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Abstract 

Following exposure to an oriented stimulus, the perceived orientation is slightly shifted, a phenomenon 

termed the tilt aftereffect (TAE). This estimation bias, as well as other context-dependent biases, is 

speculated to reflect statistical mechanisms of inference that optimize visual processing. Importantly, 10 

although measured biases are extremely robust in the population, the magnitude of individual bias can 

be extremely variable. For example, measuring different individuals may result in TAE magnitudes that 

differ by a factor of 5. Such findings appear to challenge the accounts of bias in terms of learned 

statistics: is inference so different across individuals? Here, we found that a strong correlation exists 

between reaction time and TAE, with slower individuals having much less TAE. In the tilt illusion, the 15 

spatial analogue of the TAE, we found a similar, though weaker, correlation. These findings can be 

explained by a theory predicting that bias, caused by a change in the initial conditions of evidence 

accumulation (e.g., prior), decreases with decision time (Dekel & Sagi, 2019b). We contend that the 

context-dependence of visual processing is more homogeneous in the population than was previously 

thought, with the measured variability of perceptual bias explained, at least in part, by the flexibility of 20 

decision-making. Homogeneity in processing might reflect the similarity of the learned statistics. 

Highlights 

 The tilt aftereffect (TAE) exhibits large individual differences. 

 Reduced TAE magnitudes are found in slower individuals. 

 Reduced TAE in slower decisions can be explained by the reduced influence of prior. 25 

 Therefore, individual variability can reflect decision making flexibility.  
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Introduction 

Visual context, from space and time, is known to influence the processing of visual information. Using 

basic visual properties, such as orientation, motion, and color, clear behavioral and electrophysiological 

effects have been identified (Clifford & Rhodes, 2005; Clifford et al., 2007; Gibson, 1937; Gibson & 30 

Radner, 1937; Kohn, 2007; Lamme & Roelfsema, 2000; Webster, 2011, 2015). With orientation 

features, the contextual orientation is known to lead to a perceptually salient shift in the perceived 

orientation (Gibson, 1937; Gibson & Radner, 1937; Schwartz, Hsu, & Dayan, 2007). When the context 

surrounds a target, this phenomenon is referred to as the tilt illusion (TI, Fig. 1A, Clifford, 2014; 

Gibson, 1937), and when the context precedes a target in time, it is referred to as the tilt aftereffect 35 

(TAE, Fig. 1B, Gibson & Radner, 1937; Webster, 2015). In both space and time (Schwartz et al., 2007), 

a contextual orientation of 20° clockwise to vertical leads to a counterclockwise shift in the estimated 

orientation, by a few degrees (see Fig. 1). 

Extensive theoretical work has been done to better understand such context effects. Generally, context-

dependent changes in visual processing are thought to be functionally useful, despite some debate 40 

regarding details (Clifford, 2014; Kohn, 2007; Snow, Coen-Cagli, & Schwartz, 2017; Solomon & Kohn, 

2014; Webster, 2011). Possible benefits include (a) self-calibration, constancy, or correction of a 

reference “norm” (Andrews, 1964; Day, 1972; Dekel & Sagi, 2019a; Gibson & Radner, 1937; Webster, 

2011), (b) optimization of the neural code, such as improved gain of computational units, improved 

coding sensitivity to likely events, or decorrelation to remove coding redundancies (Benucci, Saleem, & 45 

Carandini, 2013; Coen-Cagli, Kohn, & Schwartz, 2015; Pinchuk-Yacobi & Sagi, 2019; Snow et al., 

2017; Wei & Stocker, 2017), and (c) enhanced attentional selection of novel or surprising events (such 

events are presumably more likely to be important and hence deserve more attention). However, these 

and other alternatives are not necessarily mutually exclusive (e.g., orientation biases may reflect both 

self-calibration and decorrelation, Clifford, Wenderoth, & Spehar, 2000), and are not necessarily 50 

dependent on the neural implementation (e.g., divisive normalization may underlie both code 

optimization and attentional selection, Carandini & Heeger, 2012). However, two general observations 

can be made: First, theories seem to differ based on the speculated purpose (Press, Kok, & Yon, 2019), 

making perception more veridical (e.g., self-calibration), or less veridical but better at a given task (e.g., 

code optimization). Second, theories differ in how the effect is thought to depend on the computational 55 

constraints of the system. That is, if the system were to have better computational abilities (e.g., more 
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neurons, more neural bandwidth), would context-dependent biases be less pronounced? For example, if 

biases reflect calibration based on the “true” white (white balance) or the “true” vertical, then it seems 

reasonable to assume that the biases are not dependent on computational constraints, and rather, are 

determined by a system-independent inference process (using stimulation statistics, such as the average 60 

color or the orientation modes). Alternatively, if biases reflect a tradeoff between computational 

constraints (such as limited bandwidth) and perceptual error, then we would expect less bias in a better 

system. 

An interesting source of theory-diagnostic information can be obtained by considering individual 

differences in vision (Grzeczkowski, Clarke, Francis, Mast, & Herzog, 2017; Mollon, Bosten, Peterzell, 65 

& Webster, 2017). In the TI, as well as in other spatial-context-dependent biases, individuals measure 

large differences (by an order of magnitude), with strong test-retest reliability (Grzeczkowski et al., 

2017; Song, Schwarzkopf, & Rees, 2013). These differences were found to be correlated with variability 

in orientation JND (just-noticeable-differences, showing an R2 value of ~60%) and were thought to 

reflect variability in the size of area V1 across individuals (Schwarzkopf, Song, & Rees, 2011; Song et 70 

al., 2013). These results seem consistent with an account of variability in terms of fixed neuronal 

constraints of low-level vision. In the TAE, direct investigation of individuality has, to the best of our 

knowledge, never been attempted, despite the large individuality evident in the literature (Gibson & 

Radner, 1937; Knapen, Rolfs, Wexler, & Cavanagh, 2010; Magnussen & Johnsen, 1986; Wolfe, 1984). 

Importantly, we recently reported that context-dependent bias is much stronger in fast compared with 75 

slow reaction times (RT) of an individual (Dekel & Sagi, 2019b). This effect was largely independent of 

orientation sensitivity (i.e., JND). Moreover, we suggested that this within-observer variability in bias is 

explained by the theory that decision makers integrate evidence over time to reduce error, with an initial 

state of accumulation that is set by prior evidence favoring one decision outcome over others (Gold & 

Shadlen, 2007; Ratcliff, 1978; Ratcliff, Smith, Brown, & McKoon, 2016; Wald, 1945). In such models, 80 

bias, caused by the initial conditions, is expected to gradually decrease with decision time owing to 

noise accumulation, leading to a dramatic reduction of bias in slower decisions (Dekel & Sagi, 2019b; 

Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012; Ratcliff & McKoon, 2008; Summerfield 

& De Lange, 2014; White & Poldrack, 2014). 

Here, we investigated individual differences in both TI and TAE, and considered their previously 85 

unexplored interaction with RT. Importantly, we found a strong negative correlation between TAE and 
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RT, and a similar albeit statistically weaker correlation between TI and RT. These findings suggest that 

individual differences are based on RT, which complements current knowledge of differences in terms 

of orientation JND. This account is consistent with fixed low- and variable high-level visual processing. 

 90 

 

Fig. 1 – Tilt illusion and tilt aftereffect. (A) In the tilt illusion (TI), an oriented surround leads to a shift 

in perceived orientation. Right: the surrounding annulus, oriented 20° clockwise to vertical, leads to a 

counterclockwise shift in the perceived orientation of the center circle (the target). Left: the target 

without surround, was provided as a reference for the reader and was not used in the experiments. (B) 95 

In the tilt aftereffect (TAE), exposure to an oriented adaptor (e.g., +20°) leads to a shift in the perceived 

orientation of a subsequently viewed target (in the same direction as in TI). Figure reproduced from 

(Dekel & Sagi, 2019b). 
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Methods 100 

This study re-analyzed experimental data used in (Dekel & Sagi, 2019b). 

Observers 

Twenty-nine observers (23 females, 6 males, aged 18-40) with normal or corrected-to-normal vision 

participated in the experiments. All observers were naïve to the purpose of the experiments, and 

provided their written informed consent. Most observers had prior experience of participation in 105 

psychophysical experiments. The work was carried out in accordance with the Code of Ethics of the 

World Medical Association (Declaration of Helsinki) and was approved by the Institutional Review 

Board (IRB) of the Weizmann Institute of Science. 

Apparatus 

The stimuli were presented on a 22” HP p1230 monitor operating at 85Hz with a resolution of 110 

1600x1200 that was gamma-corrected (linearized). The mean luminance of the display was 26 cd⋅m-2 

(TAE experiments) or 49 cd⋅m-2 (TI experiments) in an otherwise dark environment. The monitor was 

viewed at a distance of 100 cm. 

Stimuli and tasks 

All stimuli were presented using dedicated software on a uniform gray background. To begin stimulus 115 

presentation in a trial, observers fixated on the center of the display and pressed the spacebar (self-

initiated trials). Responses were provided using the left and right arrow keys. 

TAE experiments. The following presentation sequence was used (Fig. 1B): a blank screen (600 ms 

presentation), a Gabor “adaptor” (i.e., context, oriented -20° or +20° to vertical, 50 ms), a blank screen 

(600 ms), and a near-vertical Gabor “target” (50 ms). Observers were instructed to inspect the adaptor 120 

and target presentations, and then to report whether the orientation of the target was clockwise or 

counter-clockwise to vertical (no feedback). Gabor patches were 50% Michelson contrast, with a 

Gaussian envelope of σ = 0.42° and a sine wavelength of λ = 0.3° having a random phase. In the 

periphery experiments, adaptors and targets were presented at either left or right of the fixation (at ±1.8° 

eccentricity), the target was presented either at the same side as the adaptor (retinotopic) or at the 125 

opposite side (non-retinotopic), randomly, and targets were oriented from -12° to +12° (in steps of 2°). 

In the fixation experiment, adaptors and targets were presented at the fixated center of the display, and 
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targets were oriented -9° to +9° (in steps of 1°). Four peripheral crosses co-appeared with the target to 

improve the discrimination between adaptor and target. 

TI experiments. Stimuli (Fig. 1A right) consisted of a sine-wave circular “target” (radius of 0.6°) and a 130 

sine-wave annulus “surround” (width of 1.2°, and a gap of 0.15° from the central circle). Targets were 

oriented from -9° to +9° in steps of 1°, with λ = 0.3° and a random phase. Surrounding annuli were 

oriented -20° or +20°, with λ = 0.3° and a random phase. The contrast of the stimuli was 100%. 

Observers were instructed to inspect the target, and to report its orientation as clockwise or counter-

clockwise to vertical (no feedback). The target+surround stimuli were presented starting from 350 ms 135 

after the trial initiation ("no jitter" experiment), or starting from 450 ms ± up to 100 ms ("onset jitter" 

experiment), for a duration of 200 ms. 

Procedure 

In all conditions, each daily session was preceded by a brief practice block with easy stimuli (this 

practice was repeated until close-to-perfect accuracy was achieved). 140 

TAE experiments. Sessions consisted of blocks lasting ~5 minutes, each with 125 trials. Blocks were 

separated by 2-minute breaks of blank screen-free viewing. In the periphery experiments, observers (N = 

14) performed 3-8 daily sessions, each with five blocks. In the fixation experiment, observers (N = 12) 

performed a single session with six blocks. 

TI experiments. Sessions consisted of blocks of 190 trials (lasting ~5 minutes), separated by 2-minute 145 

breaks of blank screen-free viewing. Observers (N = 10 for the "no jitter" experiment, and N = 10 for the 

"onset jitter" experiment) performed a single session with five blocks. 

Note that the number of observers in the main experiment in this work (TAE in the periphery, N = 14) 

was relatively smaller than typically used to study individual differences. However, the number of 

repetitions per observer was relatively large (3-8 daily sessions of 625 trials), permitting higher 150 

precision in the individual measurement. All experiments in this study, with the exception of the TI “no 

jitter” experiment, were previously analyzed for the within-individual effects of RT (Dekel & Sagi, 

2019b). 
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Modeling 155 

We consider two simple decision models that rely on accumulated evidence to make decisions, and try 

to approximate how model parameters relate to the behavioral measures of bias, sensitivity, and decision 

time. The models assume a temporal integration of evidence, at a fixed rate, with an initial state of 

accumulation that is set by prior evidence favoring (biasing) one decision outcome over others (Ratcliff, 

1978; Ratcliff et al., 2016; Summerfield & De Lange, 2014). The integration of evidence is either 160 

stopped when a decision bound is reached (bounded model), or not (unbounded model), as detailed 

below. 

In the analysis, we rely on the following definitions: First, Φ−1(⋅) is the inverse cumulative standard 

normal distribution function. In addition, Biascrit_shift is the bias (e.g., TAE) measured by the shift of an 

internal criterion between the contexts (Dekel & Sagi, 2019; Green & Swets, 1966): 165 

                                                 Biascrit_shift = Φ−1(𝑃+
𝑐1,𝑜

)  − Φ−1(𝑃+
𝑐2,𝑜

),                                             (1) 

where 𝑃+
𝑐1,𝑜

 is the probability of clockwise answers for target orientation o under context 𝑐1 (e.g., a 

vertical target and a -20° adaptor exposure), and 𝑃+
𝑐2,𝑜

 is the same for context 𝑐2 (e.g., the same target 

and a +20° adaptor exposure). 

Finally, the orientation sensitivity, d’, is defined as (Green & Swets, 1966): 170 

                                                        𝑑′ = Φ−1(𝑃+
𝑐,𝑜1) − Φ−1(𝑃+

c,o1),                                                       (2) 

where 𝑃+
c,o1 is the probability of clockwise answers for target orientation 𝑜1 under a given context c 

(e.g., a -0.5° target and a -20° adaptor exposure), and 𝑃+
𝑐,𝑜2 is the same for target orientation 𝑜2 (e.g., a 

+0.5° target and the same adaptor). 

Based on standard signal detection theory modeling (SDT, Green & Swets, 1966): 175 

                                                                         JND ≈
1

𝑑′                                                                           (3) 

                                                             TAE ≈ Biascrit_shift ⋅
1

𝑑′
  ,                                                             (4) 
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where JND is the just noticeable difference (the slope of the psychometric function), and TAE is bias 

measured in degrees (the shift of the psychometric function between the contexts). 

Unbounded model. Here, we consider a simple case without decision bounds (an unbounded model). 180 

Thus, we assume some process of evidence accumulation that is equivalent to a simple random walk (a 

Wiener process) that starts from point z (which is a scalar) and gradually diverges due to stochastic 

diffusion (noise) and drift v (the delta of evidence being accumulated at each time point). Intuitively, we 

expect the influence of the starting point of the random walk to diminish at a rate proportional to the 

square-root of the time. More formally, the probability density of the random walk at decision time t is a 185 

normal distribution with mean 𝑧 + 𝑡 ⋅ 𝑣 and variance t, namely, 𝒩(𝑧 + 𝑡 ⋅ 𝑣, 𝑡). Therefore, 

                                                        Φ−1(𝑃+) =
𝑧+𝑡⋅𝑣 

√𝑡
=

𝑧 

√𝑡
+ √𝑡 ⋅ 𝑣,                                                       (5) 

where 𝑃+ is the probability of the process being positive at time t. Then, the bias in the internal criterion 

(Biascrit_shift), given by the change in Φ−1(𝑃+) due to the context (+z compared with –z, see Eq. (1)), is: 

                               Biascrit_shift = Φ−1(𝑃+
𝑐1,𝑜

) − Φ−1(𝑃+
𝑐2,𝑜

) =
𝑧+𝑡⋅𝑣 

√𝑡
−

(−𝑧)+𝑡⋅𝑣 

√𝑡
=

2⋅𝑧

√𝑡
                          (6) 190 

And, similarly, the sensitivity (d’), given by the change in Φ−1(𝑃+) due to a change in the stimulus (+v 

compared with –v, see Eq. (2)), is: 

                                𝑑′ = Φ−1(𝑃+
𝑐,𝑜1) − Φ−1(𝑃+

𝑐,𝑜2) =
𝑧+𝑡⋅𝑣 

√𝑡
−

𝑧+𝑡⋅(−𝑣) 

√𝑡
= 2 ⋅ 𝑣 ⋅ √𝑡                              (7) 

We now consider how the different behavioral measures are predicted to change, depending on the 

decision time t. Using Eqs. (3)-(7), and assuming that the target orientation is linear in the v parameter, 195 

we obtain: 

                                         TAE ≈ Biascrit_shift ⋅
1

𝑑′
=

2𝑧

√𝑡
⋅

1

2𝑣√𝑡
=

2𝑧

2𝑣𝑡
= 𝑂 (

1

𝑡
)                                          (8) 

                                                            JND ≈
1

𝑑′
=

1

2𝑣√𝑡
= 𝑂 (

1

√𝑡
)                                                             (9) 
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Based on Eqs. (8) and (9), the unbounded model makes the following predictions concerning changes in 200 

TAE and JND for a changed decision time: 

                                                                    TAE ≈ JND2 ≈
1

𝑡
                                                                 (10)  

Note that the unbounded model does not explain the decision time itself, only how the decision time 

affects bias and sensitivity. 

Bounded model (DDM). An alternative approach of modeling decision processes in the brain, which 205 

also explains decision times, is to assume that there are decision bounds. When the accumulated 

evidence reaches a bound, the process is stopped and a decision is made. Here we considered the 

standard bounded drift diffusion model (DDM, Gold & Shadlen, 2007; Ratcliff & McKoon, 2008; 

Ratcliff & Smith, 2015; Ratcliff et al., 2016; see mathematical background at Luce, 1986; Shadlen, 

Hanks, Churchland, Kiani, & Yang, 2006). The DDM can be defined using four parameters: the drift 210 

rate (v), bound separation (a), starting point (z), and non-decision time (t0). In this description, the 

bounds are at 0 and a, and the process starts from the point z. We also define b as the distance of the 

starting point from the midpoint between the bounds:  𝑏 = 𝑧 −
𝑎

2
 . 

Using Eq. (A.12) from (Palmer, Huk, & Shadlen, 2005) for the case v = 0, we get:                                                                              

𝐸[𝑇𝐷] =
𝐴𝐵

𝜎2  where 𝐸[𝑇𝐷] is the expected decision time (for both upper and lower bounds), A and B are 215 

the distances from the starting point to the upper and lower bounds, respectively, and 𝜎 is a scaling 

constant that is usually set to a fixed value of 1. Therefore, using 𝐴 + 𝐵 = 𝑎 and 𝐵 = 𝑧 =
𝑎

2
+ 𝑏,  we 

get: 

                                                       E[TD] =
(

𝑎

2
−𝑏)(

𝑎

2
+𝑏)

𝜎2 =
(

a

2
)

2
−𝑏2

𝜎2                                                            (11) 

Moreover, using Eq. (A.6) from (Palmer et al., 2005) again for 𝑣 = 0, we obtain 𝑃+ =
𝐵

𝐴+𝐵
=

1

2
+

𝑏

𝑎
, 220 

where 𝑃+ is the probability to reach the upper bound. Because Φ−1 (
1

2
+ 𝑥) ≈ 𝑥 for small x values, we 

expect that when 
𝑏

𝑎
 is not too large, it will approximately hold that Φ−1(𝑃+) = Φ−1 (

1

2
+

𝑏

𝑎
) ≈ √2𝜋

𝑏

𝑎
. 
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The bias, given by the change in Φ−1(𝑃+) due to a change in context (+b compared with –b, see Eq. 

(1)), for the case where 𝑣 = 0, is given by: 

                    Biascrit_shift = Φ−1(𝑃+
𝑐1,𝑜

) − Φ−1(𝑃+
𝑐2,𝑜

) ≈ √2𝜋
𝑏

𝑎
− √2𝜋

(−𝑏)

𝑎
≈ 5 ⋅

𝑏

𝑎
                            (12) 225 

We consider now the task sensitivity. Using Eq. (A.13) from (Palmer et al., 2005) for the case of an 

unbiased starting point (𝑏 = 0), we obtain 𝑃+ =
1

1+𝑒−𝑣𝑎/𝜎2. This is a logistic function, and thus, we can 

approximate it by Φ−1(𝑃+) = Φ−1 (
1

1+𝑒
−

𝑣𝑎

𝜎2
) ≈ (

1

2
√

𝜋

2
) ⋅

𝑣⋅𝑎

𝜎2
. As such, the sensitivity (d’), given by the 

change in Φ−1(𝑃+) due to a change in stimulus (Eq. (2)), when 𝑏 = 0, is given by: 

                        𝑑′ = Φ−1(𝑃+
𝑐,𝑜1) − Φ−1(𝑃+

𝑐,𝑜2) ≈ (
1

2
√

𝜋

2
) (

𝑣⋅𝑎

𝜎2 −
(−𝑣)⋅𝑎

𝜎2 ) ≈
5

4
⋅

𝑣⋅𝑎

𝜎2                                  (13) 230 

Although Eq. (12) was derived when there is a small 
𝑏

𝑎
 value, and Eq. (13) was derived when 𝑏 = 0, we 

found the approximations to be reasonably robust in the relevant parameter range (Fig. 2). Based on the 

above approximations, we next determined how the different behavioral measures are predicted to 

change when only the bound separation (a) parameter is changed. Using Eqs. (3), (4), and (11)-(13), and 

also assuming that the target orientation is linear in the v parameter, we obtain: 235 

                                                          𝐸[𝑇𝐷] =
(

a

2
)

2
−𝑏2

𝜎2 = 𝑂(𝑎2)                                                             (14) 

                                        TAE ≈ Biascrit_shift ⋅
1

𝑑′ ≈
2𝑏

𝑎
⋅

1
𝑣𝑎

𝜎2

=
2𝑏𝜎2

𝑣𝑎2 = 𝑂 (
1

𝑎2)                                        (15) 

                                                            JND ≈
1

𝑑′ ≈
𝜎2

𝑣⋅𝑎
= 𝑂 (

1

𝑎
)                                                              (16) 

Based on Eqs. (14)-(16), changing the bound separation (a) leads to approximately the following 

scaling: 240 

                                                             TAE ≈ JND2 ≈
1

𝐸[𝑇𝐷]
,                                                                 (17) 

where 𝐸[𝑇𝐷] is the mean decision time. 
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In terms of the SPRT (Sequential Probability Ratio Test, Moran, 2015; Summerfield & De Lange, 2014; 

Wald, 1945), which is a standard Bayesian interpretation of the DDM, an increased bound separation 

corresponds to requiring lower type I and type II error rates, but starting from the same prior value. 245 

Hence, it seems reasonable to assume that the starting point remains the same when the bounds are 

changed. 

Final remarks. As shown above, both models can predict the same dependence on decision time (Eqs. 

(10) and (17)). It is worthwhile to mention two important ways in which these models are over-

simplified. First, both models assume zero noise at 𝑡 = 0, which is clearly impossible in a biological 250 

system. Second, both models assume that the evidence is fixed in time; however, in many experiments 

(and here), the evidence is temporary (see the Discussion). Importantly, although modeling these 

constraints leads to a more complicated analysis, the TAE value is still expected to be reduced with 

decision time. 

In addition, it seems interesting to extend the above analysis to take into account the possibility of 255 

individual differences in the rate of evidence accumulation (the drift rate, v). For the unbounded model, 

based on Eq. (9), we obtain JND ≈
1

2𝑣√𝑡
; therefore JND = 𝑂 (

1

𝑣⋅√𝑡
). In addition, from Eq. (8), we obtain 

TAE ≈
2𝑧

2𝑣𝑡
; therefore TAE = 𝑂 (

1

𝑣𝑡
). Combined, changing both the decision time and the drift rate leads 

to approximately the following scaling: 

                                                                  TAE ≈
1

1

JND⋅√𝑡
𝑡

=
JND

√𝑡
                                                               (18) 260 

Consistent with Eq. (10). The same scaling is found in the DDM, when both the bound separation (a) 

and the drift rate are changed between observers. Finally, note that in all of the above analyses, we 

assumed that TAE only results from a change in the starting point of the process (bounded or 

unbounded). However, based on (Dekel & Sagi, 2019b), it is possible that the context leads to a change 

in both the starting point and the drift rate. In this sense, Eqs. (10) and (17) model the time-dependent 265 

component, with the total TAE having an additional time-independent, possibly additive, component. 
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Fig. 2 – Robustness of Eqs. (11)-(13). Shown are true analytical DDM predictions, obtained using a 

computer analysis software (fast-dm, Voss & Voss, 2007), as a function of the 270 

derivations/approximations described in (A) Eq. (11), (B) Eq. (12), and (C) Eq. (13). In the figure, each 

plotted line was obtained by modifying the bound separation parameter (a). The different lines 

correspond to different values of the v (drift rate) and the b (the offset of the starting point from the mid-

point) parameters, for the parameter range described in the title. Parameter values were further 

restricted to the behaviorally relevant ranges: 1 ≤ a ≤ 3, |v| ≤ 5. Panel (A) is for v = 0 because the 275 

relevant behavioral measure of decision time is RT for the vertical target orientation (RTvert). Overall, it 

can be seen that Eqs. (11)-(13) are practically linear with true DDM predictions.  
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Analysis 

Fitting the perceived orientation. The magnitude of TAE and TI was calculated based on the reported 

orientation (clockwise vs. counterclockwise) of the near-vertical targets (the Gabor patch for TAE, and 280 

the central sine-wave circle for TI). The perceived vertical orientation (PV) is the interpolated 

orientation having an equal probability for clockwise and counter-clockwise reports (50%) of the target. 

The PV was found separately for each context orientation (-20° and +20°). This was achieved by 

interpolation from a fit to a cumulative normal distribution (with lapse rates) of the psychometric 

function (the percent clockwise reports as a function of target orientation). Psignifit 3.0 software (Fründ, 285 

Haenel, & Wichmann, 2011) was used for fitting. Then, the TAE or TI magnitude was calculated as half 

the shift in PV between the two opposing adaptor or surround orientations (-20° vs. +20°), and, if 

relevant, averaged over the left and right target positions. We noted that an alternative measure of bias, 

Biascrit_shift, described above (Eq. (1)), can be defined from signal detection theory (Green & Swets, 

1966). We found this alternative measure to be more convenient for RT-based modeling (Dekel & Sagi, 290 

2019b); however, we preferred using the shift in the psychometric function because (i) Biascrit_shift is 

less convenient in practical use because of its saturation with a large bias, and, at least here, loss of most 

of the collected data (i.e., using a single target orientation to calculate bias discards the data of the other 

target orientations); (ii) the shift in the psychometric function is expected to be more robustly correlated 

with RT, because, based on the modeling above, Biascrit_shift is inversely proportional to the square-root 295 

of the time, whereas the shift in the psychometric function is inversely linear with time; (iii) last but not 

least, we preferred using a standard measure of TAE over a less standard one. Nevertheless, we verified 

that the main finding reported here, of a lower TAE in the slower observers, is found when measuring 

TAE using Biascrit_shift (Eq. (1)) (data not shown). 

To calculate JNDs (just noticeable differences), we used a multiple of the interpolated inverse slope of 300 

the psychometric function at the PV orientation. Specifically, we used the width of the interval over 

which the fitted cumulative Gaussian function rises from 0.25 to 0.75 (corresponding to 75% accuracy, 

or, put differently, to 1.35σ where σ is the fitted standard deviation). This interval was corrected so that 

the upper and lower lapse rates (as measured by the fit) do not affect the JND. The JNDs were calculated 

separately and then averaged over the -20° and +20° contexts, and, if relevant, over the left and right 305 

target positions. 
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Reaction times (RTs). As a measure of RT for an observer, we used either the mean RT for all trials 

having all target orientations, or the mean RT only for trials having a vertical target orientation (RTvert). 

The first seems like a reasonable theory-agnostic measure, and the second is motivated by theory (see 

below and Dekel & Sagi, 2019). Importantly, the context leads to a shift in the psychometric function, 310 

which affects RTs (slowest RT at the perceived, i.e., the most difficult, target orientation, Ratcliff, 

2014). Therefore, it is important to verify that using RTvert does not introduce confounds for correlations 

with TAEs. Here, we verified this in two ways: first, by replicating the main findings using the 

interpolated RT at the PV orientation, which showed results almost identical to those reported. Second, 

conceptually, by measuring the size of the expected difference between RTvert and the RT at the PV, 315 

which showed values around ~65 ms, and at most 220 ms, which is clearly negligible compared with the 

range of individual differences in RTvert (see the Results). Where relevant, RTs were averaged over the 

left and right target positions.  

Statistics. To obtain a measure for the statistical significance of individual differences in a factor, we 

considered repeated measurements over different days, fitting a linear mixed-effects model with one 320 

overall intercept term and also one term per observer, and reported the significance of an F-test of the 

null hypothesis that the coefficients of all observer terms are 0 (so only the overall intercept term 

remains). This analysis is only applicable for the periphery experiment, requiring multiple daily 

measurements. To obtain a measure for the co-variation of two factors, we used the Pearson correlation 

coefficient (R, or occasionally its square-root, R2, which measures shared variation). The statistical 325 

significance was assessed using the standard approach of applying a two-tailed t-test after transforming 

the data using Fisher's z-transformation. An alternative approach of using a linear mixed-effects model 

shows the same results (with better significance), but it is only applicable for periphery data with 

multiple daily measurements. All statistical analyses were performed using MATLAB® R2019b 

software. Equation (19) was fit with the “fitnlm” function, which finds the least-squares fit. 330 
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Results 

Using briefly presented Gabor patches (50 ms), we measured the shift in the estimated vertical 

orientation of a near-vertical Gabor (“target”), caused by previous exposure to a Gabor patch tilted -20° 

or +20° to vertical (“adaptor”, 600 ms ISI) (Fig. 1B). This experiment was performed using Gabor 335 

patches presented at the near-periphery (±1.8° eccentricity), permitting analysis based on the relative 

retinal positions of the adaptor and the target: the same position (“Retinotopic”) or contra-lateral 

positions (“Non-retinotopic”). The results for both retinotopic and non-retinotopic measurements 

showed a shift in the perceived orientation in the direction that is away from the adaptor orientation, a 

phenomenon known as the tilt aftereffect (TAE). 340 

Co-variation of RT and peripheral TAE 

Importantly, TAE measured large individual variability (see the y-axis of Fig. 3), showing, in the 

retinotopic condition, magnitudes ranging from 0° to 2° (Mean ± SD of 1.04° ± 0.63°), and a very low 

measurement error (within-individual SEM over daily repetitions of ~0.2°). Statistically, the presence of 

an individual component in TAE was extremely significant (p = 1.9×10-12, F(13,57) = 12.72, using a linear 345 

mixed-effects model, see the Methods). The non-retinotopic condition showed the same, albeit at weaker 

TAE magnitudes (Mean ± SD of 0.33° ± 0.36°, the individual component at p = 1.6×10-5, F(13,57) = 4.77). 

 

 

Fig. 3 – Co-variation of TAE and RT. TAE is shown as a function of the mean reaction time (RT), for 350 

different observers, in the (A) retinotopic and (B) non-retinotopic measurements. Error bars are SEM 

across daily repetitions. The results showed large individual differences in TAE that are largely 

accounted for by individual differences in RT. 
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Reaction time (RT), averaged across the easy and difficult target orientations, measured values ranging 

from about 500 to 1000 ms (see the x-axis of Fig. 3). Remarkably, the variability in TAE and RT was 355 

strongly and negatively correlated (Fig. 3), with the fast observers having much more TAE than the slow 

observers. Specifically, for the retinotopic measurement, we found TAEs of ~1.7° for observers with 

mean RTs of ~500 ms, and close to zero TAE for observers with RTs approaching 1000 ms (Fig. 3A) 

(R2 = 0.62, p = 0.0008, t(12) = -4.47, two-tailed t-test following Fisher's z-transformation, see the 

Methods). The non-retinotopic measurement revealed the same trend, albeit for weaker TAEs (Fig. 3B) 360 

(R2 = 0.44, p = 0.01, t(12) = -3.05). Overall, variability in peripheral TAEs seems to be largely explained 

by RTs. 

 

Individual variability and decision times 

To explain the co-variation of RT and TAE, we relied on the idea that decisions are made by an 365 

evidence-accumulation process with biased initial conditions, which leads to reduced TAE with decision 

time (see the Introduction) (Dekel & Sagi, 2019b). This is a general argument, and depending on 

modeling details, it can predict different rates of reduction in bias. Here, we considered the case where 

the rate of reduction in bias is inversely proportional to the decision time (i.e., RT minus non-decision 

time), as in Eqs. (10) and (17): 370 

                                                                     TAE =
bias0

RTvert−𝑡0
,                                                                 (19) 

where bias0 is the initial bias at decision time zero, RTvert is the RT for a vertical target, and t0 is the non-

decision time (which reflects non-decision time components, such as the time it takes to press a response 

key, Ratcliff & McKoon, 2008). This equation reflects somewhat general assumptions that are broader 

than those of a single model. For example, Eq. (19) is predicted from an unbounded decision process 375 

(see Eq. (10)), and also from a bounded decision process with variability in the size of the separation 

between the bounds (see Eq. (17)). In addition, note that Eq. (19) might multiplicatively depend on the 

orientation sensitivity (if it is not fixed in the sampled population; see below, in the Discussion, and see 

Eq. (18)). 
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The measured RTvert (the RT for the vertical target) exhibited a dramatic individual variation, with 380 

values ranging from 500 to almost 2000 ms (see the x-axis of Fig. 4). This range seems especially large 

when taking into account the non-decision time, t0, which, based on the RT distributions, we estimated 

to be about 350 ± 50 ms (Mean ± SD across observers, data not shown). Remarkably, RTvert was 

strongly correlated with both retinotopic TAE (R2 = 0.74, p = 8×10-5, t(12) = -5.85) and non-retinotopic 

TAE (R2 = 0.52, p = 0.004, t(12) = -3.61). The correlations were stronger than those found with RT 385 

averaged over all target orientations, supporting the use of RTvert to predict TAE. (Generally, the use of 

RTvert was motivated by the idea that the relevant RT for bias is around the physical or the perceived 

vertical target orientation. We noted that the shifts in perceived orientation due to context led to a 

change in RTvert, but a small one, of ~65 ms, which is negligible compared with the range of the 

observed individual differences in RTvert, see the Methods.) 390 

We next tried to account for individual differences using Eq. (19) (Fig. 4). We assumed that the initial 

bias (bias0) and the non-decision time (t0) are fixed in the population, and set t0 = 350 ms based on the 

RT distributions. Fitting bias0 to behavior showed that 50% of the variability in retinotopic and non-

retinotopic TAEs can be explained by RT (R2 = 0.50, Fig. 4). Note that the predicted reduction by the 

fitted model is quite dramatic: from about 2° when RT = 500 ms, to about 0.5° when RT = 2000 ms in 395 

the retinotopic TAE (the dashed blue line in Fig. 4A). Fitting both bias0 and t0 to behavior showed 

similar results (retinotopic: t0 = 145 ms, R2 = 0.63; non-ret.: t0 = 368 ms, R2 = 0.5). 

 

Fig. 4 – An RT account of the TAE. Shown is TAE as a function of the average RT for the vertical 

target orientation for different observers, in the (A) retinotopic and (B) non-retinotopic measurement. 400 

Blue dashed lines denote fits to Eq. (19) when setting t0 = 350 ms. Error bars are SEM across daily 

repetitions. Note that unlike Fig. 3, here the x-axis is the RT of the vertically oriented targets. 
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Co-variation of RT and bias: the effects of experience. 

First, we restricted the analysis of peripheral TAE to the first experimental session, to minimize 

potential interaction with perceptual learning (Sagi, 2011). The results showed that the correlation 405 

between TAE and RTvert is maintained, and that it is even stronger than when measurements are 

averaged across days (Fig. 5AC) (retinotopic: R2 = 0.68, p = 0.0005, t(11) = -4.87, non-ret.: R2 = 0.5, p = 

0.007 t(11) = -3.33; one observer was not included in the analysis because of prior participation in a 

similar experiment). Similarly, fitting to Eq. (19) showed possibly better fits (with t0 = 350 ms, 

retinotopic: R2 = 0.69, non-ret.: R2 = 0.45; when also fitting t0, retinotopic: t0 = 209 ms, R2 = 0.75, non-410 

ret.: t0 = 306 ms, R2 = 0.45). This finding suggests that perceptual learning does not mediate the 

correlation of RTvert and TAE. The improved correlations compared to when measurements are averaged 

across days may reflect the larger variation in RTs (SD of 550 ms), or possibly that aggregating 

measurements across days having different RTs dilutes the observable effect of RT. 

In the last session per observer (Fig. 5BD; day 5 ± 2, Mean ± SD), individual variation in RTs was 415 

significantly reduced compared with that on the first day (Mean ± SD of 770 ± 220 ms), a typical effect 

of practice (Harris & Sagi, 2018; Sagi, 2011); however, the correlation with TAE was still significant for 

the retinotopic TAE case (retinotopic: R2 = 0.6, p = 0.001, t(12) = -4.24; non-ret.: R2 = 0.03, p = 0.5, t(12) = 

-0.66; exclusion of the same observer as above leads to the same results; fitting to Eq. (19) showed, with 

t0 = 350 ms, retinotopic: R2 = 0.32, non-ret.: R2 = -0.03; when also fitting t0, retinotopic: t0 = 175 ms, R2 420 

= 0.44; non-ret.: t0 = 377 ms, R2 = 0.02). 

 

 

Fig. 5 – Co-variation of RT and TAE: 

the effects of experience with the task. 

Same as Fig. 4, for the (A and C) first and 

(B and D) last experimental sessions, of 

the (A and B) retinotopic and (C and D) 

non-retinotopic periphery experiment. 
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Co-variation of RT and bias at fixation (TAE and TI) 

First, we considered a TAE experiment, similar to the one above, in which all Gabor patches were 425 

presented at fixation (and hence retinotopic). The results showed a similar negative correlation between 

RTvert and TAE; however, it was weaker than observed in the periphery (Fig. 6A) (R2 = 0.39, p = 0.03, 

t(10) = -2.51; fitting to Eq. (19) with t0 = 350 ms: R2 = 0.16; when also fitting t0: t0 = 122 ms, R2 = 0.38). 

We also considered two tilt illusion experiments (TI, Fig. 1A, the spatial analogue of the TAE). The 

results showed a negative correlation between RTvert and TI, though again the correlation was somewhat 430 

weak (Fig. 6BC) ("no jitter" experiment: R2 = 0.49, p = 0.03, t(8) = -2.79; fitting to Eq. (19) with t0 = 

250: R2 = 0.33; when also fitting t0: t0 = 0 ms, R2 = 0.45; "onset jitter" experiment: R2 = 0.47, p = 0.03, 

t(8) = -2.66; fitting to Eq. (19) with t0 = 250: R2 = 0.15; when also fitting t0: t0 = 0 ms, R2 = 0.43). 

Overall, these findings replicate the observation for peripheral TAE, albeit at a smaller effect size. The 

weaker effect can be possibly explained by (i) reduced variation in RTs when tested at fixation (compare 435 

the x-axis in Fig. 4 to Fig. 6), (ii) less data per observer (3-8 daily sessions for TAE in the periphery, a 

single daily session for TAE in fixation and TI), or, most interestingly, (iii) the existence of a large RT-

independent component in TAE and TI in these experiments (see within-individual analysis in Dekel & 

Sagi, 2019). 

 440 

 

Fig. 6 – Co-variation of RT and bias in fixation (TAE and TI). The same as Fig. 4, for (A) the fixation 

TAE experiment, (B) the TI experiment with a 200 ms presentation duration and no onset jigger, and (C) 

the TI experiment with a 200 ms presentation duration and onset jigger. For the TI experiments, a fixed 

value of t0 = 250 ms was used in the fits. All experiments show a weak but significant correlation 445 

between bias magnitude and RT (p < 0.05). 
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Just noticeable differences (JNDs)  

Using the orientation discrimination task, it is possible to obtain a measure for orientation JND (just 

noticeable difference, calculated as a multiple of the interpolated inverse slope of the psychometric 450 

function; see the Methods). Considering JNDs is interesting given previous works suggesting that 

variability in TI can be explained by variability in JNDs (Song et al., 2013). Here, the results showed a 

relatively minor variation in JNDs between observers (SD/Mean of ~25%; Mean ± SD of JNDs across 

observers showing TAE retinotopic: 1.85° ± 0.58°, TAE non-retinotopic: 1.70° ± 0.42°, TAE fixation: 

1.88° ± 0.47°, TI: 2.45° ± 0.47°; we noted that the small individual component was statistically 455 

significant in the TAE retinotopic condition with p = 1.2×10-8, F(13,57) = 7.85). Given the small 

individual variability in JNDs, it is perhaps not surprising that we did not find any correlation between 

TAE or TI and JND (all R2 ≤ 0.1). Similarly, correlations between JND and RTvert were not significant 

(TAE fixation: R2 = 0.31, p = 0.06, t(10) = 2.10; TI "no jitter": R2 = 0.23, p = 0.16, t(8) = 1.53; all other 

conditions: R2 ≤ 0.05; correlations with 1/JND show the same). The lack of variation in JNDs may be 460 

attributed to the sampled population (see the Discussion). 

Are fast decisions caused by biased initial conditions? 

As evident from changing b in Eq. (11), biased starting points inherently lead to faster decision times in 

the bounded decision model (DDM), even when the bound separation (a) is fixed. However, this 

property is unlikely to account for the correlation of bias and RTs observed here for the following 465 

reasons. (i) Fitting the retinotopic data to the DDM showed much better fits when b is fixed in the 

population, compared with when a is fixed in the population (log-likelihood of about -300 vs. -820; fits 

obtained using an exhaustive search over the a and b alternatives, and, for each alternative, finding the 

optimal drift rate and non-decision time using the fast-dm software, Voss & Voss, 2007). The same was 

found when using an unconstrained fit and correlating fitted a and b values with behavioral RTvert 470 

(averaged within observer; correlation with a2: R2 = 0.88, p = 7×10-7, t(12) = 9.39; correlation with b2: R2 

= 0.01, p = 0.72, t(12) = 0.36; again using fast-dm, but with a Kolmogorov-Smirnov setting and minimal 

outlier pruning). (ii) The retinotopic and non-retinotopic conditions exhibited different TAE magnitudes, 

but almost identical RTs (R2 = 0.99), suggesting a negligible influence of bias on RT. (Indeed, this 

strong independence can be taken as evidence in favor of an unbounded over a bounded decision 475 

process, consistent with Dekel & Sagi, 2019.) (iii) Conceptually, as seen in Eq. (11), the b2 term is 

subtracted from a large constant, so the range of possible RTs from changing b is more limited than 

from changing a. 
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Another noteworthy possibility for having different RTs in different individuals is that some observers 

have slower decision making, i.e., the scaling constant is changed between individuals (see σ in Eq. 480 

(15)). However, this alternative predicts that criterion shift bias (Eq. (1)) is invariant of time (see Eq. 

(12)), unlike behavior (e.g., the correlation of RTvert and retinotopic criterion shift bias showing R2 = 

0.62, p = 7.8×10-4, t(12) = -4.46). 

Co-variation of retinotopic and non-retinotopic TAEs 

In the experiments, the retinotopic and non-retinotopic trials differed only in their relative target 485 

position, leading to almost identical RTs in the two trial types (R2 = 0.99 in the population). Therefore, 

in the RT account of TAE described above, almost identical RTs were used in the retinotopic and the 

non-retinotopic cases (as evident in Fig. 3). Transitivity thus suggests a correlation between retinotopic 

and non-retinotopic TAEs, which was indeed found (Fig. 7) (R2 = 0.61, p = 0.001, t(12) = 4.35). A 

similar, though non-significant correlation was found between the TI and the fixation TAE effect 490 

magnitudes (five shared observers, R2 = 0.45, p = 0.21, t(3) = 1.58). This correlation is consistent with the 

idea of a common factor for similar visual phenomena (Grzeczkowski et al., 2017). Here, the common 

factor seems to be explained by RT, though a general account may also require other factors (such as 

JND, see the Discussion). 

The strong correlation of non-retinotopic TAE with RT (Fig. 3) and with retinotopic TAE (Fig. 7) 495 

described above suggests that the non-retinotopic effect is not negligible, despite having a very small 

average magnitude (M = 0.33°, p = 0.005, t(13) = 3.42, two-tailed t-test; this measurement is 

approximately consistent with previous reports, Knapen et al., 2010).  

 

Fig. 7 – Co-variation of retinotopic 

and non-retinotopic TAEs. Non-

retinotopic TAE is shown as a 

function of retinotopic TAE, for 

different observers, averaged across 

daily repetitions. Error bars are SEM 

across repetitions. 
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Discussion 500 

TAE and RT. The results showed a large variability between individuals regarding their measured TAE 

magnitudes and high test-retest reliability. This variability is consistent with findings in earlier works for 

other context-dependent biases (Grzeczkowski et al., 2017; Song et al., 2013). The results also showed a 

large variation in RT between individuals, where RT ranged from ~500 ms to ~1800 ms when the target 

was vertical (Fig. 4). Importantly, the variability in TAE was strongly and negatively correlated with 505 

variability in RT (see Figs. 3-6). For example, in retinotopic TAE, the fastest observers had magnitudes 

of ~2°, whereas the slowest observers had almost no TAE. In the TI, we found a similar albeit weaker 

correlation with RT. 

Based on modeling using evidence accumulation decision models, we concluded that the correlations 

suggest the involvement of decision confidence: to achieve a higher confidence level, decisions are 510 

slower, which we argue leads to reduced bias. Thus, we explain the individual differences by observers 

differing in their confidence level. Specifically, the RT-dependence of the TAE, evident between and 

within observers (Dekel & Sagi, 2019b), can be explained by the notion that TAE reflects a change in 

the initial conditions (priors) of a decision process. With decision time, the influence of the initial 

conditions is expected to be gradually reduced, leading to less bias in slower decisions. Note that even 515 

when no evidence exists (e.g., a vertical target orientation), we still expect the influence of the prior to 

be reduced with decision time (see the Methods, Dekel & Sagi, 2019). Note that here the time difference 

between the adaptation and test is always fixed; therefore, a slower RT does not correspond to increased 

adaptation decay (Greenlee & Magnussen, 1987; Magnussen & Johnsen, 1986). An alternative account, 

that highly biased observers are faster because their decision process started closer to a bound, was 520 

much worse in explaining the current data. (For the same reason, the possibility of individual differences 

in the rate of adaptation decay is not by itself sufficient to explain the current data.) 

Overall, we found that individuals with a different bias can be explained by having different RTs but the 

same internal prior (see fits to Eq. (19) in Figs. 4-6; see the Methods; note the fixed b in modeling). This 

observation is important, both conceptually and technically, for understanding individual differences in 525 

vision, for example, when attempting to map the strength of measured aftereffects to internal visual 

priors (Grzeczkowski et al., 2017; Pellicano & Burr, 2012; Tibber et al., 2013; Yang et al., 2013). 

Behaviorally, we propose that RT-dependent bias is consistent with mechanisms that calibrate visual 
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perception, for example, a prior for the reference frame of an object, which is gradually updated based 

on object details. (With spatial context, as in the tilt illusion, “prior” is reasonable in terms of coarse-to-530 

fine processing.) Such calibration effects probably depend on probabilistic inference using the stimuli 

and are largely independent of neuronal constraints. For example, a change in gain or sensitivity due to 

contrast adaptation is probably time independent. 

We noted that behavioral biases such as TAE and TI may reflect a sum over different underlying 

mechanisms (Bao & Engel, 2012; Dekel & Sagi, 2019a). Possibly not all bias mechanisms are RT 535 

dependent. An RT-independent bias component can be modeled using evidence accumulation theories 

as a context-dependent change in the drift rate (Dekel & Sagi, 2019b; Summerfield & De Lange, 2014). 

As such, the analysis described here needs to be adjusted in order to apply to possible experimental 

conditions where an RT-independent component dominates the measured bias.  

TAE and JND. There seems to be strong evidence that context-dependent biases are positively 540 

correlated with (measured) orientation JND, both within-observer (Solomon & Morgan, 2006; Wei & 

Stocker, 2017), and between observers (TI: Song et al., 2013, color and face aftereffects: Mattar, Carter, 

Zebrowitz, Thompson-Schill, & Aguirre, 2018). The JND-dependence of bias seems consistent with a 

type of bias that depends on the constraints of the system, such as the bandwidth of orientation-selective 

units or the size of V1 (Song et al., 2013). This idea is not incompatible with the mechanism proposed 545 

above, because measured TAEs may correspond to a sum of effects from multiple mechanisms having 

different objectives and properties (see Bao & Engel, 2012). Interestingly, we find that JND-dependent 

bias is predicted in decision models from individual differences in the duration (Eqs. (10) and (17)) and 

the rate (Eq. (18)) of evidence accumulation. 

Here, the results showed no correlation between TAE or TI and JND. The lack of a strong correlation 550 

can be explained by the small variation in JNDs in the sampled population (SD/Mean of ~25%, much 

less than in Song et al., 2013). The lack of variation in JNDs may be attributed to measuring JNDs for 

perceived orientation (no physical reference), to rapid saturation of perceptual learning within the first 

session, or to the sampled population, which consisted of observers from the same age group (18-40) 

with comparable visual acuity (6/6). (We wish to emphasize that from a reductionist perspective, we 555 

found it important to understand individual differences while controlling for visual acuity and age.) 
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Generally we expect a full account of individual variation in context-dependent bias to depend on both 

RT and JND. 

Based on both bounded and unbounded models (see Eqs. (10) and (17)), sensitivity is expected to 

increase in proportion to the square-root of the decision time. However, such a dependence was not 560 

found in the behavioral data. This may be explained by the smaller size of the expected effect (the 

square-root of the size of the effect of RT vs. TAE). Another possibility is of a discrepancy between the 

assumption using both models that the evidence is fixed in time, and the experiments, where the 

evidence was temporary (a target presentation duration of 50 ms with possibly a few hundred more 

milliseconds of persistence). This observation warrants caution when using simple models to interpret 565 

behavior. Still, for the purpose of this work, the analysis of RT and bias seems robust for a dynamic 

reduction in the evidence, because the found dependence of bias on RT persists in the case where there 

is no evidence (i.e., v = 0; see the Methods). 

Note that if bias magnitude is only explained by the intrinsic orientation sensitivity of the system (i.e., 

having large bias when accuracy is low, Song et al., 2013), and the less sensitive observers compensate 570 

by responding more slowly (thus, measured JND is fixed, and measured RT is variable), then we expect 

a positive correlation between bias and RT, the opposite of what was observed here. Therefore, even 

assuming a speed-accuracy tradeoff, our results cannot be explained by the existing work (Song et al., 

2013). (Possibly, antagonistic correlations of JND and TAE, both positive and negative, led to the net 

zero correlation found here.) 575 

Spatially non-selective TAE. Previous work suggested that the average TAE is very weak in non-

retinotopic settings (i.e., when the adaptor and the target are presented at different retinal positions) 

(Knapen et al., 2010). We replicated this finding, but importantly, we found that the non-retinotopic 

TAE was strongly correlated with both RT (Fig. 3) and retinotopic TAE (Fig. 7). These findings suggest 

that the effect is more important than previously thought. 580 
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