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Abstract11

Prediction of subject age from brain anatomical MRI has the potential to provide a sensitive12

summary of brain changes, indicative of different neurodegenerative diseases. However, existing13

studies typically neglect the uncertainty of these predictions. In this work we take into account14

this uncertainty by applying methods of functional data analysis. We propose a penalised func-15

tional quantile regression model of age on brain structure with cognitively normal (CN) subjects16

in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and use it to predict brain age in Mild17

Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) subjects. Unlike the machine learning18

approaches available in the literature of brain age prediction, which provide only point predictions,19

the outcome of our model is a prediction interval for each subject.20

Keywords: brain age, scalar-on-image regression, prediction intervals, quantile regression.21

1. Introduction22

The process of brain ageing is known to be associated to a general decline in cognitive functions23

and higher risk of neurodegenerative diseases (Yankner et al., 2008; Denver and McClean, 2018).24

In some cases, both ageing and dementia affect the same areas in the brain (Lockhart and DeCarli,25

2014). For these reasons, a deeper understanding of brain ageing in healthy conditions could26

potentially improve the diagnosis of neurodegeneration at early stages.27

Neuroimaging provides a non-invasive and safe way to study brain structure and functioning. A28

large part of the research in neuroimaging data analysis has been focused on explanatory analyses29
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aimed at describing the relationship between the brain and some variables of interest (such as30

neurodegenerative diseases, sex, physical activity). With the advent of large imaging databases, a31

prediction-oriented focus has been also considered, in order to detect individual differences among32

subjects that could be used in clinical practice (for example Yoo et al., 2018; Zhou et al., 2019).33

The study of brain ageing has recently gained attention in the neuroscientific community thanks34

to the availability of this large amount of data and of computational tools for their analysis. A35

growing body of research employs neuroimaging to develop a biomarker of individual brain health,36

called “brain age” (Franke and Gaser, 2019; Cole et al., 2017). In the absence of a clear definition37

and assessment of biological brain age, a brain-derived prediction of chronological age is considered.38

In order to be integrated in clinical practice, a brain age biomarker should be easily accessible from39

brain data (or better, images), harmless for the subjects, computationally not demanding and40

correlated with other brain health indicators (Franke and Gaser, 2019). In addition, since there is41

a high variability between subjects in terms of their brain ageing, a useful biomarker should predict42

cognitive decline better than the chronological age itself.43

In this work we propose a statistically grounded workflow that produces brain age individual44

predictions from 3-dimensional brain images. Furthermore, we go beyond simple point predictions45

by also providing prediction intervals of the brain age to quantify the uncertainty. Our model is46

trained on a control group with no ongoing brain diseases in order to avoid spurious effects due47

to other conditions. The same model can be used to predict age in neurodegenerative diseases,48

in order to provide a “baseline” or “normative” brain age, whose difference from the individual49

chronological age (brain-predicted age difference or brainPAD as in Cole et al., 2017) might inform50

about the extent of the effect induced by the pathology.51

In addition, the prediction interval approach offers another potential binary biomarker (whether52

the chronological age falls within it). Since the width of the prediction interval is different for each53

subject, the same brainPAD could be interpreted in different ways in light of its location with54

respect to the individual prediction limits. The joint use of point and interval brain age predictions55

could therefore be employed to easily assess departures from a typical ageing profile.56

The approach developed in this paper is based on modern statistical tools. In order to use 3D57

brain images without the need to summarise information by regions of interest, a functional data58

analysis (FDA) framework is adopted (Ramsay and Silverman, 2005; Horváth and Kokoszka, 2012).59
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Functional data get this name because the observation for each statistical unit is a function2 (a60

curve, surface, or image). These data are usually considered as infinite dimensional and intrinsically61

continuous, even if the data collection process reduces them to a discrete series of observed points62

(Ramsay and Silverman, 2005, Section 3.2). In other words, the whole function is considered as the63

object of interest, and not only the specific value observed at a discrete location for each image.64

A common model in FDA is scalar-on-function regression (see Morris, 2015; Reiss et al., 2017 for65

reviews), which provides an effective way to predict a scalar quantity of interest from a functional66

observation, by fitting a regression model using the whole function as a covariate. In our context we67

call it scalar-on-image regression. The non-identifiability problem (Happ et al., 2018) arising from68

having sample size lower than the number of voxels for each image can be attenuated by imposing69

some assumptions on the data generating process (for example smoothness).70

We obtain prediction intervals by integrating the FDA framework with quantile regression71

(Koenker and Bassett, 1978; Koenker and Hallock, 2001), a model that is largely used in fields72

such as economics (Fitzenberger et al., 2013) and ecology (Cade and Noon, 2003) to derive a more73

complete picture of the relationship between a covariate and the response variable. Quantile re-74

gression does not model the expected value (or a function of it) of the outcome of interest given the75

predictors, but some selected quantiles of the conditional distribution (for example the median).76

This model can be adapted for functional covariates: in a functional quantile regression model we77

explore the linear relationship between a certain quantile of the outcome and the 3D image. By78

fitting several quantile regression models we can build the prediction intervals given the covariates.79

Prediction intervals from quantile regression (or similar models) have received some attention in80

recent decades (Zhou and Portnoy, 1996; Meinshausen, 2006; Mayr et al., 2012), but not within81

the framework of functional data. In addition, the scalar-on-image quantile regression generates a82

regression coefficient with the same dimensionality as the brain image, providing an interpretable83

map that shows how the changes in each brain structure are related to the predicted age.84

Our FDA-based approach departs considerably from other methods that are commonly used in85

the neuroimaging literature. The current state-of-the-art method in neuroimaging data analysis is86

the so-called mass-univariate approach implemented in the Statistical Parametric Mapping software87

(Ashburner et al., 2014). A model is fitted to predict the signal at each voxel independently using88

2the word “functional” in this case is used in a mathematical sense and is not related to functional MRI.
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the clinical or demographic information as covariate, then a significance map is produced (see for89

further details Friston et al., 1994; Penny et al., 2011). Although computationally efficient, this90

approach does not explicitly model the spatial correlation of adjacent pixels and is not tailored91

for prediction purposes (Reiss and Ogden, 2010). The functional data approach allows instead the92

incorporation of the spatial structure by using smoothing techniques and in this way the fit of a93

global model for a scalar outcome given the entire brain image.94

Another popular approach is based on machine learning algorithms. Franke and Gaser (2019)95

review a collection of studies published in the last decade based on a technique called relevance96

vector regression. They review a number of studies that examine associations with brain age,97

including effects of meditation and playing an instrument. Cole et al. (2019) collects a larger98

number of studies dealing with brain age prediction conducted from 2007 to 2018 with different99

imaging modalities and pathologies. Many of them adopt support vector regression (as the ones100

listed in Franke et al., 2012; Franke and Gaser, 2019 or Sone et al., 2019) or more recently Gaussian101

processes and convolutional neural networks (Cole et al., 2017; Cole, 2017; Varatharajah et al., 2018;102

Wang et al., 2019). A comparison between the predictive performances of these methods is difficult103

due to the use of different datasets and different age ranges, but according to Cole et al. (2019)104

the choice of the algorithm does not seem to play a fundamental role. However, these approaches105

provide only a point prediction with little knowledge of the internal procedure that returned it, and106

in particular deep learning methods are often criticised as “black boxes”. Our approach attempts107

to provide a better picture of the set of information on which brain age is based, introducing a108

straightforward quantification of uncertainty and at the same time producing a visual display of109

the regions that are most relevant for the prediction. In addition, the features of each step of the110

workflow proposed here can be evaluated, therefore improving the interpretability of the results.111

This last aspect is crucial in medical sciences and is particularly welcome for predictive modelling112

in neuroscience (Scheinost et al., 2019).113

Another important distinction with the available literature on brain age prediction relates to the114

imaging techniques used. Although several models use functional imaging or multiple modalities,115

a large share of studies focused on structural magnetic resonance imaging (MRI), in particular T1-116

weighted images, usually segmentated into grey and white matter. Unprocessed MR images have117

also been employed with success (Cole et al., 2017). In this work we still remain in the family of118

structural imaging but we use tensor-based morphometry (TBM) images, that are obtained after119
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a transformation of standard MRI images. TBM images give information about relative volumes120

of brain structures with respect to a common template; for this reason the images are all spatially121

registered. TBM quantifies volumetric differences in brain tissue for each voxel and is therefore122

specifically aimed at assessing the level of local cortical atrophy which might help to study brain123

degeneration for different diseases (Hua et al., 2008). To the best of our knowledge, this is the124

first study addressing brain age prediction from TBM images. The dataset used in this manuscript125

comes from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, Mueller et al., 2005).126

The work is structured as follows. Section 2 gives an overview of functional data analysis and127

quantile regression. Section 2.4 introduces the plan of the analysis and discusses details of the128

implementation. The main characteristics of the ADNI dataset are described in Section 3, while129

the results of the analysis are reported in Section 4 in terms of the predictions, their robustness130

with respect to the choices of the parameters in the model and their correlation with standard131

cognitive measures. Finally, Section 5 discusses the main findings, summarises the work and briefly132

introduces further research directions.133

2. Materials and Methods134

2.1. Functional data analysis135

Functional data are realisations of a random function X ∈ L2(T ), the space of square–integrable136

functions f : T → R, for which137 ∫
T

[f(t)]
2
dt <∞. (1)138

Typically in FDA we assume T ⊆ Rd (Kokoszka and Reimherr, 2017; Ramsay and Silverman, 2005;139

Ferraty and Vieu, 2006). We define the inner product140

〈f, g〉 =

∫
T

f(t)g(t)dt, (2)141

and the norm142

‖f‖L2 =

(∫
T

[f(t)]
2
dt

) 1
2

, (3)143

where f, g ∈ L2(T ). The first order moment of X is the mean function µ(t) = E [X(t)]; the second144

order variations of X are encoded in the covariance function145

v(s, t) = E [(X(s)− µ(s)) (X(t)− µ(t))] , s, t ∈ T (4)146
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of which the variance function is a special case (s = t). A central object when dealing with functional147

data is the covariance operator, whose kernel is the covariance function v(s, t). It is defined as148

Γ(f) = E [〈X − µ, f〉(X − µ)] , ∀f ∈ L2(T ). (5)149

The covariance operator transforms a function f in another function Γ(f) whose values are150

Γ(f)(t) =

∫
T

v(t, s)f(s)ds, ∀t ∈ T . (6)151

The covariance operator plays a key role in the Karhunen–Loève expansion for square–integrable152

functions,153

X(t) = µ(t) +
∞∑
m=1

νmψm(t), (7)154

expressing X as an infinite linear combination of the deterministic eigenfunctions {ψm(t)} of Γ with155

random and uncorrelated weights νm. The eigenfunctions are the solutions of the eigendecomposi-156

tion problem157 ∫
T

v(t, s)ψj(s)ds = λjψj(t), ∀t ∈ T . (8)158

The eigenfunctions are orthogonal and rescaled to have unit norm, and their corresponding eigen-159

values {λj} are in decreasing order.160

The results of the eigendecomposition of the covariance operator can be interpreted under the161

framework of functional principal component analysis (FPCA), which aims at studying the principal162

modes of variation of the random function X. The eigenvalue λm is the part of the variance of163

X explained by the m-th eigenfunction, also called functional principal component. The random164

variables165

νm = 〈X − µ, ψm〉 (9)166

are called scores. The scores are uncorrelated and centered with variance λm.167

2.2. Quantile regression168

Regression models are used to study the relationship between some fixed and known predictors169

Z = (z1, ..., zM )T ∈ RM and an outcome variable Y . For example, linear models are used to170

evaluate the change in the expected value of the continuous outcome conditioned on the values of171

the predictors, under specific assumptions on the error term. Nevertheless, there are occasions in172

which either these assumptions do not hold (for example, when there is heteroskedasticity in the173
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residuals) or simply the main interest is to model specific quantiles of the conditional distribution174

of the response variable in order to produce a deeper analysis of the randomness of Y |Z that goes175

beyond the conditional mean3. Quantile regression (Koenker and Bassett, 1978) can effectively deal176

with these cases by specifying the model:177

Qτ (Y |Z) = ατ +
M∑
m=1

zmγm,τ , τ ∈ (0, 1), (10)178

where Qτ (Y |Z) is the τ -th conditional quantile of Y |Z defined as179

Qτ (Y |Z = z) = inf{y : FY |Z(y|z) ≥ τ} (11)180

and181

FY |Z(y|z) = Pr(Y ≤ y|z) (12)182

is the conditional cumulative distribution function of Y |Z. For example, Q0.5(Y |Z) is the median of183

the conditional distribution of Y |Z. The interpretation of γm,τ is similar to the one in linear models:184

it corresponds to the marginal effect on the conditional quantile due to a one-unit increment in the185

m-th covariate.186

Given n observations, the estimation procedure for the model in Equation (10) is based on the187

following minimisation problem:188

(α̂τ , γ̂1,τ , . . . , γ̂M,τ ) = arg min
a,γ1,...,γM

[
n∑
i=1

ρτ

(
yi − α−

M∑
m=1

zimγm

)]
, (13)189

where ρτ (u) =
[
τ − 1{u≤0}

]
u is the check (or quantile loss) function (Koenker and Bassett, 1978).190

There is a relationship between the linear formulation Y = Zγ + ε and the quantile formulation in191

Equation (10). Under a linear data generating process Y = α + Zγ + ε with known α and γ, we192

can write the conditional quantile restriction193

Qτ (Y |Z) = α+ Zγ + F−1ε (τ), τ ∈ (0, 1) (14)194

with ε being the mean zero random term of the model with cumulative distribution function (CDF)195

Fε. In this simple setting, the marginal effect of the covariate is constant across quantiles. Note196

3From Mosteller and Tukey (1977): ‘Just as the mean gives an incomplete picture of a single distribution, so the

regression curve gives a correspondingly incomplete picture for a set of distributions.’
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that the result in Equation (14) holds for any distribution of the error term. Quantile regression197

can nonetheless accommodate more complicated data generating processes, like for example the198

location-scale model where ε is replaced by σ(Z)ε, with σ(Z) > 0 and ε ⊥⊥ Z. In this case the199

variance of the random term depends on Z and it can be shown that the estimated slope in the200

quantile regression model will be governed by the quantiles of ε.201

All the quantile regression models return as output a prediction at a specific quantile level. For202

example, the model with τ = 0.5 gives the conditional median prediction for each experimental203

unit given particular values of the covariates. Predictive accuracy of the conditional median can204

be measured through the mean absolute error (MAE) and the root mean square error (RMSE)205

between the point predictions and the observed responses. By fitting a model for several values of206

τ , we can also build prediction intervals for new observations (y∗, z∗) (Davino et al., 2013; Mayr207

et al., 2012). For example, if we fit a model on the same data for two quantile levels τ1 = δ/2 and208

τ2 = 1− δ/2 (with δ ∈ (0, 1)), the interval209

PI1−δ(z
∗) =

(
Q̂τ1(Y |Z = z∗), Q̂τ2(Y |Z = z∗)

)
(15)210

should contain the observed response value for new data (1− δ)100% of the time (provided Equa-211

tion (10) is true). For example, a 90% prediction interval can be obtained by fitting a model212

for τ1 = 0.05 and τ2 = 0.95. This prediction model can effectively handle heteroskedasticity or213

skewness, since in quantile regression there are no assumptions on the response distribution: using214

simulated data Davino et al. (2013) provide examples in which prediction intervals obtained via215

quantile regression achieve the nominal levels where ordinary least squares prediction intervals fail.216

This is also confirmed theoretically in Zhou and Portnoy (1996): the coverage probability tends to217

1− δ with an error of O(n−1/2), as the sample size of the training set n→∞.218

2.3. Functional quantile regression219

A large body of literature has been developed in order to translate regression models into the220

functional framework. For example, functional GLMs are now well established in the theory, both in221

the frequentist and Bayesian approaches (Müller and Stadtmüller, 2005; Crainiceanu et al., 2009).222

Quantile regression (Koenker and Bassett, 1978) has also been extended in the functional data223

paradigm: first with Cardot et al. (2005), then with Kato (2012) and Yao et al. (2017), the model224

has been readapted for the case of functional covariates with scalar response. The model illustrated225
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in Kato (2012) shares the main characteristics with the scalar-on-function regression of Müller and226

Stadtmüller (2005), except for the assumption that the conditional quantile is a linear function227

of the (centered) covariates. In particular, the conditional quantile of the response is expressed228

as a linear function of the scalar product between the functional data and a coefficient function229

βτ (·) ∈ L2(T ):230

Qτ (Y |X) = ατ +

∫
T

X(t)βτ (t)dt, τ ∈ (0, 1). (16)231

The functional nature of the coefficient makes its interpretation less straightforward than in standard232

regression. In the regions where βτ (t) = 0 any increment in the covariate produces no marginal233

change on the quantile of the conditional distribution Y |X. On the other hand, if βτ (t) is constant234

over a region T ∗ ⊂ T and null elsewhere, then only the region T ∗ plays a role in the prediction235

of the conditional quantile. Despite the differences between quantile and linear scalar-on-function236

regression, the same difficulties of the interpretation of the functional coefficients discussed in James237

et al. (2009) apply. The model can easily accommodate scalar covariates z1, ..., zP (see for example238

Yao et al., 2017):239

Qτ (Y |X) = ατ +

∫
T

X(t)βτ (t)dt+

P∑
j=1

zjγj,τ , τ ∈ (0, 1). (17)240

In order to estimate the parameters in Equation (16), both the predictors and the coefficient241

functions are represented in the truncated Karhunen–Loève expansion in Equation (7):242

Xi(t) ≈
M∑
m=1

νimψm(t), βτ (t) ≈
M∑

m′=1

bm′,τψm′(t).243

Thanks to the orthonormality of the eigenfunctions ψm,244 ∫
T

Xi(t)βτ (t)dt ≈
M∑
m=1

M∑
m′=1

νimbm′,τ

∫
T

ψm(t)ψm′(t)dt245

=
M∑
m=1

νimbm′,τ . (18)246

247

Thus the functional model in (16) becomes a standard quantile regression problem of the form248

Qτ (Y |X) = ατ +
M∑
m=1

νimbm,τ , (19)249
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where ατ and b1,τ , . . . , bm,τ are estimated as in Equation (13). The estimated functional coefficient250

is then reconstructed by computing251

β̂τ (t) =
M∑
m=1

b̂m,τψm(t); (20)252

for a given τ the estimated value for the quantile function is obtained by plugging in the estimated253

coefficient into (16):254

Q̂τ (Y |X) = α̂τ +

∫
T

X(t)β̂τ (t)dt. (21)255

In this functional principal components regression (FPCR) setting, the number of principal com-256

ponents M to be used as regressors controls the smoothness and the approximation error with257

respect to the real images. The choice of M could be automated by using information criteria or258

percentage of variance explained; nevertheless, there is no guarantee that the first M components259

(which explain the most of the variability of X) are also able to capture effectively the relationship260

between the functional predictor and the scalar response (Febrero-Bande et al., 2017; Delaigle and261

Hall, 2012). For this reason, a simple option could be to select M such that a very large share of ex-262

plained variability is represented and then use LASSO regularisation within the quantile regression263

model (Belloni and Chernozhukov, 2011; Wang, 2013). The regularisation might produce a different264

subset of selected variables across different quantile levels τ . Since for each τ a different model has265

to be fitted, the plug-in estimator Q̂τ (Y |X) is not guaranteed to be monotonically increasing in τ266

as the conditional quantile function Qτ (Y |X) is by construction.267

It must be considered that the bias introduced by the penalised estimation could harm the268

interpretability of the coefficients for each covariate. A way to solve this issue is the post-`1 quantile269

regression, where LASSO is used only for model selection and then a vanilla quantile regression270

model is fitted using only the covariates selected. This approach guarantees better convergence271

rates and could reduce the bias (Belloni and Chernozhukov, 2011).272

2.4. Data analysis workflow273

2.4.1. Imaging274

The brain images are acquired using structural MRI. This workflow does not depend on any275

specific preprocessing stages, except for intersubject registration to an atlas image, such that voxels276

from different images are aligned.277
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More transformations can be operated on the structural MR images. For example, the analysis278

can be based on tensor-based morphometry (TBM) images. TBM is an image technique that aims279

at showing local differences in brain volume from structural imaging. In a cross-sectional setting280

(one image for each subject), each image is aligned to a common MRI template called minimal281

deformation template (MDT). The deformation induced by this alignment can be represented by a282

function that maps a 3-dimensional point in the template to the corresponding one in the individual283

image. The Jacobian matrix of the deformation can be used to inform about volume differences in284

terms of shearing, stretching and rotation. The determinant of the Jacobian matrix for each voxel285

is then a summary of local relative volumes compared to the MDT: a value greater than 1 indicates286

expansion, while a value less than 1 means contraction. Further details about TBM are available287

in Ashburner and Friston (2004).288

In order to reduce the dimensionality of the problem, the voxels outside the brain can be289

excluded from the analysis imposing a mask on the images. We used FSL (through its R interface290

fslr, Muschelli et al., 2015) to obtain a mask on the template image with smooth boundaries.291

2.4.2. Basis expansion292

A common assumption in FDA is that the observed data are a noisy, discretised version of293

the true underlying signal function that is of interest in the analysis. In other words, the values294

observed at a specific voxel may be contaminated with some measurement error that could have an295

impact on the spatial correlation structure within the images. Removing this measurement error296

leads therefore then to smoother images, improving the performances of FPCA.297

For this reason, nonparametric basis expansion techniques such as B-splines or wavelets are298

usually employed. The latter are chosen mainly when the underlying function is thought to be299

characterised by rapid changes in behavior (Ramsay and Silverman, 2005); B-splines are instead300

preferred for their properties (compact support, unit sum) when less abrupt changes in the function301

are expected. In this case, TBM images are already smooth by construction, so we can use B-spline302

basis functions with the main aim to obtain a parsimonious representation (under the fairly safe303

assumption that the main sources of error have been already removed).304

In order to get a 3-dimensional basis function, a tensor product of univariate B-spline basis305

functions is considered. Denote by B
(j)
1 (t(j)), . . . , B

(j)
Qj

(t(j)) the univariate basis functions for the306

j-th dimension (j = 1, 2, 3). The number of basis functions for each dimension is Qj = lj + r − 1,307
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where lj is the number of knots and r is the degree of the spline. We now define the set of basis308

functions309

Bq1q2q3(t(1), t(2), t(3)) = B(1)
q1 (t(1))B(2)

q2 (t(2))B(3)
q3 (t(3)) (22)310

for qj = 1, . . . , Qj , for j = 1, 2, 3.311

In order to derive the projection of each image onto this set of basis functions, we define the312

following matrix of basis functions using the Kronecker product313

φ = S(3) ⊗ S(2) ⊗ S(1). (23)314

where S(j) is the Pj × Qj-dimensional matrix whose qj-th column contains the evaluation of the315

function B
(j)
qj (t(j)) at each point t(j) (for j = 1, 2, 3) and Pj is the number of points for the j-th316

dimension. The matrix φ has dimensions P1P2P3 × Q1Q2Q3 (the number of rows is equal to the317

number of voxels and the number of columns is equal to the number of basis functions). Once the318

basis set is determined, this can be used as set of regressors where the original (vectorised) image319

is the response variable. Estimation can be performed via ordinary least squares:320

x̂i(t) =
K∑
k=1

c̃ikφk(t), (24)321

where K = Q1Q2Q3, c̃i is the K-dimensional vector containing the coefficients of the projection322

for the i-th image and φk(t) is the k-th basis function. In compact form, all the N images are323

represented by the product of the N ×K coefficient matrix C̃ and the matrix of basis functions φ.324

We center the projected data (equivalent to centering the raw data since the projection is linear).325

This apparently negligible aspect is actually very relevant in the big data context as it allows to326

parallelise the basis expansion stages without the need to import and store simultaneously all the327

images. We call the centered coefficient matrix C.328

In this work we used a 3D tensor product of quadratic B-spline univariate basis functions with329

equidistant knots. The number of knots (or analogously their spacing) can be fixed in advance,330

but a poor choice might heavily affect the number of basis functions that are needed to represent331

the functions and consecutively the computational time and the quality of projection. For this332

reason a preliminary study on a subset of the data is recommended. Outcomes of interest for this333

preliminary study could be the number of non-zero basis functions within the masked image, the334

average time needed for the projection of an image and the R2 value obtained from the regression of335

each image using as design matrix the matrix of basis functions. The latter value can be interpreted336
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as a proportion of variance explained. At this stage, it is highly recommended to retain as much337

variability as possible: a 0.95 threshold for R2 should work for many applications and should ensure338

a manageable set of basis functions. Alternative criteria could be established in terms of full width339

at half maximum (FWHM).340

2.4.3. Functional PCA341

The coefficients of the projection are the quantities needed to solve the eigendecomposition prob-342

lem in Equation (8). In this section, we rely heavily on Ramsay and Silverman (2005, Section 8.4.2),343

with minor modifications to make this high dimensional problem computationally feasible. The pro-344

cedure is described also in Chen et al. (2018).345

The sample variance-covariance function can be written as346

v̂(s, t) =
1

N − 1
φ(s)TCTCφ(t) (25)347

using the same decomposition in (24). Suppose then that the eigenfunctions in Equation (8) can348

be expressed as linear combinations of the same basis functions φ:349

ψ(s) =
K∑
k=1

ξkφk(s) = φ(s)T ξ. (26)350

Then the eigenanalysis of the covariance operator described in Equation (8) takes the following351

form:352 ∫
T

[
1

N − 1
φ(s)TCTCφ(t)

] [
φ(t)T ξ

]
dt = λφ(s)T ξ. (27)353

Denoting by W the K ×K symmetric basis product matrix with elements354

wkl = 〈φk,φl〉, (28)355

Equation (27) can be rewritten as356

1

N − 1
φ(s)TCTCWξ = λφ(s)T ξ. (29)357

The entries in W are usually computed with some numerical quadrature rules (Ramsay and Sil-358

verman, 2005) but these procedures are computationally demanding in our 3D context. The cross359

product, although less accurate at the boundaries with respect to the trapezoidal rule, offers a good360

result in shorter time. Simplifying both sides of Equation (29) by φ(s)T (the relationship must361

hold for all s) we obtain362

1

N − 1
CTCWξ = λξ. (30)363
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In order to get orthonormal eigenfunctions, some constraints must be imposed:364

ξTi Wξi = 1 and ξTi Wξj = 0.365

These are fulfilled by setting u = LT ξ, where L is obtained through the Cholesky decomposition366

W = LLT (Ramsay and Silverman, 2005, p. 181); solving the equivalent problem367

1

N − 1
LTCTCLu = λu, (31)368

the original eigenfunctions are obtained using ξ =
(
LT
)−1

u.369

We note that for A = (N − 1)−1/2CL the eigendecomposition problem consists in finding the370

eigenvalues and eigenvectors of ATA. These can be obtained in a computational efficient way by371

using the SVD of the matrix A. In particular, the non-zero eigenvalues λ are equal to the squared372

non-zero singular values, whereas the eigenvalues u of ATA are equal to the right singular vectors373

of A. The m-th score for the i-th image is then374

νim = 〈Xi − µ, ψm〉375

=

∫
T

∑
j

cijφj(t)

[∑
k

ξmkφk(t)

]
dt376

= cTi Wξm. (32)377
378

2.4.4. Functional Quantile Regression379

The scores obtained after FPCA are plugged into a standard quantile regression problem. We380

create the design matrix for the quantile regression model using the first M scores for each image381

such that the first M eigenfunctions represent at least 80% of the variability within the sample (see382

Section 4.3 for a sensitivity analysis). LASSO regularisation can be applied within the quantile383

regression framework. The minimisation problem in Equation (13) can be readapted therefore to384

our situation by writing385

386

(α̂τ , b̂1,τ , ..., b̂M,τ ) = arg min
α,b1,...,bM

{
n∑
i=1

ρτ

(
yi − α−

M∑
m=1

νimbm

)
+ hLASSO

M∑
m=1

|bm|

}
(33)387

388

where hLASSO is the LASSO tuning parameter. For a specific value of hLASSO, a solution path is389

found, where the Lasso penalty will induce the shrinkage of the estimates towards zero, but also390

sparsity, as some estimates are exactly zero (Tibshirani, 1996).391
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Several R packages offer built-in functions that perform automatic selection of the tuning param-392

eter. For this purpose, we use the package rqPen (Sherwood and Maidman, 2017), that produces393

penalized quantile regression models for a range of tuning parameters and then selects the one with394

minimum cross-validation error.395

2.4.5. FPCA and functional quantile regression in a prediction setting396

The scores are obtained by taking an inner product of each image with the eigenfunctions397

estimated on the training set. For this reason, they can be obtained for images from other datasets398

with the same formula, even if the properties of zero mean and variance equal to the eigenvalues399

apply only for the training dataset. The scores are in turn produced within the FPCA step, where400

the estimation of the eigenfunctions depends on the training data as well.401

This workflow is aimed at deriving brain age prediction intervals for healthy individuals. This402

means that FPCA and functional quantile regression should be based on a dataset of control403

subjects. In order to get predictions for this dataset, 10-fold cross validation can be used, reducing404

in this way the risk of overfitting. Age predictions for subjects with neurodegenerative diseases can405

be obtained from the same normative model. In this case the full dataset of control subjects can406

be used for FPCA and functional quantile regression and the brain age is to be interpreted as the407

equivalent brain age of a healthy individual having the same brain image.408

The R code implementing the workflow is available at https://github.com/marcopalma3/409

neurofundata.410

2.4.6. Alternative models411

The degree of smoothing in the basis expansion step can be controlled in different ways, by412

changing either the location or the numbers of knots. When the number of knots is equal to the413

number of voxels, we recover the original data, where the coefficient of the basis functions are just414

the observed values at each voxel. The analysis of the “unsmoothed” images can still be based on415

standard multivariate analysis techniques such as PCA and quantile regression, but it requires an416

increased computational effort. The data matrix containing the images as rows is indeed large (in417

our case the memory needed to store it is more than 6.4GB) and high performance computing tools418

are required to fit models on these data. In addition, quantile regression under memory constraints419

is receiving attention only recently (Chen et al., 2019), therefore the calculation of the prediction420
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Figure 1: Flowchart of the analysis from the brain images to the predicted intervals.
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interval is not straightforward. A small amount of smoothing is recommended to reduce both the421

storage issues and the computational time required to train the model.422

3. Data423

The workflow proposed in Section 2.4 is applied on a dataset coming from the Alzheimer’s424

Disease Neuroimaging Initiative (ADNI, Mueller et al., 2005), that supports the investigation about425

biological markers to be used to detect Alzheimer’s Disease (AD) at early stages. The sample used426

in this paper is made of 796 subjects, identified through an ID code, for which several demographic427

and clinical variables are measured. In this analysis, we will consider only the chronological age at428

the entry of the study (ranging from 59.90 to 89.60 years; mean age 75.60±6.29) and their diagnosis:429

180 subjects were diagnosed with AD, 387 with MCI (Mild Cognitive Impairment, considered as an430

intermediate stage between healthy condition and AD) and 229 people were belonging to a control431

group of cognitively normal (CN) subjects. The histogram of age by diagnosis group is displayed432

in Figure 2.433
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Figure 2: Histogram of age of the subjects in the sample, for each diagnosis. The number of bins has been

fixed using the Freedman-Diaconis rule (Freedman and Diaconis, 1981).

The functional part of the dataset consists of tensor-based morphometry (TBM) images taken434
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Diagnosis N Min. 1st Qu. Median Mean 3rd Qu. Max.

Control 229 59.90 72.30 75.60 75.87 78.50 89.60

MCI 387 60.10 70.85 75.60 75.30 80.40 89.30

AD 180 59.90 70.98 76.15 75.90 81.58 89.10

Table 1: Summary statistics for each diagnosis group. N is the number of subjects in each group. The second

part of the table shows selected quantiles of age.

at the baseline of the study for each subject. In this dataset, the threshold 1 is rescaled to 1000 for435

computer number format reasons. Information about the preprocessing stages for the ADNI TBM436

dataset is available in Hua et al. (2013).437

The analysis is based on the original 3D TBM scans (220× 220× 220, with voxel size equal to438

1 mm3). The conventional neurological orientation (“right is right”) is used: the (x, y) axes of the439

images are set such that x increases from left to right and y increases from posterior to anterior.440

The mean functions for each diagnosis are shown in Figure 3. MCI and AD patients share441

similar average brain volumes patterns (namely, expansion of the lateral ventricles and shrinkage442

almost everywhere else) even if the intensity of the expansion is higher for people with dementia.443

The expansion of the lateral ventricles is also visible in the healthy control mean function, but it444

is less pronounced. Conversely, the healthy control mean function shows other slightly expanded445

brain areas, such that the cerebellum and several regions in the posterior and frontal lobes. Further446

analyses based on the voxelwise variance functions per each group show that the lateral ventricles447

are the areas with the highest variability in terms of volume expansion.448

4. Results449

4.1. Prediction accuracy450

The preprocessed images are masked to remove unnecessary voxels for the analysis. A 3D smooth451

mask is obtained by smoothing the raw mask with a Gaussian kernel with standard deviation equal452

to 2 voxels (FWHM 4.7 mm) and thresholding it at 0.5, to regularise the boundary, producing just453

over 2 million nonzero voxels.454

For the dataset at hand the B-splines projection with equidistant knots every 12 mm (equivalent455

to FWHM ≈ 15.33 mm) for each dimension allows to represent each image with R2 approximately456
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equal to 0.96. The number of B-spline functions in the tensor product that fall within the mask is457

2694. In the current implementation, the process of importing one image into R and obtaining its458

B-spline coefficients takes approximately 30 seconds.459

The eigendecomposition problem in Equation (8) solved for the dataset of healthy control sub-460

jects returns M = 54 eigenfunctions of which the first 3 are plotted in Figure 4. In analogy with461

standard PCA, a basic interpretation can be provided. The first eigenfunction clearly distinguishes462

the lateral ventricles from the rest of the brain. Subjects with high scores for this eigenfunctions463

will show stronger expansion within the lateral ventricles with respect to the mean function. Due464

to the similarities with the observed patterns in the mean function for the subjects with disease, it465

is likely that the scores for this eigenfunction computed for all the 796 subjects in the dataset are466

correlated with the diagnosis and with the chronological age, for the known interplay of the effects467

of these two factors. The second mode of variation refers instead to a more general expansion across468

the whole brain: in other words, it discriminates between individuals with bigger brains and those469

with smaller ones. For this reason, this component might account for some sex-related effects, as470

males have on average larger overall absolute brain than females (Ruigrok et al., 2014). The third471

eigenfunction weights negatively some of the internal parts of the brain. This component might472

therefore roughly distinguish white matter from the cortex, even if this interpretation is not very473

clear and can be influenced by the smoothing induced by the projection onto the basis functions.474

The first 3 components account for 36.25% of the variance of the images of the healthy control475

group.476

We compute the scores for MCI and AD individuals as the product of the centered images and477

the eigenfunctions in Figure 4. For the control subjects, we use 10-fold cross validation (with check478

function as loss function) to run FPCA, produce scores and fit the models such the predictions479

are obtained on held-out data. Quantile regression models for τ ∈ {0.05, 0.5, 0.95} are considered.480

Table 2 shows that the MAE and RMSE based on the difference between median brain-predicted481

age and chronological age are lower for control subjects than the other groups. This result is482

expected under the choice of a normative model that predicts brain age in absence of any diseases483

and indicates that the two subpopulations (controls vs. cases) show different ageing characteristics484

(if they were belonging to the same population, the MAE and RMSE would have been similar).485

The MAE observed for the control group is 3.49, in line with other results obtained in the486

literature for other MRI datasets and different age ranges (Cole et al., 2019). In addition, as shown487
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Diagnosis N MAE RMSE Cor 95% CICor π̂ ∗-pos

Control 229 3.49 4.43 0.48 [0.37, 0.57] 0.86 0.05

MCI 387 4.99 6.12 0.46 [0.38, 0.54] 0.68 0.24

AD 180 5.16 6.27 0.38 [0.25, 0.50] 0.64 0.28

Table 2: Summary of the prediction results by diagnosis. Cor: correlation between predicted brain age

and chronological age. CICor: confidence interval for the correlation between predicted brain age and chronological

age, obtained via Fisher-z transformation (Myers et al., 2013, Section 19.2). π̂: sample coverage (proportion of

cases for which the 90% prediction interval contain the chronological age). ∗-pos: proportion of cases for which the

chronological age is less than the lower limit of the 90% prediction interval.

in Figure 5, the smoothed regression line for control subjects indicates that the average brainPAD488

(difference between predicted and chronological age) is close to zero for the whole age range, while489

it departs from it for the other groups in the predicted age range between 73 and 75. Prediction490

metrics do not improve after debiasing using post-`1 quantile regression.491
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Figure 5: Plot of the brainPAD vs. predicted response. The coloured lines are local regression lines obtained

with loess (locally estimated scatterplot smoothing) with span = 0.75 and 95% confidence bands.

We focus now our attention on the features of the 90% prediction intervals and the sample492

coverage. We observe that the actual sample coverage for control subjects is slightly lower than493
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the nominal level. The groups with cognitive impairment show lower coverage with respect to the494

control group: the chronological ages of around 1 in 3 subjects with diseases do not fall in the495

prediction intervals obtained under the normative model. When we further analyse the direction496

of the discrepancy, we can define a “∗-positive brainPAD” group (for which the chronological age497

is lower than the lower limit of the prediction interval, or equivalently with positive brainPAD and498

chronological age outside the prediction interval) and a “∗-negative brainPAD” one (composed of499

those subjects with negative brainPAD and chronological age outside the prediction interval). While500

the share of ∗-negative subjects is approximately constant across the diagnosis, the percentage of ∗-501

positive subjects for MCI and AD groups is approximately 5 times the one for the control subjects.502

This result aligns with the literature, where it has been shown that MCI and AD patients show503

higher apparent brain age (Cole et al., 2019; Franke et al., 2012): for this reason the ∗-positive group504

is more interesting for their potential correlation with other disease indicators. All the prediction505

intervals are plotted in Figure 6, stratified by diagnosis and sorted by predicted age. The prediction506

intervals for the control subjects are scattered closer to the line of identity between predicted and507

chronological age and there are no relevant trends in the residuals that are left unexplained by508

the regression models. The variability of the width of the 90% prediction intervals is displayed in509

Figure 7: the average width is similar for the 3 diagnosis groups, but there is higher variability in the510

width distribution of the MCI and AD subjects. Moreover, ∗-positive brainPAD is mainly observed511

in the lower part of the age domain covered in the dataset. This could be just a consequence of512

our regression approach, or it might be due to the low number of subjects in the training set with513

chronological age less than 70, which might produce issues in the estimation of extreme quantiles514

of the conditional distribution of the outcome.515

The brain maps displayed in Figure 8 are the functional coefficients obtained from the scalar-516

on-image quantile regression trained on the whole control dataset. They can be used to identify517

the regions that are responsible for the age prediction for the different quantiles. The functional518

coefficient for τ = 0.05 shows that the expansion of the lateral ventricles is the principal factor that519

leads to higher predicted age (Preul et al., 2006; Apostolova et al., 2012) in the lower tail of the520

chronological age distribution. Other areas seem to have more limited impact on the prediction.521

In the coefficient obtained from the median regression, the lateral ventricles still play a role in522

the prediction (especially the posterior part) but expansion in several other areas is correlated to523

higher predicted age. Among them we point out the central sulcus (perpendicular to the median524
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Figure 6: Brain age 90% prediction intervals, relative to chronological age. There is one interval per subject,

and subjects are sorted in descending order of predicted brain age (higher predicted ages at top). The black diamonds

indicate the subjects for which chronological age does not fall into the prediction interval; the side indicates if the

subject is in the ∗-negative (diamonds on the left) or ∗-positive group (diamonds on the right).
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Figure 7: Left: distribution of the prediction interval width conditioned by diagnosis. Right: histogram

of chronological age conditioned by ∗-positive indicator (equal to 1 if the chronological age is less than

the prediction at τ = 0.05, 0 otherwise).

longitudinal fissure that divides the two hemispheres) that separates the primary motor cortex525

and the primary somatosensory cortex. In addition, the frontal lobe shows negative values for the526

functional coefficient, meaning that expansion in this part of the brain is linked to a lower predicted527

age. This agrees with the literature: age-related atrophy is more pronounced in the frontal lobe528

(Fjell et al., 2014; Cabeza and Dennis, 2013; MacPherson and Cox, 2017) and less in the occipital529

lobe (Dennis and Cabeza, 2011). For τ = 0.95, the brain map indicates that the upper part of530

the cortex and the cerebellum are related to higher predicted age, while a larger left temporal lobe531

(in blue in the lower axial slices, it plays a role in memory and language control) is associated to532

younger brain age. Especially for these last two maps, asymmetry between hemispheres appears in533

the relationship with brain age.534

4.2. Correlation with cognitive decline measures535

A small number of cognitive decline measures available in ADNI has been used to evaluate the536

clinical utility of the predictions obtained. The list of measures reported in Table 3 includes genetic537

assessments (ApoE4) and various evaluations of writing and speaking skills, visual attention and538

task switching. The outcomes of interest in this section are both the brain-predicted age difference539

(brainPAD, difference between predicted and chronological age, as defined in Cole et al., 2017) and540

the binary ∗-positive indicator (equal to 1 if the chronological age is less than the prediction at541
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τ = 0.05, 0 otherwise).542

Variable Values

ApoE4 Apolipoprotein E - Number of ε4 alleles {0, 1, 2} ↗

ADAS11 AD Assessment Scale - 11-item variant {0, 1, ..., 70} ↗

ADAS13 AD Assessment Scale - 13-item version {0, 1, ..., 85} ↗

ADASQ4 AD Assessment Scale - Delayed Word Recall {0, 1, ..., 10} ↗

MMSE Mini-Mental State Examination {0, 1, ..., 30} ↘

DIGITSCOR Digit Symbol Substitution Test {0, 1, ..., 83} ↘

TRABSCOR Trails B Making Test {0, 1, ..., 996} ↗

Table 3: Cognitive decline measures used in the analysis. The arrows indicate the change in the measures

associated to an increase in dementia severity.

Figure 9 summarises the main findings in this validation analysis. A higher ApoE4 value—543

linked to higher risk of dementia—is also related to higher predicted age difference on average (the544

p-values refer to one-sided tests). In addition, for the group with the highest ApoE4, more than545

75% of the individuals show higher predicted age than chronological.546

The correlation between baseline brainPAD and cognitive scores at different visits shows some547

association (uncorrected) for several measures, with ADAS measures and MMSE showing the548

strongest associations after 2 years. Nevertheless, no cognitive measure recorded at baseline is549

associated with the difference between predicted and chronological age. On the other hand, there is550

some evidence that the average of the cognitive measures is different between the ∗-positive group551

and the rest of the subjects across different time points. Also in this case the direction of the552

relationship is consistent with the numerical definition of the measures.553

4.3. Sensitivity analysis554

The prediction results are obtained under specific choices of several parameters. In order to555

assess how these choices might affect the results, we perform a sensitivity analysis using different556

values of the following parameters:557

• PVE: proportion of variance explained (criterion to decide the number of fPC to be included558

in the quantile regression models), PVE ∈ {0.65, 0.8, 0.95};559
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Figure 9: Left: association of brainPAD with ApoE4 value (Holm-corrected p-values) for different

visits, with evidence of positive association. Right: (A) Correlation between baseline brainPAD and

cognitive scores at different visits; (B) t-statistic for the comparisons of means of cognitive scores

between ∗-positive group and the rest of the sample at different visits. The black lines are Student’s t

quantiles which correspond to different probabilities in the tails of the distribution.

• KS: knot spacing, KS ∈ {6, 9, 12, 15};560

• nominal coverage: desired width of the prediction intervals. Values considered:561

– τ ∈ {0.1, 0.5, 0.9} for a 80% nominal coverage,562

– τ ∈ {0.05, 0.5, 0.95} for a 90% nominal coverage.563

For each combination of values, we get the projections for each image and then fit the LASSO564

quantile regression. For the cases with KS = 6, the standard procedure did not work because of565

a failure in the Cholesky decomposition of the weight matrix W in Section 2.4, due to numerical566

tolerance issues. In these cases, the pivoted Cholesky decomposition can be applied: due to the567

fact that the matrix W is symmetric semipositive definite by construction, there is a permutation568

matrix P for which PTWP can be factorised with an upper triangular matrix (see Higham, 2009569

for an introduction).570

We report as main outcomes the mean absolute error and the actual relative coverage (1 − h,571

where h is the ratio between observed and nominal coverage) obtained for the control subjects in572

Figure 10.573
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Figure 10: Left: mean absolute error for control subjects as function of proportion of variance explained

and knot spacing. Right: Coverage relative difference of prediction intervals induced by each choice

of proportion of variance explained, knot spacing and nominal coverage. Points are jittered horizontally

for visualisation purposes.

The MAE refers to the predictions obtained with τ = 0.5, so it is not affected by the choice of574

nominal coverage. In general, the MAE remains rather stable across combinations of PVE and knot575

spacing, suggesting that our results are robust to the choices of these parameters. The lower MAE576

is always achieved for PVE = 0.8: this might suggest that a low PVE neglects important sources of577

variation while a higher one introduces too many useless variables in the models. In terms of knot578

spacing, 12 mm gives in almost all the cases the best results across PVE values.579

Looking at the coverage for each setting of knot spacing, PVE and nominal coverage, we first580

observe that there are no cases in which the observed coverage is higher than the nominal level. This581

phenomenon of undercoverage gets more pronounced for higher knot spacing values. Except for582

KS = 6, when the coverage relative difference increases as the number of components in the quantile583

regression increases, for the other KS values no clear pattern is visible. The relative difference seems584

not to be influenced by the prespecified nominal coverage.585

The table in the Supplementary Material section includes also a sanity check based on non-586

monotonic prediction intervals - those for which the predicted age at the upper τ level is smaller587

than the one at the lower level. The number of occurrences of this phenomenon is negligible in588

almost all the cases.589

As an additional analysis, we have explored the prediction performances in terms of MAE for590

the control group in two models which do not use the basis expansion step, using the R packages591
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bigmemory (Kane et al., 2013) and bigstatsr (Privé et al., 2018). The first model (M1) is a sparse592

linear regression with LASSO regularisation applied on the unsmoothed data (represented by 1593

column per voxel in the data matrix). The second model (M2) is closer to our approach: a PCA594

is performed on the covariance of the matrix of unsmoothed images, then the scores corresponding595

to the first principal components selected (using a proportion of variance explained of at least 0.8)596

are plugged into a penalised quantile regression model. M2 can be interpreted as a special case of597

our functional approach when the distance between adjacent knots is equal to 1 mm.598

The difference in computational time between our approach (M0) and the models M1 and M2 is599

not substantial. On one hand, the smoothing step in M0 is performed independently for each image600

in a parallelised setting therefore it requires only a few minutes in total. On the other hand, M1601

and M2 require to load the matrix (6.4 GB in our case) in memory and run sparse linear regression602

or PCA and quantile regression which could take several minutes. For what concerns the prediction603

performances, M0 achieves lower MAE for the control group with respect to M1 (MAE = 3.63) and604

M2 (MAE = 3.65).605

5. Discussion and further research606

The functional data paradigm represents a useful approach to the analysis of complex data607

such as brain scans and offers a way to fit a global model for 3D images. In this work we have608

discussed the basic aspects of functional data and presented an application of quantile scalar-on-609

image regression (as extensions of classical quantile regression) in the field of brain age studies.610

Following the existing literature, we have devised an efficient workflow that takes as input a tensor-611

based morphometry image and returns a prediction interval. The advantages of employing the612

whole images as covariates are that some common preprocessing steps might be avoided (e.g. brain613

tissue segmentation) and there is no need to summarise information at the ROI (regions of interest)614

level. In addition, quantile regression gives a more detailed picture of the relationship between the615

covariate and the response and returns an interval with the desired coverage when the distribution of616

the dependent variable departs from normality. In contrast with other existing models coming from617

a machine learning perspective, our method outputs not only a point estimate but also a prediction618

interval. In addition, the model allows to investigate the functional coefficient estimated, in order619

to visualise the brain regions that influence most the predicted age.620
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Our modelling strategy introduces new features with respect to the standard prediction-oriented621

approaches in the literature. While other approaches focus only on maximising prediction accuracy,622

we emphasise the detection of individual atypical ageing: the prediction intervals give a simple623

and preliminary assessment of the relevance of the observed brainPAD. In other words, the same624

brainPAD could be indicative of potential neurodegenerative diseases for one subject, while being625

less linked to such disease for another subject.626

The results from the analysis of ADNI data are encouraging: the point (median) prediction per-627

formances in terms of MAE and RMSE for the control subjects are comparable with the literature628

on the topic—even with deep learning approaches applied on bigger ADNI datasets (Varatharajah629

et al., 2018)—while being also more principled and interpretable. The correlation between chrono-630

logical and predicted age results to be lower than the one found with other methods. The model631

trained on the control group highlights differences with respect to the MCI and AD groups: indi-632

viduals with cognitive impairment are predicted to be older on average than their observed age, as633

observed in the literature (Cole et al., 2017; Franke et al., 2012).634

The model proposed is an example of penalised functional regression. In this respect, some635

degree of regularisation can be applied at different stage of functional data analysis, starting from636

smoothing (Ramsay and Silverman, 2005). At the same time, the choice of the number of functional637

principal components to be used in regression (by using the proportion of variance explained) is itself638

a penalisation. On top of this we added a further penalisation, driven this time by the relationship639

between outcome and predictors, to account for the potential high number of covariates given the640

sample size (following the indication provided in Heinze et al., 2018). Our model represents a641

novelty in the literature as it easily accommodates this aspect into a quantile regression model with642

3D functional covariates.643

In addition to the bias induced by the regularisation, another potential issue related to the644

functional coefficient is its sensitivity to the modelling strategy used. As extensively studied in645

Happ et al. (2018), the smoothness induced by splines could lead to different estimates with respect646

to other approaches (e.g. wavelet basis expansion or random field methods). Further work can647

be done to confirm the contribution of each brain region to the final prediction. Nevertheless, the648

predictive ability - which is the first focus of our model - does not seem to be harmed by this649

modelling choice.650

Our approach is competitive in terms of speed compared to existing methods (Franke et al.,651
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2012; Cole, 2017). In particular, for a new image the model returns the predicted interval in652

approximately a minute and the training phase of the model is expected to be shorter and less653

computationally intensive than training a neural network, especially because the basis expansion654

step runs in parallel for each image.655

The modelling approach illustrated in this paper can be extended in multiple ways, from both656

theoretical and practical perspectives. For what concerns the key points of the workflow, in this657

paper we have chosen to project the images (and the functional coefficients) using B-spline basis658

functions and sketched a possible strategy to select knot spacing. We have shown that some degree659

of smoothing produces slightly better predictions with respect to no smoothing at all with negligible660

computational cost. The benefit of this approach could more easily appreciated when the number661

of images is much larger, in which case loading the whole unsmoothed data into memory can be662

unfeasible.663

The quantile regression approach is a technically easy-to-implement strategy to build prediction664

intervals without assuming normality. Since we consider only the best fit for each of the regression665

models, it could be of interest to study how the uncertainty about the coefficients and the models666

could play a role in the calculation of individual prediction intervals. The observed coverage in the667

control group could also depend on the bias/variance trade-off introduced by the cross-validation668

procedure (and in particular on the type of penalty and the number of folds chosen). Further669

simulation study can be done to assess the extent of this relationship.670

In addition, further extensions of quantile regression could be considered. Additive terms might671

be introduced in order to explore nonlinear effects of the imaging covariate. Moreover, quantile672

boosting (Mayr et al., 2012) could provide better prediction intervals by reducing the bias due to673

the estimation at extreme quantiles. This approach has a higher computational cost but keeps the674

advantage of interpretability, which is no longer available with other approaches such as quantile675

regression forests described in Meinshausen, 2006. A potential issue for the current formulation of676

our approach is the phenomenon of quantile crossing, that occurs when the predicted quantiles are677

not monotonically increasing in τ as the conditional quantile function is by construction. Although678

in 90% prediction intervals the problem arises rarely (in our application it has been reported for679

only 1 case out of 796), still this could introduce some bias. Monotonicity can be forced after the680

estimation by using rearrangement or isotonic regression (see e.g. Kato, 2012; Chernozhukov et al.,681

2010). An alternative modelling strategy for quantile regression that ensures monotonicity of the682
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function is provided in Chen and Müller (2012): the quantile function is obtained indirectly by first683

estimating the entire CDF of the response variable and then inverting it to recover the quantile684

function at the level of interest. The key idea is to use a generalised functional linear model to685

model the conditional distribution of Y |X as conditional expected values of indicator functions.686

This “indirect” model is claimed to provide better estimation of the quantile function with respect687

to the classical quantile regression at extreme quantile levels for non-gaussian response variables688

(Chen and Müller, 2012), although the flexibility induced by considering different predictors at689

different quantile levels is lost. In addition, generalised additive models for location, scale and shape690

(GAMLSS, Rigby and Stasinopoulos (2005)) can also provide a detail picture of the conditional691

distribution of the outcome of interest. In GAMLSS the parameters of the distribution (not only the692

location, as in GLM) can be written as (smooth) functions of the covariates. GAMLSS can handle693

functional covariates (Brockhaus et al., 2018) and ensures monotonocity of the quantile predictions,694

but the family of the conditional distribution of the outcome must be specified in advance.695

From the application point of view, it is currently very difficult to provide a sensible comparison696

between different models. This is due to the large range of possible approaches (from multivariate697

statistics to deep learning) applied to a plethora of datasets with different sizes, age ranges and698

imaging modalities (T1-weighted MRI to PET or FMRI). Cole et al. (2019) uses a MAE weighted by699

the age range in the training set as a measure of comparison. That approach might be too simplistic,700

as a 1-year absolute error for a 6-year child should probably be weighted more than the same error701

for a 70-year old individual. A more adaptive measure should be devised, or alternatively there702

should be an incentive towards the use of a specific dataset as a benchmark. Big databases such as703

UK Biobank (Sudlow et al., 2015) seem the right testing ground for all the methods available in the704

literature. Our model could be applied on different imaging modalities, for example voxel-based705

morphometry, in order to specify potential differences in the effects due to white and gray matter.706

Coming to more specific modelling-related issues, as observed from the plots concerning the707

prediction intervals, a non negligible correlation is noticed between chronological age and the brain708

age differences (predicted minus chronological, called brainPAD in Cole et al., 2017, brainAGE -709

brain age gap estimate - in Franke and Gaser, 2019 or δ in Smith et al., 2019). This undesirable710

effect arises from the simple fact that by construction the residuals (which become the objects of711

interest when we want to explore the relationship with other variables such as disease conversion) in712

a regression model are uncorrelated with respect to the predicted values, but not with the observed713
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ones. Similar issues are also reported in the deep learning approaches to brain age prediction714

(Cole et al., 2017; Varatharajah et al., 2018). The work by Smith et al. (2019) identifies potential715

reasons for this phenomenon and proposes some solutions. Among others, a viewpoint that is716

conceptually grounded and at the same time can be embedded in our model could be rephrasing717

the whole problem in terms of a errors-in-variables framework. In particular, this accounts for the718

imaging covariate (consistently with the functional data perspective) or its scores representation719

being measured with some errors. At the same time, the response itself (chronological age) can be720

considered as a noisy proxy for biological brain age (for which it is difficult or even impossible to721

define a reference measure).722

Another aspect left for future research is to extend the analysis of the clinical utility of the723

prediction intervals obtained with our workflow by using a larger battery of cognitive measures.724

The first basic measures selected in this work show interesting and sensible results, especially for725

the correlation with the ∗-positive binary variable. A desired feature of this indicator in a prognostic726

context should be its correlation with conversion to dementia, in order to provide a sensible way727

to early detect neurodegenerative diseases. Furthermore, a similarly defined “∗-negative indicator”728

could be also explored in the same way in order to show potential aspects of a healthy aging process.729

In addition, introducing other covariates in the model (such as sex, years of education or physical730

activity measures) is rather straightforward and it could improve the detection of discrepancies from731

normative ageing. On the other hand, these covariates might potentially introduce confounding732

effects: the variability due to non-imaging information could be already captured by one or more733

functional principal components. Our approach can be also easily incorporated in a longitudinal734

model where brain age trajectories could provide evidence of stable or accelerated brain ageing.735
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