having the same brain image.

The R code implementing the workflow is available at https://github.com/marcopalma3/

neurofundata.

3. Data

The workflow proposed in Section 2.4 is applied on a dataset coming from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI, Mueller et al., 2005), that supports the investigation about

biological markers to be used to detect Alzheimer’s Disease (AD) at early stages. The sample used

in this paper is made of 796 subjects, identified through an ID code, for which several demographic

and clinical variables are measured. In this analysis, we will consider only the chronological age at

the entry of the study (ranging from 59.90 to 89.60 years; mean age 75.60±6.29) and their diagnosis:

180 subjects were diagnosed with AD, 387 with MCI (Mild Cognitive Impairment, considered as an

intermediate stage between healthy condition and AD) and 229 people were belonging to a control

group of cognitively normal (CN) subjects. The histogram of age by diagnosis group is displayed

in Figure 2.

Diagnosis N Min. 1st Qu. Median Mean 3rd Qu. Max.

Control 229 59.90 72.30 75.60 75.87 78.50 89.60

MCI 387 60.10 70.85 75.60 75.30 80.40 89.30

AD 180 59.90 70.98 76.15 75.90 81.58 89.10

Table 1: Summary statistics for each diagnosis group. N is the number of subjects in each group. The second

part of the table shows selected quantiles of age.
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Figure 1: Flowchart of the analysis from the brain images to the predicted intervals.

16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/853341doi: bioRxiv preprint 

https://doi.org/10.1101/853341
http://creativecommons.org/licenses/by/4.0/


0

10

20

30

40

60 70 80 90
Chronological age

F
re

qu
en

cy
Diagnosis

Control

MCI

AD

Figure 2: Histogram of age of the subjects in the sample, for each diagnosis. The number of bins has been

fixed using the Freedman-Diaconis rule (Freedman and Diaconis, 1981).

The functional part of the dataset consists of tensor-based morphometry (TBM) images taken

at the baseline of the study for each subject. In this dataset, the threshold 1 is rescaled to 1000 for

computer number format reasons. Information about the preprocessing stages for the ADNI TBM

dataset is available in Hua et al. (2013).

The analysis is based on the original 3D TBM scans (220× 220× 220, with voxel size equal to

1 mm3). The conventional neurological orientation (“right is right”) is used: the (x, y) axes of the

images are set such that x increases from left to right and y increases from posterior to anterior.

The mean functions for each diagnosis are shown in Figure 3. MCI and AD patients share

similar average brain volumes patterns (namely, expansion of the lateral ventricles and shrinkage

almost everywhere else) even if the intensity of the expansion is higher for people with dementia.

The expansion of the lateral ventricles is also visible in the healthy control mean function, but

it is less pronounced. On the other side, the healthy control mean function shows other slightly

expanded brain areas, such that the cerebellum and several regions in the posterior and frontal

lobes. Further analyses based on the voxelwise variance functions per each group show that the

lateral ventricles are the areas with the highest variability in terms of volume expansion.
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4. Results

4.1. Prediction accuracy

The preprocessed images are masked to remove unnecessary voxels for the analysis. A 3D smooth

mask is obtained by smoothing the raw mask with a Gaussian kernel with standard deviation equal

to 2 voxels (FWHM 4.7 mm) and thresholding it at 0.5, to regularise the boundary, producing just

over 2 million nonzero voxels.

For the dataset at hand the B-splines projection with equidistant knots every 12 mm (equivalent

to FWHM ≈ 15.33 mm) for each dimension allows to represent each image with R2 (percentage of

variance explained) approximately equal to 96%. The number of B-spline functions in the tensor

product that fall within the mask is 2694. In the current implementation, the process of importing

one image into R and obtaining its B-spline coefficients takes approximately 30 seconds.

The eigendecomposition problem in Equation (8) solved for the dataset of healthy control sub-

jects returns M = 54 eigenfunctions of which the first 3 are plotted in Figure 4. In analogy with

standard PCA, a basic interpretation can be provided. The first eigenfunction clearly distinguishes

the lateral ventricles from the rest of the brain. Subjects with high scores for this eigenfunctions

will show stronger expansion within the lateral ventricles with respect to the mean function. Due

to the similarities with the observed patterns in the mean function for the subjects with disease, it

is likely that the scores for this eigenfunction computed for all the 796 subjects in the dataset are

correlated with the diagnosis and with the chronological age, for the known interplay of the effects

of these two factors. The second mode of variation refers instead to a more general expansion across

the whole brain: in other words, it discriminates between individuals with bigger brains and those

with smaller ones. For this reason, this component might account for some sex-related effects, as

males have on average larger overall absolute brain than females (Ruigrok et al., 2014). The third

eigenfunction weights negatively some of the internal parts of the brain. This component might

therefore roughly distinguish white matter from the cortex, even if this interpretation is not very

clear and can be influenced by the smoothing induced by the projection onto the basis functions.

The first 3 components account for 36.25% of the variance of the images of the healthy control

group.

We compute the scores for MCI and AD individuals as the product of the centered images

and the eigenfunctions in Figure 4. For the control subjects, we use 10-fold cross validation to
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run FPCA, produce scores and fit the models such the predictions are obtained on held-out data.

Quantile regression models for τ ∈ {0.05, 0.5, 0.95} are considered. Table 2 shows that the MAE

and RMSE based on the difference between median brain-predicted age and chronological age are

lower for control subjects than the other groups. This result is expected under the choice of a

normative model that predicts brain age in absence of any diseases and indicates that the two

subpopulations (controls vs. cases) show different ageing characteristics (if they were belonging to

the same population, the MAE and RMSE would have been similar).

Diagnosis N MAE RMSE Cor 95% CICor pCor π̂ Over

Control 229 3.49 4.43 0.48 [0.37, 0.57] 1.80 ×10−14 0.86 0.05

MCI 387 4.99 6.12 0.46 [0.38, 0.54] <2.20 ×10−16 0.68 0.24

AD 180 5.16 6.27 0.38 [0.25, 0.50] 1.86 ×10−7 0.64 0.28

Table 2: Summary of the prediction results by diagnosis. Cor: correlation between predicted brain age and

chronological age. CICor: confidence interval for the correlation between predicted brain age and chronological age,

obtained via Fisher-z transformation (Myers et al., 2013, Section 19.2). pCor: p-value for the null hypothesis of zero

correlation. π̂: sample coverage (proportion of cases for which the intervals contain the chronological age). Over:

proportion of cases for which the chronological age is less than the lower limit of the prediction interval.

The MAE observed for the control group is 3.49, in line with other results obtained in the

literature for other MRI datasets and different age ranges (Cole et al., 2019). There is some evidence

of positive correlation between the median predictions and the chronological age for control subjects

(p = 1.80 × 10−14). In addition, as shown in Figure 5, the smoothed regression line for control

subjects indicates that the average brainPAD (difference between predicted and chronological age)

is close to zero for the whole age range, while it departs from it for the other groups in the predicted

age range between 73 and 75.

We focus now our attention on the features of the 90% prediction intervals and the sample

coverage. We observe that the actual sample coverage for control subjects is slightly lower than

the nominal level. The groups with cognitive impairment show lower coverage with respect to the

control group: the chronological ages of around 1 in 3 subjects with diseases do not fall in the

prediction intervals obtained under the normative model. When we further analyse the direction

of the “misprediction”, it appears that the share of underpredictions (when the chronological age

is higher than the upper extreme of the prediction interval) is approximately constant across the

diagnosis. On the other side, the percentage of overpredictions for MCI and AD groups is approx-
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Figure 5: Plot of the brainPAD vs. predicted response. The coloured lines are local regression lines obtained

with loess (locally estimated scatterplot smoothing) with span = 0.75 and 95% confidence bands.

imately 5 times the one for the control subjects. This result aligns with the fact the MCI and

AD accelerate brain ageing (Cole et al., 2019; Franke et al., 2012): for this reason overpredictions

are more interesting for their potential correlation with other disease indicators. All the prediction

intervals are plotted in Figure 6, stratified by diagnosis and sorted by predicted age. The prediction

intervals for the control subjects are scattered closer to the line of identity between predicted and

chronological age and there are no relevant trends in the residuals that are left unexplained by

the regression models. The variability of the width of the 90% prediction intervals is displayed in

Figure 7: the average width is similar for the 3 diagnosis groups, but there is higher variability

in the width distribution of the MCI and AD subjects. Moreover, the overpredictions are mainly

observed for the younger subjects in the dataset. This could be due to the low number of subjects

in the training set with chronological age less than 70, which might produce issues in the estimation

of extreme quantiles of the conditional distribution of the outcome.

The brain maps displayed in Figure 8 are the functional coefficients obtained from the scalar-

on-image quantile regression trained on the whole control dataset. They can be used to identify

the regions that are responsible for the age prediction for the different quantiles. The functional
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Figure 6: Brain age 90% prediction intervals, relative to chronological age. There is one interval per subject,

and subjects are sorted in descending order of predicted brain age (higher predicted ages at top). The black diamonds

indicate the subjects for which chronological age does not fall into the prediction interval; the side indicates if there

is underprediction (diamonds on the left) or overprediction (diamonds on the right).
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Figure 7: Left: distribution of the prediction interval width conditioned by diagnosis. Right: histogram

of chronological age conditioned by overpredictions.

coefficient for τ = 0.05 shows that the expansion of the lateral ventricles is the principal factor

that leads to higher predicted age in the lower tail of the chronological age distribution. Other

areas seem to have more limited impact on the prediction. In the coefficient obtained from the

median regression, the lateral ventricles still play a role in the prediction (especially the posterior

part) but expansion in several other areas is correlated to higher predicted age. Among them we

point out the central sulcus (perpendicular to the median longitudinal fissure that divides the two

hemispheres) that separates the primary motor cortex and the primary somatosensory cortex. For

τ = 0.95, the brain map indicates that the upper part of the cortex and the cerebellum are related

to higher predicted age, while a larger left temporal lobe (in blue in the lower axial slices, it plays a

role in memory and language control) is associated to younger brain age. Especially for these last

two maps, asymmetry between hemispheres appears in the relationship with brain age.

4.2. Correlation with cognitive decline measures

A small number of cognitive decline measures available in ADNI has been used to evaluate the

clinical utility of the predictions obtained. The list of measures reported in Table 3 includes genetic

assessments (ApoE4) and various evaluations of writing and speaking skills, visual attention and

task switching. The outcomes of interest in this section are both the brain-predicted age difference

(brainPAD, difference between predicted and chronological age, as defined in Cole et al., 2017) and
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the binary overprediction indicator (equal to 1 if the chronological age is less than the prediction

at τ = 0.05, 0 otherwise).

Variable Values

ApoE4 Apolipoprotein E - Number of ε4 alleles {0, 1, 2} ↗

ADAS11 AD Assessment Scale - 11-item variant {0, 1, ..., 70} ↗

ADAS13 AD Assessment Scale - 13-item version {0, 1, ..., 85} ↗

ADASQ4 AD Assessment Scale - Delayed Word Recall {0, 1, ..., 10} ↗

MMSE Mini-Mental State Examination {0, 1, ..., 30} ↘

DIGITSCOR Digit Symbol Substitution Test {0, 1, ..., 83} ↘

TRABSCOR Trails B Making Test {0, 1, ..., 996} ↗

Table 3: Cognitive decline measures used in the analysis. The arrows indicate the change in the measures

associated to an increase in dementia severity.

Figure 9 summarises the main findings in this validation analysis. A higher ApoE4 value—

linked to higher risk of dementia—is also related to higher predicted age difference on average (the

p-values refer to one-sided tests). In addition, for the group with the highest ApoE4, more than

75% of the individuals show higher predicted age than chronological, in line with the direction of

overprediction observed for the groups with cognitive impairment.

The correlation between baseline brainPAD and cognitive scores at different visits shows some

association (uncorrected) for several measures, with ADAS measures and MMSE showing the

strongest associations after 2 years. Nevertheless, no cognitive measure recorded at baseline is

association with the difference between predicted and chronological age. On the other side, there

is some evidence that the average of the cognitive measures is different between the overprediction

and the non-overprediction group across different time points. Also in this case the direction of the

relationship is consistent with the numerical definition of the measures.

4.3. Sensitivity analysis

The prediction results are obtained under specific choices of several parameters. In order to

assess how these choices might affect the results, we perform a sensitivity analysis using different

values of the following parameters:
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Figure 9: Left: association of brainPAD with ApoE4 value (Holm-corrected p-values) for different

visits, with evidence of positive association. Right: (A) Correlation between baseline brainPAD and

cognitive scores at different visits; (B) t-statistic for the comparisons of means of cognitive scores

between overprediction and non-overprediction groups at different visits. The black lines are Student’s t

quantiles which correspond to different probabilities in the tails of the distribution.

• PVE: proportion of variance explained (criterion to decide the number of fPC to be included

in the quantile regression models), PVE ∈ {0.65, 0.8, 0.95};

• KS: knot spacing, KS ∈ {6, 9, 12, 15};

• nominal coverage: desired width of the prediction intervals. Values considered:

– τ ∈ {0.1, 0.5, 0.9} for a 80% nominal coverage,

– τ ∈ {0.05, 0.5, 0.95} for a 90% nominal coverage.

For each combination of values, we get the projections for each image and then fit the LASSO

quantile regression. For the cases with KS = 6, the standard procedure did not work because of

a failure in the Cholesky decomposition of the weight matrix W in Section 2.4, due to numerical

tolerance issues. In these cases, the pivoted Cholesky decomposition can be applied: due to the

fact that the matrix W is symmetric semipositive definite by construction, there is a permutation

matrix P for which PTWP can be factorised with an upper triangular matrix (see Higham, 2009

for an introduction).
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We report as main outcomes the mean absolute error and the actual relative coverage (1 − h,

where h is the ratio between observed and nominal coverage) obtained for the control subjects in

Figure 10.
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Figure 10: Left: mean absolute error for control subjects as function of proportion of variance explained

and knot spacing. Right: Coverage relative difference of prediction intervals induced by each choice

of proportion of variance explained, knot spacing and nominal coverage. Points are jittered horizontally

for visualisation purposes.

The MAE refers to the predictions obtained with τ = 0.5, so it is not affected by the choice of

nominal coverage. In general, the MAE remains rather stable across combinations of PVE and knot

spacing, suggesting that our results are robust to the choices of these parameters. The lower MAE

is always achieved for PVE = 0.8: this might suggest that a low PVE neglects important sources of

variation while a higher one introduces too many useless variables in the models. In terms of knot

spacing, 12 mm gives in almost all the cases the best results across PVE values.

Looking at the coverage for each setting of knot spacing, PVE and nominal coverage, we first

observe that there are no cases in which the observed coverage is higher than the nominal level. This

phenomenon of undercoverage gets more pronounced for higher knot spacing values. Except for

KS = 6, when the coverage relative difference increases as the number of components in the quantile

regression increases, for the other KS values no clear pattern is visible. The relative difference seems

not to be influenced by the prespecified nominal coverage.

The table in the Supplementary Material section includes also a sanity check based on non-

monotonic prediction intervals - those for which the predicted age at the upper τ level is smaller
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than the one at the lower level. The number of occurrences of this phenomenon is negligible in

almost all the cases.

5. Discussion and further research

The functional data paradigm represents a useful and in our opinion under-appreciated approach

to the analysis of complex data such as brain scans and offers a way to fit a global model for 3D

images. In this work we have discussed the basic aspects of functional data and presented an appli-

cation of quantile scalar-on-image regression (as extensions of classical quantile regression) in the

field of brain age prediction. Following the existing literature, we have devised an efficient work-

flow that takes as input a tensor-based morphometry image and returns a prediction interval. The

advantages of employing the whole images as covariates are that some common preprocessing steps

might be avoided (e.g. brain tissue segmentation) and there is no need to summarise information

at the ROI (regions of interest) level. In addition, quantile regression gives a more detailed picture

of the relationship between the covariate and the response and returns an interval with the desired

coverage when the distribution of the dependent variable departs from normality. In contrast with

other existing models coming from a machine learning perspective, our method outputs not only a

point estimate but also a prediction interval. In addition, the model allows to investigate the func-

tional coefficient estimated, in order to visualise the brain regions that influence most the predicted

age.

The results from the analysis of ADNI data are encouraging: the point (median) prediction per-

formances in terms of MAE and RMSE for the control subjects are comparable with the literature

on the topic - even with deep learning approaches applied on bigger ADNI datasets (Varathara-

jah et al., 2018) - while being also more principled and interpretable. The correlation between

chronological and predicted age results to be lower than the one found with other methods. The

model trained on the control group highlights differences with respect to the MCI and AD groups:

individuals with cognitive impairment are predicted to be older on average than their observed age,

as observed in the literature (Cole et al., 2017; Franke et al., 2012).

The model proposed is an example of penalised functional regression. In this respect, some

degree of regularisation can be applied at different stage of functional data analysis, starting from

smoothing (Ramsay and Silverman, 2005). At the same time, the choice of the number of functional

principal components to be used in regression (by using the proportion of variance explained) is itself
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a penalisation. On top of this we added a further penalisation, driven this time by the relationship

between outcome and predictors, to account for the potential high number of covariates given the

sample size (following the indication provided in Heinze et al., 2018). Our model represents a

novelty in the literature as it easily accommodates this aspect into a quantile regression model

with 3D functional covariates. It must be considered that the bias introduced by the penalised

estimation could harm the interpretability of the coefficients for each covariates. A way to solve

this issue is the post-`1 quantile regression, where LASSO is used only for model selection and

then a vanilla quantile regression model is fitted using only the covariates selected. This approach

guarantees better convergence rates and could reduce the bias issue (Belloni and Chernozhukov,

2011). Further work could be done to assess the prediction performances of the post selection

model.

Our approach is competitive in terms of speed compared to existing methods (Franke et al.,

2012; Cole, 2017). In particular, for a new image the model returns the predicted interval in

approximately a minute and the training phase of the model is expected to be shorter and less

computationally intensive than training a neural network, especially because the basis expansion

step runs in parallel for each image.

The modelling approach illustrated in this paper can be extended in multiple ways, from both

theoretical and practical perspectives. For what concerns the key points of the workflow, in this

paper we have chosen to project the images (and the functional coefficients) using B-spline basis

functions and sketched a possible strategy to select knot spacing. Some further analysis could be

performed in order to evaluate the effect on the prediction of other choices of basis functions.

The quantile regression approach is a technically easy-to-implement strategy to build prediction

intervals without assuming normality. Since we consider only the best fit for each of the regression

models, it could be of interest to study how the uncertainty about the coefficients and the models

could play a role in the calculation of individual prediction intervals. The observed coverage in the

control group could also depend on the bias/variance trade-off introduced by the cross-validation

procedure (and in particular on the type of penalty and the number of folds chosen). Further

simulation study can be done to assess the extent of this relationship.

In addition, further extensions of quantile regression could be considered. Additive terms might

be introduced in order to explore nonlinear effects of the imaging covariate. Moreover, quantile

boosting (Mayr et al., 2012) could provide better prediction intervals by reducing the bias due to
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the estimation at extreme quantiles. This approach has a higher computational cost but keeps the

advantage of interpretability, which is no longer available with other approaches such as quantile

regression forests described in Meinshausen, 2006. A potential issue for the current formulation of

our approach is the phenomenon of quantile crossing, that occurs when the predicted quantiles are

not monotonically increasing in τ as the conditional quantile function is by construction. Although

in 90% prediction intervals the problem arises rarely (in our application it has been reported for

only 1 case out of 796), still this could introduce some bias. Monotonicity can be forced after the

estimation by using rearrangement or isotonic regression (see e.g. Kato, 2012; Chernozhukov et al.,

2010). An alternative modelling strategy for quantile regression that ensures monotonicity of the

function is provided in Chen and Müller (2012): the quantile function is obtained indirectly by first

estimating the entire CDF of the response variable and then inverting it to recover the quantile

function at the level of interest. The key idea is to use a generalised functional linear model to

model the conditional distribution of Y |X as conditional expected values of indicator functions.

This “indirect” model is claimed to provide better estimation of the quantile function with respect

to the classical quantile regression at extreme quantile levels for non-gaussian response variables

(Chen and Müller, 2012), although the flexibility induced by considering different predictors at

different quantile levels is lost.

From the application point of view, it is currently very difficult to provide a sensible comparison

between different models. This is due to the large range of possible approaches (from multivariate

statistics to deep learning) applied to a plethora of datasets with different sizes, age ranges and

imaging modalities (T1-weighted MRI to PET or FMRI). Cole et al. (2019) uses a MAE weighted by

the age range in the training set as a measure of comparison. That approach might be too simplistic,

as a 1-year absolute error for a 6-year child should probably be weighted more than the same error

for a 70-year old individual. A more adaptive measure should be devised, or alternatively there

should be an incentive towards the use of a specific dataset as a benchmark. Big databases such as

UK Biobank (Sudlow et al., 2015) seem the right testing ground for all the methods available in the

literature. Our model could be applied on different imaging modalities, for example voxel-based

morphometry, in order to specify potential differences in the effects due to white and gray matter.

Coming to more specific modelling-related issues, as observed from the plots concerning the

prediction intervals, a non negligible correlation is noticed between chronological age and overpre-

dictions, or analogously the brain age differences (predicted minus chronological, called brainPAD
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in Cole et al., 2017, brainAGE - brain age gap estimate - in Franke and Gaser, 2019 or δ in Smith

et al., 2019). This undesirable effect arises from the simple fact that by construction the residuals

(which become the objects of interest when we want to explore the relationship with other variables

such as disease conversion) in a regression model are uncorrelated with respect to the predicted

values, but not with the observed ones. Similar problems (underpredictions for older subjects,

overpredictions for younger ones) are also reported in the deep learning approaches to brain age

prediction (Cole et al., 2017; Varatharajah et al., 2018). The work by Smith et al. (2019) identifies

potential reasons for this phenomenon and proposes some solutions. Among others, a viewpoint that

is conceptually grounded and at the same time can be embedded in our model could be rephrasing

the whole problem in terms of a errors-in-variables framework. In particular, this accounts for the

imaging covariate (consistently with the functional data perspective) or its scores representation

being measured with some errors. At the same time, the response itself (chronological age) can

be considered as a noisy proxy for biological brain age (for which we do not have currently a gold

standard reference measure).

Another aspect left for future research is to extend the analysis of the clinical utility of the

prediction intervals obtained with our workflow by using a larger battery of cognitive measures.

The first basic measures selected in this work show interesting and sensible results, especially for

the correlation with overprediction. A desired feature of the overprediction indicator in a prognostic

context should be its correlation with conversion to dementia, in order to provide a sensible way to

early detect neurodegenerative diseases. On the other side, underprediction could be explored in

the same way in order to show potential aspects of a healthy aging process.

In addition, introducing other covariates in the model (such as sex, years of education or physical

activity measures) is rather straightforward and it could improve the quality of the prediction. Our

approach can be also easily incorporated in a longitudinal model where brain age trajectories could

provide evidence of stable or accelerated brain ageing.
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