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Abstract 

Single-cell RNA-Seq (scRNA-seq) has become an invaluable tool for studying biological systems 

in health and diseases. While dimensionality reduction is a crucial step in interpreting the relation 

between cells based on scRNA-seq, current methods often are hampered by “crowding” of cells in 

the center of the latent space, biased by batch effects, or inadequately capture developmental 

relationships. Here, we introduced scPhere, a scalable deep generative model to embed cells into 

low-dimensional hyperspherical or hyperbolic spaces, as a more accurate representation of the 

data. ScPhere resolves cell crowding, corrects multiple, complex batch factors, facilitates 

interactive visualization of large datasets, and gracefully uncovers pseudotemporal trajectories. 

We demonstrate scPhere on six large datasets in complex tissue from human patients or animal 

development, demonstrating how it controls for both technical and biological factors and 

highlights complex cellular relations and biological insights.  

 

1 Introduction 

Single cell genomics – especially single cell RNA-seq (scRNA-seq) – has opened the way to 

comprehensive analysis of the relationship between cells, including their different types, states, 
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physiological transitions, differentiation trajectories, and spatial positions (Regev et al., 2017; 

Stegle et al., 2015; Wagner et al., 2016). Although scRNA-seq datasets have high dimensionality, 

their intrinsic dimensionality is typically low, because many genes are co-expressed and a few 

variables, such as cell type, a gene program, or the number of detected transcripts, could explain a 

substantial portion of the variation in a dataset. As a result, dimensionality reduction, followed by 

visualization or downstream analyses has become a key strategy for exploratory data analysis in 

single cell genomics (Butler et al., 2018; Luecken and Theis, 2019).  

Recently, deep learning models (Ching et al., 2018), especially (variational) auto-encoders 

(Kingma and Welling, 2013; Kingma et al., 2014; Rezende et al., 2014), have been used for 

dimensionality reduction prior to visualization or downstream analyses, such as clustering (Ding 

et al., 2018; Eraslan et al., 2019; Grønbech et al., 2019; Lopez et al., 2018; Lotfollahi et al., 2019; 

Wang and Gu, 2018). This leverages their ability to model large-scale high-dimensional data and 

their flexibility in incorporating different factors, especially batch effects in the modeling 

framework.  

However, standard variational auto-encoders have several shortcomings when modeling and 

analyzing scRNA-seq data. First, they assume a standard multi-dimensional normal prior for the 

low-dimensional latent variables. Unfortunately, this prior encourages the low-dimensional 

representations of all cells to group in the center of the latent space, even for data consisting of 

distinct cell types, especially if the model is trained long enough, such that the posterior 

distributions gradually approximate the prior distribution. A second challenge arises from using 

the cosine to measure the distance between two cells (Bendall et al., 2014; Haghverdi et al., 2018; 

Kiselev et al., 2018) for very sparse droplet-based scRNA-seq data (>90% genes with zero counts 

in a typical cell profile). Because the cosine distance between two cell vectors is their Euclidean 
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distance after normalizing the two cell vectors to have a unit ℓ"	norm, the cells lie on the surface 

of a unit hypersphere with a dimensionality of $ − 1, where $ is the number of measured genes. 

Embedding data distributed on a hypersphere to a Euclidean space introduces significant distortion 

for commonly-used dimensionality reduction tools (Cooley et al., 2019), and standard variational 

auto-encoders also fail to model such data (Davidson et al., 2018). Finally, the Euclidean geometry 

is not optimal for representing hierarchical, branched developmental trajectories (Klimovskaia et 

al., 2019; Nagano et al., 2019; Nickel and Kiela, 2018). 

Here, we present new approaches for embedding of cells into hyperspherical or hyperbolic spaces, 

to better capture their inherent properties. For general scRNA-seq data, we minimize the distortion 

by embedding cells to a lower-dimensional hypersphere instead of a low-dimensional Euclidean 

space (Davidson et al., 2018), using von Mises-Fisher (vMF) distributions on hyperspheres as the 

posteriors for the latent variables (Davidson et al., 2018; Guu et al., 2018; Xu and Durrett, 2018). 

Because the prior is a uniform distribution on a unit hypersphere and the uniform distribution on 

a hypersphere has no centers, points are no longer forced to cluster in the center of the latent space. 

For representation and inference of hierarchical, branched developmental trajectories, we embed 

cells to the hyperbolic space of the Lorentz model and visualize the embedding in a Poincaré disk 

(Mathieu et al., 2019; Nagano et al., 2019; Nickel and Kiela, 2018). As we show across six diverse 

datasets, our model results in enhanced visualization, while simultaneously addressing complex 

batch effects, thus providing an important tool for single cell genomics research.  
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2 Results 

2.1 Mapping scRNA-seq data to hyperspherical or hyperbolic latent spaces 

We developed scPhere (pronounced “sphere”), a deep learning method that takes scRNA-seq count 

data and information about multiple known confounding factors (e.g., batch, condition) and 

embeds the cells to a hyperspherical or hyperbolic latent space (Fig. 1A, Methods). We reasoned 

that scPhere would allow cells to be embedded more appropriately, because they will not be 

constrained to aggregate in the center. In cases where we expect a branching or hierarchical 

structure, hyperbolic spaces are particularly suitable, because the exponential volume growth of 

hyperbolic spaces with radius confers them enough capacity to embed trees, which have 

exponentially increasing numbers of nodes with depth. For 3D visualization, scPhere places cells 

on the surface area of a sphere (but not inside the sphere), such that we only need to rotate the 

sphere to see all cells. The scPhere package renders all 3D plots for interactive visualizations of 

millions of cells with the rapid rgl R package, with web graphics library files, which can be opened 

in a browser for exploration. 

Specifically, scPhere takes as input an scRNA-seq dataset ' = {(+,, .,)},12
3  with 4 cells, where 

+, is the UMI count vector of cell 5, and ., is a category vector specifying the batch in which +, is 

measured, and models the +, UMI count distribution as governed by a latent low-dimensional 

random vector 6, and by ., (Fig. 1B). Note, that ., can account for multiple confounding factors, 

for example, the patient, disease status, and lab protocol. The scPhere model assumes that the latent 

low-dimensional random vector 6, is distributed according to a prior, with the joint distribution of 

the whole model factored as 7(., ∣ 9,)7(6, ∣ 9,)7(+, ∣ .,, 6,, 9,), where 7(., ∣ 9,) is the 

categorical probability mass function (constant for our case, as ., is observed). For hyperspherical  
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latent spaces, scPhere uses a uniform prior on a hypersphere for 7(6, ∣ 9,); for hyperbolic latent 

spaces, it uses a wrapped normal distribution in the hyperbolic space as the prior. For the observed 

raw UMI count inputs, we assume a negative binomial distribution: 7(+, ∣ .,, 6,, 9,) =

4:;
<12 (=,,< ∣ >.?,6? , @.?,6?), with parameters specified by a neural network. The inference 

problem is to compute the posterior distribution 7(6, ∣ .,, +,, 9,), which is assumed to be a von-

Mises-Fisher distribution for hyperspherical latent spaces, and a wrapped normal distribution for 

hyperbolic latent spaces. Because it is intractable to compute the posterior, the scPhere model uses 

a variational distribution A(6, ∣ .,, +,, B,) to approximate the posterior (Fig. 1B). When a 

 

Figure 1. scPhere model. (A) Method overview. (B) scPhere directed probabilistic graphical 
model and the variational approximation of its posterior. C, is the categorical batch variable of 
a cell 5, D, is the low-dimensional latent variable for the cell distributed on a hypersphere (or	in	
a	 hyperbolic	 space), and E, is the raw UMI count vector of cell 5. For the variational 
approximation of the posterior of D,, E, is first FGH-transformed and scaled to have a unit ℓ" 
norm (represented by E,I) if a hyperspherical latent space is used, otherwise E, is only FGH-
transformed without scaling. (C-G) scPhere addresses the crowding challenge compared to other 
methods. Shown are different embedding of single cell profiles (dots) color coded by type, (c) 
scPhere posterior mean (a dot on the surface of the unit sphere); (D) scPhere learned 
representation in the Poincaré disk; (E) a 2D t-stochastic neighborhood embedding (t-SNE), (F) 
a 2D uniform manifold approximation and projection (UMAP) representation, and (G) a 2D 
latent representation from scPhere with a standard normal prior and normal posterior. 

C

Patient 1
(disease)

Patient 2
(disease)

Patient 3
(healthy)

Patient 4
(disease)

Input

Spherical embeddings

Sequencing
results

Samples Output

Hyperbolic embeddings

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/853457doi: bioRxiv preprint 

https://doi.org/10.1101/853457
http://creativecommons.org/licenses/by/4.0/


	 6 

hyperspherical latent space is used, +, is first log-transformed and scaled to have a unit	ℓ"	norm 

for inference, otherwise +, is only log-transformed but not scaled. The parameters B, of the 

variational distribution are (continuous) functions of +, and ., parameterized by a neural network 

with parameter B. We provide full details in the Methods section. 

2.2 Spherical latent variables help resolve cell crowding  

Applying scPhere to scRNA-seq data shows that its spherical latent variables help address the 

problem of cell crowding in the center, and that it provides an excellent visualization for data 

exploration, with latent variable posterior means of cells which are easily interpretable. As a first 

illustrative test, when we applied scPhere with a hyperspherical latent space to a data set (Stoeckius 

et al., 2017) with only 10 erythroid cell profiles and 2,293 CD14+ monocytes, the 10 erythroid 

cells were close to each other and relatively far from the CD14+ monocytes (Fig. 1C). Moreover, 

the posterior means of cells typically did not overlap, which helped ensure that if cells are colored 

by gene expression, we can discern individual cells without occlusion. When we used a hyperbolic 

(instead of hyperspherical) latent space, the erythroid cells were still close to each other and far 

from the center (Fig. 1D). By comparison, both t-stochastic neighborhood embedding (t-SNE) 

(Maaten and Hinton, 2008) and uniform manifold approximation and projection (UMAP) 

(McInnes et al., 2018) put CD14+ monocytes at the origin (Fig. 1E,F), and the 10 erythroid cells 

were embedded so close to each other that they almost collapsed to a single point. Finally, when 

we used a standard multivariate normal prior, the posterior means of the latent variables were 

centered at the origin, leading to crowding of the CD14+ monocytes and peripheral spreading of 

the 10 erythroid cells (Fig. 1G). 
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This result generalized across multiple datasets of diverse biological systems, including 3,314 

human lung cells (Braga et al., 2019) (Fig. 2A), 1,378 mouse white adipose tissue stromal cells 

(Hepler et al., 2018) (Fig. 2B), and 1,755 human splenic nature killer cells spanning four subtypes 

(Crinier et al., 2018)  (Fig. 2C): in each case, cells of the same type were close to each other on 

the surface of a sphere, and yet generally two cells are distinguishable, even by eye (Fig. 2A-C). 

Conversely, in the Euclidean space, the closer the cells were to the center, the higher were their 

densities (Fig. 2D-F), a problem persisting in both 2D (Fig. 2D-F) and 3D (Supplementary Fig. 

1A-C), even with rotation of the 3D space. In particular, similar cell types were very close to each 

other in the Euclidean space (e.g., APC and FIP, Fig. 2E), and rare cell types became ‘outliers’ 

(hNK_Sp3 and hNK_Sp4, Fig. 2E). 	

2.3 Spherical latent variables effectively model batch and other variables 

ScPhere gracefully addresses batch correction, which we illustrate by its application to 301,749 

cells we previously profiled in a complex experimental design from the colon mucosa of 18 

ulcerative colitis (UC) patients and 12 healthy individuals (Smillie et al., 2019). These cells were 

collected separately from the epithelial and lamina propria fractions of each biopsy, in two 

replicate biopsies for each healthy individual and as a pair of inflamed and uninflamed biopsies 

for the UC patients (for a few UC patients, there were replicate inflamed and/or replicate 

uninflamed biopsies). Moreover, samples were collected at two time periods, separated by over a 

year (and analyzed as “train” and “test” data in the original study (Smillie et al., 2019)).  

Analyzing the stromal and glia cells, taking patient origin of cells as the batch vector, not only 

recapitulated the main cell groups in our initial study (Smillie et al., 2019), but was highly refined, 

allowing us to better explore cellular relations (Fig. 3A, Supplementary Movie 1). For example,  
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endothelial cells and microvascular cells were close to each other, and adjacent to post-capillary 

venules. Conversely, these distinctions can barely be discerned in a UMAP plot of the same data 

(Fig. 3B; using the 20 batch-corrected principal components by Harmony (Korsunsky et al., 2018) 

as inputs). Among fibroblasts, cells arranged in a manner that mirrored their position along the 

crypt-villus axis, from RSPO3+WNT2B+ cells (which likely support the ISC niche (Smillie et al., 

2019)), to WNT2B+ cells, and to WNT5B+ cells. Strikingly, the inflammatory fibroblasts were 

readily visible (Fig. 3A, light blue), and were both distinctive from the other fibroblasts, while   

 

Figure 2. scPhere addresses the cell crowding problem by using a spherical latent space.  
scPhere embeddings on the surface of unit spheres (A-C) and in the Euclidean space (D-F) of 
3,314 human lung cells (A,C), 1,378 mouse white adipose tissue stromal cells (B,E), and 1,755 
human splenic natural killer cells (C,F), color coded by their annotated types. 
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spanning the range of the “crypt-villus axis” (as shown experimentally (Smillie et al., 2019)). To 

demonstrate scPhere’s ability to correct for multiple confounding factors, we reran it using both 

patient origin and disease status (healthy, uninflamed, inflamed) as the batch vector. This merged 

the inflammatory fibroblasts with WNT2B+ fibroblasts (Fig. 3C, Supplementary Movie 2), as the 

influence of disease status on cell types was largely removed, which may suggest their origin.  

Batch vectors help highlight the influence of both disease and anatomical regions on gene 

expression from scPhere’s latent representations. For example, in analyzing epithelial cells, which 

are derived from both the epithelial and lamina propria (LP) samples, when the anatomical regions 

were not used as a component of the batch vector, some of the cells from the LP and epithelial 

layer organized in two respective parallel tracts in some regions of the sphere (Supplementary 

Fig. 2A, orange vs. grey), with each tract including both stem cells, Transit Amplifying 2 (TA2) 

cells, cycling TA cells, and immature enterocytes (Supplementary Fig. 2B). However, when we 

added anatomical regions as a component of the batch vector, the cells were grouped solely by 

types (e.g., stem cells separate from TA2 cells) instead of region (Supplementary Fig. 2C,D). 

Notably, cell types that were mostly from one region (e.g., tuft cells, mostly from epithelial 

fractions) remained grouped distinctly (Supplementary Fig. 2C,D). Similarly, when we did not 

use disease status (healthy, uninflamed, or inflamed) as a component of the batch vector, some 

cells (e.g., TA2, immature enterocytes, and enterocytes) had some ‘outliers’ mapped to low-

density regions of the sphere (Supplementary Fig. 2E), mostly from UC (uninflamed or inflamed) 

all other patients, with each of several methods (color legend). If a normal prior and normal 
posteriors were used, gene expression count vectors were only log transformed without 
normalizing to have unit ℓ" norm for inference. (E,G,I) ScPhere embedding of epithelial (E), 
immune (G) and all 300,000 stromal, epithelial, and immune cells simultaneously (I). (J) 
ScPhere highlights rare cell subsets. A small subset of megakaryocytes/platelets, colored by 
PPBP expression level (color bar, log(transcripts	per	10,000)	or	log(TP10K+1)). 
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samples (Supplementary Fig. 2F). Once we also used the disease status of each cell as a 

component of the batch vector, these cells formed more compact clusters (Supplementary Fig. 

2G), and the cells of different disease states (Supplementary Fig. 2H) and from different patients 

(Supplementary Fig. 2I) were well mixed. In this manner, a user can understand cellular relations 

driven by different biological factors. 

2.4 scPhere preserves the structure of scRNA-seq data even in very low-dimensional spaces  

For embedding in a latent space with few dimensions, scPhere introduced fewer distortions in the 

dimensionality-reduction process compared to the case with a latent Euclidean space, as reflected 

by performance on tasks such as cell classification. To assess this, we first performed 

dimensionality reduction on the colon dataset and then trained a J-nearest neighbor (J-NN) 

classifier on the cells (using the labels from the original study (Smillie et al., 2019)), holding out 

cells from one patient at a time for testing. We compared the classification accuracy obtained using 

scPhere’s hypersphere embedding to that obtained when we run it using a standard normal prior 

and normal posteriors, which embeds cells in a Euclidean latent space. When using only two 

dimensions (Fig. 3D), the results from scPhere were significantly better than when using a 

Euclidean latent space across all Js (FDR < 0.05, paired t-test, two-tailed), suggesting that 

compared to a Euclidean latent space, a hyperspherical latent space introduced less distortions 

when the latent dimensionality was low. This lesser distortion in low-dimensions is especially 

useful for data visualizations, because these typically use a two-dimensional latent space. As 

expected, J-NN classification accuracies increased for both choices with the number of latent 

dimensions, suggesting less distortions introduced by dimensionality reduction (Fig. 3D). 
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ScPhere’s classification results were also comparable with those from Harmony (Korsunsky et al., 

2018) when the latter used 20 principal components (Fig. 3D).  

2.5 The preserved structure aids in classification and visualization 

As a parametric model, we can train scPhere to co-embed unseen (test) data to a latent space 

learned from training data only. To demonstrate this, we performed a 10-fold cross-validation 

analysis, where we partitioned the colon fibroblasts and glia cells into 10 roughly equally-sized 

subsamples, held out one subsample as out-of-sample evaluation data, and used the remaining nine 

subsamples as training data to select variable genes and learn different scPhere models to embed 

cells on a 5D hypersphere. We then trained a J-NN classifier on the 5D representations of the 

training data and used the J-NN classifier to classify the 5D representations of the out-of-sample 

evaluation data. We repeated this process 10 times with each of the 10 subsamples used exactly 

once as the out-of-sample validation data. The J-NN classifiers had a median accuracy of 0.834-

0.853 (J = 5 or 65, respectively, Supplementary Fig. 3). By comparison, when we repeat this 

process but using pre-computed 5D representations from all fibroblasts and glia cells, accuracy 

was similar (0.847-0.860, the minimal two-tailed Wilcoxon signed-rank test FDR=0.036, and for 

two ks, the FDRs > 0.05, Supplementary Fig. 3).  

This good performance in visualization, batch correction and classification was also apparent for 

the epithelial and immune cells, where we included patient origin, disease status, and anatomical 

region as the batch vectors. For epithelial cells, cells grouped visually by type (rather than other 

variables), and ordered in a manner consistent with their development: stem cells → secretory 

Transit Amplifying (TA) cells → immature goblet cells (or cycling TA) → goblet cells (Smillie et 

al., 2019) and stem cells → TA2 cells → immature enterocytes → enterocytes (Fig. 3E, 
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Supplementary Movie 3). Cell classification was highly accurate (ranging from 0.87 for J = 5, 

to 0.89 for J = 65, Fig. 3F), and the influence of region, disease status, and patient was largely 

removed (Supplementary Fig. 2D,H,I). Notably, scPhere classification accuracy on a 5D latent 

space significantly outperformed Harmony with 20 principal components (FDR < 10OP for all Js, 

paired t-test, two-tailed). In immune cells, the three major cell classes (B cells, T cells, and myeloid 

cells, Fig. 3G) were readily identifiable, and well organized relative to each other. In particular, 

CD8+IL17+ T cells were nestled between CD8+ T cells and activated CD4+ T cells in a manner that 

was intriguing and consistent with the mixed features of those cells (Smillie et al., 2019), which 

are CD8 T cells that also express low levels of CD4 protein (Smillie et al., 2019) and an IL17 

module (Smillie et al., 2019) typically associated with CD4+ T cells. Notably, the k-NN 

classification accuracies were lower in immune than in epithelial cells (Fig. 3H), reflecting mostly 

the continuum of T cell states, which is less well captured as disjoint classes, but similar using a 

2D latent space, 5D latent space, or Harmony (Fig. 3H). Finally, when we analyzed the immune, 

stromal cells and epithelial cells simultaneously, the results were quite similar to those from 

analyzing these cells separately (Fig. 3I, Supplementary Movie 4), demonstrating the capacity of 

scPhere to embed large numbers of cells of diverse types, states and proportions.  

2.6 Clustering cells following scPhere embeddings  

To demonstrate how scPhere impacts clustering analysis, we clustered (using the Louvain 

algorithm (Blondel et al., 2008; Levine et al., 2015)) the embeddings of cells on the surface of 5D 

hyperspheres and compared them to the clusters in the original study (Smillie et al., 2019) (where 

only patients were used as the batch vector and variable genes were selected for each patient 

separately to compute a census of batch-insensitive variable genes (Smillie et al., 2019)). The 
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fibroblasts and glia cells were partitioned into 18 clusters (Supplementary Fig. 4A), which were 

largely consistent with the original analysis (Smillie et al., 2019) with some minor exceptions: 

RSPO3+ fibroblasts included cells from the original WNT2B+ Fos-lo cluster, and some of the 

inflammatory fibroblasts were in the WNT2B+ fibroblast clusters, highlighting their molecular 

similarity. We obtained similar clustering results when we used cell embeddings on the surface of 

a 10D hypersphere (Supplementary Fig. 4B), consistent with our classification results (Fig. 3D). 

Clustering the epithelial cells in the 5D hyperspherical space (we included patient origin, disease 

status, and anatomical region as the batch vectors) produced 20 clusters (Supplementary Fig. 

4C): 12 map one-to-one to the previous 12 annotated cell subsets, whereas some of the larger 

subsets were split further (cluster 1, 3, 7). Some clusters consisted of cells from multiple subsets. 

For example, cluster 12 (from secretory TA: cluster 10, TA2: cluster 0, and immature enterocytes: 

cluster 4) cells co-expressed TA2 marker genes (e.g., CA2) and secretory TA marker genes (e.g., 

ZG16). These may reflect a transition state in the epithelial differentiation continuum, but may 

also be cell doublets; further studies may help distinguish these possibilities. Clustering the 

immune cells on the surface of a 5D hypersphere produced 35 clusters (Supplementary Fig. 4D, 

Supplementary Movie 5). Some cells with very similar molecular features were merged (CD4+ 

Activated Fos-hi and CD4+ Activated Fos-low, Supplementary Fig. 4D). Some of these merged 

cells were differently distributed in regions (CD69- mast cells and CD69+ mast cells between 

Epithelial and LP regions; Supplementary Fig. 4E), or disease (cycling monocytes and 

macrophages between healthy, uninflamed, or inflamed, Supplementary Fig. 4F) as we corrected 

for the influences of region, disease, and patient. 

Notably, rare cell types were also distinct in the low-dimensional space. For example, a small 

cluster consisted of megakaryocytes/platelets (Fig. 3J, Supplementary Fig. 4E, cluster 33), 
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expressing PPBP, PF4, GNG11, NRGN, TUBB1, that were missed in the original analysis. Other 

examples included a small B cell cluster (cluster 34) exclusively expressing IGLC7 and a small 

monocyte cluster (cluster 28) expressing FCGR3A and RHOC.  

2.7 Embedding cells in a hyperbolic space for trajectory discovery and interpretation 

When cells are expected to show developmental trajectories, such as from adult stem cells to 

differentiated cells, scPhere can embed them into a hyperbolic space of the Lorentz model (Nagano 

et al., 2019; Nickel and Kiela, 2018), and optionally convert the coordinates in the Lorentz model 

to the Poincaré disk for visualization (Mathieu et al., 2019; Nickel and Kiela, 2017).  

Applying this first to epithelial cells, we readily discerned developmental ordering from intestinal 

stem cells to terminally differentiated cells in either the Poincaré disk (Fig. 4A), or in the Lorentz 

model (Supplementary Fig. 5A): the two major cell development trajectories are clearly 

delineated and M-cells and Best+ enterocytes are close to each other. PHATE (Moon et al., 2019) 

(multidimensional scaling on top of diffusion maps) analysis using the 5D representations of cells 

in the Lorentz model as inputs recapitulated the results from the 2D representations 

(Supplementary Fig. 5B). In contrast, developmental trajectories were less apparent when we 

embedded cells in a Euclidean space (Fig. 4B), with the two major differentiation trajectories 

located closely on one side of the 2D plane, or when we used PHATE multidimensional scaling 

on the 5D representations of cells in the Euclidean space (Supplementary Fig. 5C), where cells 

in the two major developmental branches were again close to each other. 

Finally, when we analyzed 86,024 C. elegans embryonic cells (Packer et al., 2019) collected along 

a time course from <100 minutes to >650 minutes after each embryo’s first cleavage, cells were  
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6) or away from the origin in the Lorentz model (Supplementary Fig. 7A). These patterns are 

harder to discern in a UMAP (Fig. 4D, with 20 batch-corrected PCs by Harmony as inputs). 

Importantly, within the same cell type, the cells were ordered by embryo time in the Poincaré disk 

(Fig. 4E) or in the Lorentz model (Supplementary Fig. 7B). For example, the cells of the body 

wall muscle (BWM, as annotated in (Packer et al., 2019), the most abundant cell type in this 

dataset, Supplementary Fig. 6) first appeared at embryo time 130-170 in a separable position, and 

then “advance” towards the disc’s periphery in a continuous progression but in a manner aligned 

with embryo time (i.e., from 170 - 210 to >650) and lineages (i.e., from first row and second row 

BWMs (D and MS lineage) to posterior BWMs (C lineage) (Packer et al., 2019), Supplementary 

Fig. 8). Conversely, similar cell types were visually indistinguishable in the UMAP (Fig. 4F). 

Thus, the scPhere model with a hyperbolic latent space help represent developmental and other 

temporal processes. 

3 Discussion 

We introduced scPhere, a deep generative model to embed single cells on hyperspheres or in 

hyperbolic spaces. When a cosine distance is used to measure the distance between two cells, a 

spherical latent space is the natural choice for embedding scRNA-seq data. By using a 

hyperspherical latent space, scPhere overcomes the problem of forcing cells to center at the origin 

of the latent space. This provides more readily interpretable representations, and avoids occlusion, 

as we demonstrate in diverse systems, including >300,000 epithelial, immune and stromal cells 

from the colon mucosa. Moreover, by embedding cells in hyperbolic spaces, scPhere helps 

discovering and interpreting developmental trajectories, as we show for both asynchronous 

differentiation of epithelial stem cells and for 86,024 cells collected along a time course of C. 
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elegans embryonic development. ScPhere thus enhances future exploratory data analysis and 

visualization of cells from single-cell studies. 

scPhere also effectively accounts for multiple complex batch effects, which we show disentangles 

cell types from patients, diseases, and location variables, and facilitates downstream analyses. As 

batch correction is generally a challenging task, and in the future, we can leverage supervised 

information to further provide uncertainties of aligning cells from batches.  

The scPhere model is robust to hyper-parameters. Here, we used the same hyper-parameters for 

scPhere analyses for all datasets (the number of cells varies across datasets, from ~1,000 to 

>300,000), whereas some previous studies (Hu and Greene, 2019) showed that classical variational 

autoencoders could be sensitive to hyper-parameters. ScPhere’s robustness may stem from the 

robust negative binomial distribution for modeling UMI counts, or from the use of non-Euclidean 

latent spaces to help solve the cell-crowding problem in the latent space. 

ScPhere can be extended in several ways. When cell type annotations or cell type marker genes 

for some of the analyzed cells are available, we can include semi-supervised learning to annotate 

cell types (Xu et al., 2019; Zhang et al., 2019). Given the rapid development of spatial 

transcriptomics (Rodriques et al., 2019; Vickovic et al., 2019), single-cell ATAC-seq (Lareau et 

al., 2019; Satpathy et al., 2019) and other complementary measurements, scPhere can be extended 

for integrative analysis of multi-modality data. We can also learn discrete hierarchical trees for 

better interpreting developmental trajectories. Given the large number of cells to be sequenced by 

large international initiatives such as the Human Cell Atlas (Regev et al., 2017), we foreseen that 

scPhere will be a valuable tool for large-scale single-cell genomics studies. 
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4 Methods 

4.1 Mapping scRNA-seq data to a hyperspherical latent space 

ScPhere received as input a scRNA-Seq dataset ' = {(S,, T,),12
3 	}, where S, ∈ ℝ;	is the gene 

expression vector of cell 5, $ is the number of measured genes, T, is a categorical variable vector 

specifying the batch in which S, is measured, and 4 is the number of cells. Although S, is high-

dimensional, its intrinsic dimensionality is typically much lower. We therefore assume that the S, 

distribution is governed by a much lower-dimensional vector W,, and the joint distribution is 

factorized as follows (Fig. 1b): 

7(S,, T,, W, ∣ X,) = 7(T, ∣ X,)7(W, ∣ X,)7(S, ∣ T,, W,, X,) 

Here 7(T, ∣ X,) is the categorical distribution, 7(W, ∣ X,) is the prior distribution for W, (W, ∈

ℝY, WZW = 1,[ ≪ $), which is assumed to be a uniform distribution on a hypersphere with 

density "(]^/`)

a(Y/")

O2

. For notational simplicity, we use bold font X, to represent the parameters of 

each distribution, e.g., the parameters X, in 7(T, ∣ X,) and 7(W, ∣ X,) are the parameters of the two 

distributions and should be different. 

For scRNA-seq data, the observed Unique Molecular Identifier (UMI) count of gene b in cell 5 has 

typically been assumed to follow a zero inflated negative binomial (ZINB) distribution (Eraslan et 

al., 2019; Lopez et al., 2018; Pierson and Yau, 2015). However, a recent study suggests that zero 

inflation is an artifact of normalizing UMI counts (Townes et al., 2019), and negative binomial 

distributions generally fit the UMI counts well (Hafemeister and Satija, 2019; Svensson, 2019; 

Vieth et al., 2017). We therefore assume a negative binomial distribution of observations in this 

study: 
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7(S, ∣ T,, W,, X,) = NB

;

<12

(=,,< ∣ >T?,W? , @T?,W?) 

The negative binomial parameters mean >e?,W? > 0 and dispersion @e?,W? > 0 are specified by a 

model neural network (decoder), which can model complex nonlinear relationships between the 

latent variables and the observations. 

We next want to compute the posterior distribution 7(W, ∣ T,, S,, X,), which is assumed to be a von-

Mises-Fisher distribution on a unit hypersphere of dimensionality [ − 1: fYO2 = {W ∣ W ∈

ℝY, WZW = 1}. We turn to variational inference to find a A(W, ∣ T,, S,, g,) to approximate the 

posterior, since exact inference is intractable, given that the model is parameterized by a neural 

network. In addition, the number of parameters to estimate grows with the number of cells, because 

each cell has a ‘local’ distribution with parameter g,. To scale to large datasets, variational auto-

encoders use an inference neural network (encoder, with a fixed number of parameters) to output 

the ‘local’ parameter g, of each cell. Therefore, the learning objective is to find the model neural 

network and the inference neural network parameters to maximize the evidence lower bounds: 

 ℒ(X,, g,) = −ij A(W, ∣ T,, S,, g,) ∣∣ 7(W, ∣ X,) + lm(W?∣T?,S?,g?)[7(S, ∣ T,, W,, X,)] (1) 

The Kullback-Leibler (ij) divergence (Kullback and Leibler, 1951) in Equation 1 can be 

calculated analytically (below). We use Monte-Carlo integration (sampling from the vMF 

distribution A(W, ∣ T,, S,, g,)) to calculate the second term.  

To make scPhere robust to small perturbations (e.g., sequencing depth), we add a penalty term to 

the objective function in Equation 1. Specifically, for each gene expression vector S,, we down-

sample S, by keeping 80% of its UMIs to produce S,. The latent representations of S, and S, are 
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W, and W,, respectively. The penalty term is defined as − (Y
<12 p,,< − p,,<)

" as we want W, and W, 

to be close. 

4.2 von-Mises-Fisher distribution 

The von-Mises-Fisher (vMF) (Mardia and El-Atoum, 1976) represents angular observations as 

points on the surface of a unit-radius hypersphere. Let W be a M-dimensional random vector with 

unit radius (WZW = 1), then its probability density function is: 

vMF(W ∣ t, u) = vw(u)exp(ut
ZW)

vw(u) = uY/"O2(2|)OY/"}Y/"O2
O2

(u)
 

where tZt = 1 is the mean direction vector (not the mean) and u ≥ 0 is the concentration 

parameter. The greater the value of u, the higher the concentration of distribution around the mean 

direction vector t. When u = 0, vMF(W ∣ t, 0) = "(]^/`)

a(Y/")

O2

 is the uniform distribution on the 

unit hypersphere fYO2. vw(u) is a constant normalization factor and }�(⋅) is the modified Bessel 

function of the first kind of order Å (Straub et al., 2015): }�(u) = (
Ç

"
)�

(Ç`/É)Ñ

Ö!a(�áÖá2)

à
Ö1â . The Gamma 

function is defined as ä = = ãåO2çOIéã
à

â
. 

4.3 The Kullback-Leibler divergence between the posterior and prior 

For random vectors distributed on the surface of a hypersphere, a natural prior is the uniform 

distribution, which is the vMF distribution with zero concentration vMF(W ∣ t, 0). In this case, the 

Kullback-Leibler (ij) divergence (Kullback and Leibler, 1951) can be written in closed-form: 
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ij(vMF(W ∣ t, u)||vMF(W ∣ t, 0)) = vMF

f^êë

(W ∣ t, u)log
vMF(W ∣ t, u)

vMF(W ∣ t, 0)
éW

= vMF
f^êë

(W ∣ t, u)(logvY(u) + ut
ZW + log2 + log(|)[/2 − logä([/2))éW

= logvY(u) + ut
Zt

}Y/"(u)

}Y/"O2(u)
+ log2 + log(|)[/2 − logä([/2)

 

 

 

(2) 

with 

logvY(u) = ([/2 − 1)log(u) − ([/2)log(2|) − log(}Y/"O2(u)) 

Notice that Equation 2 is independent of the mean direction vector t as tZt = 1, so we only need 

to take the derivative of Equation 2 w.r.t u during optimization. In other words, minimizing the 

ij divergence only forces the concentration parameter u to be close to zero but without any forces 

on the mean direction vector. This is different from using a location-scale family of priors, such as 

a standard normal prior, where the prior encourages the posterior means of all points to be close 

to zero. When Å ≪ u, }�(u) overflows quite rapidly with u. To avoid numeric overflow, we use 

the exponentially scaled modified Bessel function çOÇ}�(u) in calculations (the scaling is 

motivated by the asymptotic expansion of }�(u) ∼ çÇ(2|u)O2/" ñÖÖ (Å)uOÖ for u → ∞ 

(Abramowitz and Stegun, 1965)). The first order derivative of the exponentially scaled modified 

Bessel function is 

éçOÇ}�(u)

éu
= çOÇ −}�(u) + }�O2(u) −

Å

u
}�(u)  

Previous work has used vMF distribution as the latent distribution for variational auto-encoders 

(Davidson et al., 2018; Guu et al., 2018; Xu and Durrett, 2018), but only the spherical variational 

auto-encoder (Davidson et al., 2018) learns the concentration parameter u. 
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4.4 Sampling from a vMF distribution 

Samples from vMF distributions can be obtained through a rejection sampling scheme (Ulrich, 

1984; Wood, 1994). The algorithm is based on the theorem (Ulrich, 1984) that a [-dimensional 

vector W = ( 1 − ò"ôZ, ò)Z has a vMF distribution with direction vector (0, … ,1)Z ∈ fYO2 and 

concentration parameter u if ò has a univariate density function with the following density 

function: 

 
õ(ò) =

çÇú(1 − ò")(YOù)/"

vÇ:(
1

2
,
1

2
([ − 1))

,  ò ∈ (−1,1), [ ≥ 2 
 

(3) 

where ô is uniformly distributed in fYO", vÇ is a normalization term such that õ(ò) is a legitimate 

density function, and :(=, ü) = a(å)a(e)

a(åáe)
 is the Beta function. The vector ô is uniformly distributed 

in fYO" and can be sampled from a standard normal distribution in [ − 1 dimensions and then 

we normalize the resulting sample to unit length. 

We then use rejection sampling to sample ò from the univariate distribution in Equation 3. The 

envelope function used for rejection sampling is defined as 

H(ò) =
2†(YO2)/"

:(
1

2
([ − 1),

1

2
([ − 1))

(1 − ò")(YOù)/")

((1 + †) − (1 − †)ò)YO2
, ò ∈ (−1,1),[ ≥ 2 

 

 (4) 

Where the term (Hornik and Grün, 2014) † = YO2

"Çá ÉÇ`á(YO2)`
. To sample from H(ò), we can first 

sample ° ∼ :ç¢£(
YO2

"
,
YO2

"
) and pass the sample ° to the invertible function ℎ(°) = 2O(2O•)¶

2O(2á•)¶
. We 
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can easily prove that ò =
2O(2O•)¶

2O(2á•)¶
 is distributed according to Equation 4 based on the rule of 

transforming a continuous random variable with an invertible function. A sample ò is accepted if 

uò + ([ − 1)log(1 − =âò) − ß ≥ log(®), where =â =
2O•

2á•
, and ß = u=â + ([ − 1)log(1 − =â

") 

and ® is sampled from a continuous uniform distribution with support in (0,1). The vector W =

( 1 − ò"ôZ, ò)Z is a sample from vMF(W′ ∣ ™2, u), where ™2 = (0,… ,1)Z ∈ fYO2. We can then 

rotate W′ using a Householder matrix ´ − ¨¨≠ to get a sample from vMF((W ∣ t, u) (Davidson et 

al., 2018), where ´ is the identify matrix of rank [ and ¨ = ™ëOt

||™ëOt||
, where ∥⋅∥ is the Euclidean 

norm. Overall, the samples from a Beta distribution are transformed and accepted or rejected by 

the rejection sampling scheme, and combined with samples ô from a uniform distribution in fYO". 

The combined samples are further transformed to generate samples from the desired vMF 

distribution. Remarkably, previous work has shown that this reparameterization approach still 

holds for these samples (Davidson et al., 2018),  and can be used to optimize the vMF parameters 

t and u, which are the outputs of the inference neural network (encoder). 

For visualization purposes, we typically set [ = 3. Then the univariate density function becomes 

õ(ò) =
∞±≤

≥±¥(
ë

`
,2)
=

Ç

∞±O∞ê±
çÇú =

Ç

"µ∂∑∏(Ç)
çÇú, where sinh(⋅) is the hyperbolic sine function. We 

can directly draw samples from this density function by transforming a sample Ω, generated from 

a continuous uniform distribution Ω ∼ Unif(0,1) using the inverse cumulative function ¿(¢) =

Ç

"µ∂∑∏(Ç)

Ö

ú1O2
çÇúéò =

2

"µ∂∑∏(Ç)
(çÇÖ − çOÇ). Specifically, we can use the following algorithm to 

generate a sample from õ(ò): 

Ω ∼ Unif(0,1)

ò = ¿O2(Ω) = 1 +
log(Ω − ΩçO"Ç + çO"Ç)

u
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4.5 Poincaré ball and Lorentz model of the hyperbolic space 

The Poincaré ball model represents the hyperbolic space as the interior of a unit ball in the 

Euclidean space: ℙ = {W ∈ ℝ¬á2 ∣∥ W ∥< 1, pâ = 0, é ∈ ℤá}, where W = (pâ, … , p¬)
Z. The 

distance between two points W2, W" ∈ ℙ is defined as: 

éℙ(W2, W") = coshO2 1 +
2 ∥ W2 − W" ∥

"

(1−∥ W2 ∥
")(1−∥ W" ∥

")
 

where coshO2(p) = ln(p + p" − 1) is the inverse hyperbolic cosine function, which is 

monotonically increasing for p ≥ 1. The symbol ∥⋅∥ represents the Euclidean norm. Notice that 

coshO2(1 + p) = ln(1 + p + p" + 2p), which approximates 2p when lim	 p → 0 and ln(2p) 

for lim	 p → +∞. When both W2 and W" are close to the origin with zero norm, é(W2, W") ≈

coshO2(1 + 2 ∥ W2 − W" ∥
") ≈ 2 ∥ W2 − W" ∥. Therefore, the Poincaré ball model resembles 

Euclidean geometry near the center of the unit hyperball. The induced norm of a point W ∈ ℙ is 

∥ W ∥ℙ = coshO2
1+∥ W ∥"

1−∥ W ∥"
 

As W moves aways from the origin and approaches the border with ∥ W ∥≈ 1, the induced norm  

∥ W ∥ℙ grows exponentially. Hyperbolic geometry is useful to represent data with an underlying 

approximate hierarchical structure. 

The Lorentz model is a model of the hyperbolic space and points of this model satisfy ℍ» = {W ∈

ℝ»á2 ∣ zâ > 0, ⟨W, W⟩ℍ = −1}, where ⟨W, W′⟩ℍ = −zâzâ′ + z∂
»
∂12 z∂′ is the Lorentzian inner 

product (or Minkowski inner product when W ∈ ℝÉ). The special one-hot vector tâ = (1,0, … ,0)Ã 

is the origin of the hyperbolic space. The distance between two points in the Lorentz model is 

defined as: 
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dℍ(W2, W") = coshO2 −⟨W2, W"⟩ℍ  

The tangent space of ℍ» at point t ∈ ℍ» is defined as Œtℍ» ≔ {W ∣ ⟨t, W⟩ℍ = 0}, i.e., all the points 

that are orthogonal to t based on the Lorentzian inner product. A point (zâ, z2, … , z»)Ã in the 

Lorentz model can be conveniently mapped to the Poincaré ball (Nickel and Kiela, 2018) for 

visualization: 

0,
(p2, … , p;)

Z

pâ + 1
 

We discard the first element as it is a constant of zero. 

 

4.6 Sampling from wrapped normal distributions of the Lorentz model 

We used wrapped normal priors and wrapped normal posteriors defined in the Lorentz model to 

embed cells to a hyperbolic space (Grattarola et al., 2019; Mathieu et al., 2019; Nagano et al., 

2019). A wrapped normal distribution in ℍ¬ is constructed by first defining a normal distribution 

on the tangent space Œt–ℍ
¬ (an Euclidean subspace in ℝ¬á2) at the origin tâ = (1,0, … ,0)Z of the 

hyperbolic space. Samples from a normal distribution on the tangent space are transported to 

desired locations and further projected onto the final hyperbolic space (Nagano et al., 2019). 

We used a set of invertible functions to transform samples from a normal distribution —(W ∣

“, ´¬”) in ℝ¬ to samples from a wrapped normal distribution in ℍ¬ with mean of t, where ” ∈

ℝ¬ is the standard deviation of components p2 to p¬, respectively, and ´¬ is the identity matrix in 

ℝ¬ (Nagano et al., 2019; Rezende and Mohamed, 2015). First, let Wâ = (0, Wâ′)
Z, which can be 

considered as a sample from Œt–ℍ
¬, where Wâ′ is sampled from —(W ∣ “, ´¬”). Next, Wâ is parallel-

transported to the tangent space Œtℍ¬ at t, with coordinate W2, such that W2 is parallel to Wâ (i.e., 
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pointing in the same direction relative to the geodesic) and preserves the norm (i.e., ⟨Wâ, Wâ⟩ℍ =

⟨W2, W2⟩ℍ) (Bergmann et al., 2018; Nagano et al., 2019): 

W2 = Wâ +
⟨t − ñtâ, Wâ⟩ℍ

ñ + 1
(tâ + t) 

Finally, the exponential map (Grattarola et al., 2019; Nagano et al., 2019; Nickel and Kiela, 2018)  

projects W2 in the tangent space Œtℍ¬ back to the hyperbolic space by: 

W = cosh ∥ W2 ∥ℍ t + sinh ∥ W2 ∥ℍ
W2

∥ W2 ∥ℍ
 

without altering the distance, i.e., éℍ(t, W) = éℍ(W2, W2).  

The likelihood after the invertible transformations can be calculated by 

log7(W) = log7(Wâ) − log(det(
’W

’W2
)) − log(det(

’W2

’Wâ
))

= log7(Wâ) − (é − 1)log(
sinh(∥ W2 ∥ℍ)

∥ W2 ∥ℍ
)

 

4.7 Model structure 

As single cell data are sparse, with typically more than 90% genes with zero counts in each cell, 

we used softmax as the activation function to estimate the means of the negative binomial 

distributions and help generate sparse outputs from the decoders. We used the exponential linear 

units (ELU) (Clevert et al., 2015) activation functions for hidden layers, as it has been shown to 

improve convergence of stochastic gradient optimizations.  

For all experiments, we used a three-layered encoder network (128-64-32) and a two-layered 

decoder network (32-128). We used the Adam stochastic optimization (Kingma and Ba, 2014) 

algorithm with a learning rate of 0.001. Only when embedding cells in more than 2D hyperbolic 

spaces, we used a learning rate of 0.0001 for numeric stability. For datasets with less than 10,000 
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cells, we trained models for 2,000 epochs. For datasets with more than 10,000 cells but less than 

100,000 cells, we trained models for 500 epochs, and for the large number of immune cells with 

more than 2000,000 cells, we trained models for 250 epochs. 

	

4.8 Visualization 

The embeddings were visualized on a 3D sphere using the rgl package (Adler et al., 2003) from 

R, with the interactive 3D scatter plots saved as web graphics library files that can be opened in a 

browser. The rgl package uses OpenGL as the rendering backend, and can be used to rapidly and 

interactively visualize 3D scatter plots with millions of cells in a browser.  

4.9 Data and code availability 

We used publicly available datasets in this study. To make the results presented in this study 

reproducible, all processed data are available in the Single Cell Portal 

https://singlecell.broadinstitute.org/single_cell/study/SCP551/scphere#study-download The 

scPhere software package, implemented in TensorFlow, is available freely from 

https://github.com/klarman-cell-observatory/scPhere 	

4.10 Data  

Cord	blood	mononuclear	cells This dataset (Stoeckius et al., 2017) consists of 8,617 cells, 

including 8,009 cord blood mononuclear cells and 608 mouse 3T3 fibroblasts, produced by the 

CITE-seq protocol (Stoeckius et al., 2017) on the 10x Chromium (v2) platform (Zheng et al., 

2017). We only used the 2,293 CD14+ monocytes and the first 10 erythrocytes in the dataset. Based 

on the Seurat (Butler et al., 2018) tutorial 
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(https://satijalab.org/seurat/v3.0/multimodal_vignette.html), we used the 2,000 highly variable 

genes in this study.	

Cells	of	the	colon	mucosa The cells were from the colon mucosa of 68 biopsies, collected from 

18 ulcerative colitis patients and 12 healthy individuals (Smillie et al., 2019), and profiled by 10x 

Chromium (either v1 or v2). After filtering likely low-quality cells (clusters), we obtained a total 

of 301,749 cells (26,678 stromal cells and glia, 64,457 epithelial cells, and 210,614 immune cells 

as annotated in the original study (Smillie et al., 2019)). The cells span 12 stromal cell types/states, 

12 epithelial cell types/states, and 23 immune cell types/states, identified by unsupervised 

clustering and manual annotations (Smillie et al., 2019). We used Seurat to select 1,307, 1,361, 

and 1,068 highly variable genes for the three major cell types, respectively, for scPhere analyses.  

Human splenic NK cells Cells were from a study profiling human and mouse splenic and blood 

NK cells (Crinier et al., 2018), and profiled by 10x Chromium (v2). We used the 1,755 human 

splenic NK cells from donor one in this study. We selected 2,724 highly variable genes and 

partitioned the 1,755 cells into four groups, labeled them as hNK_Sp1, hNK_Sp2, hNK_Sp3, 

hNK_Sp4, as in the original study (Crinier et al., 2018).  
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Human lung cells  Cells were from human lung tissue from asthma patients and healthy controls 

(Braga et al., 2019), and profiled by either 10x Chromium or Drop-seq (Macosko et al., 2015). We 

used the 3,314 cells from a donor prepared by the Drop-seq protocol that can be accessed from 

GEO: GSE130148.  

Mouse white adipose tissue stromal cells This dataset contains 1,378 cells from mouse white 

adipose tissue (Hepler et al., 2018) profiled by 10x Chromium (v2). In the original study, the 

authors only analyzed 1,045 tdTomato- mGFP+ cells and identified adipocyte precursor cells 

(APC), fibro-inflammatory progenitors (FIP), committed preadipocytes, and mesothelial cells. We 

analyzed all the cells and further identified pericytes, macrophages, and two groups of doublets.  

C. elegans embryonic cells This dataset consists of 86,024 C. elegans embryonic cells (Packer 

et al., 2019) profiled using the 10x Chromium (v2). The embryo times were partitioned into 12-

time bins, and 63.5% of the cells were assigned to 36 major cell types based on annotation from 

GEO: GSE126954.	
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Supplementary Figure legends	

Supplementary Figure 1. Embedding cells from different tissues in the 3D Euclidean latent 

space does not solve the cell crowding and occlusion problem.   

Embedding in the 3D Euclidean space of 3,314 human lung cells (A), 1,378 mouse white adipose 

tissue stromal cells (B), and 1,755 human splenic natural killer cells (C). 	

Supplementary Figure 2. scPhere corrects multiple batch effects flexibly and efficiently.  

(A-I) Epithelial cell profiles from healthy individuals and UC patients embedded on the surface of 

unit spheres. (A,B) Taking only patient and disease status of each cell as the batch vector. Cells 

are colored by anatomical region (A) or type (B). (C,D) Taking the patient, disease status, and 

anatomical region as the batch vector. Cells are colored by type (C) or anatomical region (D). 

(E,F) Taking patient and anatomical region as the batch vector. Cells are colored by type (E) or 

disease status (F). (G-I) Taking the patient, disease status, and the anatomical region as the batch 

vector. This is a different view of the sphere in (C,D). Cells (dots) are colored by type (G), disease 

status (H), and patient (I). 	

Supplementary Figure 3. Training scPhere to classify cells from unseen test data.  

Classification accuracy (y axis) in 10-fold cross-validation k-nearest neighbor classification (J-

NN) on 5D hyperspheres for different values of k (x axis) for test data classified either from 

classifiers trained on data mapped on a 5D hypersphere (orange; variable gene selection, scPhere 

modeling fitting, and J-NN classifier training were done in each fold) or when the 5D 

representation of cells was pre-computed by learning a scPhere model using all the cells (blue). 
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Adjusted p-values (FDR, paired Wilcoxon rank sum test, two-sided) comparing the classification 

accuracies are at the top. Boxplots denote the medians and the interquartile ranges (IQRs). The 

whiskers of a boxplot are the lowest datum still within 1.5 IQR of the lower quartile and the highest 

datum still within 1.5 IQR of the upper quartile.  

Supplementary Figure 4. Clustering colon mucosa cells in the latent representations of 5D 

hyperspheres.  

(A-D) Comparison of cell assigned to Louvain clusters obtained on the cell embedding to a 

hypersphere (columns) and in the original study (rows) for stroma cells with 5D (A) or 10D (B) 

hypersphere embedding, epithelial cells (C) and immune cells (D). Color bar: z-scores (row-

centered and scaled) of the number of cells. (E,F) Location and disease distribution vary across 

immune cell clusters. Percent of cells (y axis) from a given location (E, Epi or LP) or disease state 

(F, healthy, uninflamed, or inflamed) in each immune cell type annotated in the original study (x 

axis). (G) New immune clusters have distinctive expression markers. Fraction of expressing cells 

(dot size) and mean level of expression in expressing cells (dot color, row z-score of log(transcripts 

per 10,000 + 1)) for selected marker genes (rows) differentially expressed in small clusters of 

immune cells (cluster 28, 33, and 34, columns).  

Supplementary Figure. 5. Embedding epithelial cells into a hyperbolic space.  

Embedding of epithelial cells colored by cell type in the 2D hyperbolic space of the Lorentz model 

(A), and PHATE multidimensional scaling with the 5D representations of cells in either the 

hyperbolic space of the Lorentz model (B) or in the Euclidean space (C) as inputs.  
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Supplementary Figure 6. Poincaré disk embedding highlights the progression of C. elegans 

embryonic cells in time.  

Embedding of all C. elegans embryonic cells in a Poincaré disk (as in Fig. 4C,E), but each panel 

showing only the cells from one of 12 embryonic time bins (<100, 100-130, 130-170, 170-210, 

210-270, 270-330, 330-390, 390-450, 450-510, 510-580, 580-650, >650). Cells are colored by 

annotated cell types (Packer et al., 2019).  

Supplementary Figure 7. Embedding C. elegans embryonic cells into a hyperbolic space of 

the Lorentz model highlight differentiation branches.  

Embedding of C. elegans embryonic cells in the Lorentz model, colored by embryo time (A) or 

cell type (B).  

Supplementary Figure 8. The C. elegans body wall muscle cells are ordered by lineages in 

the Poincaré disk.  

Embedding of C. elegans embryonic cells in a Poincaré disk (as in Fig. 4C,E), but showing only 

body wall muscle (BWM) cells, colored by lineage/location from first row and second row BWMs 

(D and MS lineage) to posterior BWMs (C lineage). 
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Supplementary Movies	

Supplementary Movie 1. Embedding of stromal cells from human colon mucosa on the 

surface of the unit sphere, taking patient as the batch vector.  

Cells (dot) are color-coded by type. Annotations are marked adjacent to the corresponding cells. 	

Supplementary Movie 2. Embedding stromal cells from human colon mucosa on the surface 

of the unit sphere, taking both patient and disease as the batch vector.  

Cells (dot) are color-coded by type. Annotations are marked adjacent to the corresponding cells. 

We did not include anatomical regions in the batch vector, because most cells were from the lamina 

propria fraction. 	

Supplementary Movie 3. Embedding epithelial cells from human colon mucosa on the 

surface of the unit sphere, taking patient, disease status, and anatomical region as the batch 

vector.  

Cells (dot) are color-coded by type. Annotations are marked adjacent to the corresponding cells.  

Supplementary Movie 4. Embedding all cells from human colon mucosa on the surface of 

the unit sphere, taking patient, disease status, and anatomical region as the batch vector.  

Cells (dot) are color-coded by type. Annotations are marked adjacent to the corresponding cells. 
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Supplementary Movie 5. Clustering the 5D latent representations of immune cells from 

human colon mucosa.  

Embedding immune cells on the surface of a unit sphere, taking patient, disease status, and 

anatomical region as the batch vector. Cells (dot) are color-coded by cluster membership numbers 

(and assigned cell types) as determined by Louvain clustering (resolution=1.2, the number of 

nearest neighbors=25) of the latent representations from embedding the cells on the surface of a 

5D hypersphere.  
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