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Abstract

Two-dimensional (2D) chemical fingerprints are widely used as numerical features for the
quantification of structural similarity of chemical compounds, which is an important step
in similarity-based virtual screening (VS). Here, using an eigenvalue-based entropy ap-
proach, we sought to identify 2D fingerprints with little to no contribution to shaping
the eigenvalue distribution of the feature matrix as related fingerprints and examined
the degree to which these related 2D fingerprints influence molecular similarity scores via
Tanimoto coefficient. We found that there are many related fingerprints in publicly avail-
able fingerprint schemes and that their presence in the feature set tends to decrease the
similarity scores. Our results have implication in the optimal selection of 2D fingerprints
and the identification of potential hits for compounds with target biological activity in
VS.

1 Introduction

Virtual screening (VS) is a computational approach that is widely used as a cost-effective
alternative to the traditional high-throughput screening for the selection of initial hits in a
search for drugs with a given biological activity [9,13]. The foundation of similarity-based
VS is structure-activity relationship (SAR), a concept in which molecules with similar
structures are destined to have similar biological activities. In such VS applications, thus,
the quantification of structural similarity of molecules is a crucial step. To quantify the
structural similarity of a pair of molecules, the Tanimoto similarity measure is commonly
applied to fingerprint features based on their two-dimensional (2D) structures. These
2D fingerprints represent each molecule as a binary (0 or 1) vector characterizing the
absence or the presence of specific properties of its 2D structure. Although this feature
representation is simple, it has been reported to be more effective than those using more
complex features such as 3D structural patterns [12,15].

There are libraries of predefined 2D chemical fingerprint dictionaries available to repre-
sent molecules as binary vectors [3]. Among the most commonly used fingerprint schemes
for similarity quantification is molecular access system (MACCS) [4], which was reported
to cover many useful 2D features for virtual screening [10]. While these predefined fin-
gerprint dictionaries are easy to use, previous studies demonstrated that the selection of
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relevant 2D fingerprints from the original set resulted in better performance [2,6,7]. These
feature selection methods typically focus on supervised machine learning settings in which
to select a subset of relevant 2D fingerprints that intend to enhance the generality to dis-
criminate chemical compounds with a given biological activity against those without. For
example, Nisius, et al. ranked 2D fingerprints by applying the Kullback-Leibler diver-
gence to each fingerprint to quantify its asymmetric usage between the active compound
class and the inactive one [11]. Given the nature of drug discovery, however, these super-
vised feature selection approaches inevitably face a challenging class imbalance problem
in practice as available compounds with the target biological activity is most likely very
scarce. That is, had the number of target bioactive compounds been large enough to
begin with, a pipeline to discover more of the same would not have probably warranted a
large cost of investment.

Here, we focus on a different issue in the combination of 2D fingerprints and ana-
lyze the effects of related fingerprints on the quantification of molecular similarity using
eigenvalue-based entropy. The eigenvalue-based entropy was introduced by Alter et al. [1]
to indicate the weight distribution of gene expression eigenvectors for analysis of tempo-
ral gene expression patterns. Varshavsky, et al. [14] developed an unsupervised feature
selection method which ranks each feature by measuring its contribution to the eigenvalue-
based entropy. We define the relatedness of each 2D fingerprint based on the degree to
which the shape of the eigenvalue distribution of the feature matrix is changed. And,
by using the eigenvalue-based entropy as the scaler value to indicate the distribution of
eigenvalues, we determined related 2D fingerprints. Thus, we define a related 2D finger-
print as a feature which has a (quasi) linear relationship with some other fingerprints
in the feature set regardless of its relevance and importance for the discriminability. In
this paper, we applied MACCS and Pubchem fingerprint schemes to a human metabolite
dataset and identified up to 63% of the total fingerprints as related ones. We found that
the presence of related 2D fingerprints has a tendency to lower similarity scores. Our anal-
ysis demonstrated that these effects can result in a decrease in the number of potential
hits and qualitatively change the outcome of VS.

2 Methods

2.1 Datasets

From Human Metabolome Database (HMDB) [17], we retrieved 2D structure data for
25,376 metabolites on September 5, 2019. With a filtering for the metabolites found in
blood with the metabolite status being “Detected and Quantified,” we further obtained
the information about 3202 metabolites for the blood specimen.
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2.2 Molecular similarity measure

We used the implementation of CDK (version 2.3) [16] to compute 166-bit MACCS and
881-bit Pubchem fingerprint vectors. To measure the similarity of a pair of compounds,
a and b, we computed Tanimoto coefficient of their l-bit fingerprint vectors, va and vb as
follows:

sim(a, b) =

∑l
i=1 va(i)vb(i)∑l

i=1 va(i) + vb(i)− va(i)vb(i)
, (1)

where v(i) represents the i-th element of vector v.

2.3 Eigenvalue-based entropy

Let A be an m by n matrix. Then, an n by n symmetric matrix ATA is positive semidef-
inite and has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. By defining qj to be the j-th
normalized eigenvalue qj = λj/

∑n
k=1 λk, we computed a single value which indicates the

complexity of the distribution of eigenvalues with the normalized entropy of eigenvalues [1]
as follows:

H = − 1

log (n)

n∑
j=1

qj log (qj). (2)

This entropy ranges from 0 to 1, with 0 indicating that the dataset can be constructed
based on a single eigenvector and 1 indicating that each eigenvector has an equal contri-
bution to the dataset. Eigenvalues were computed using the svd function in R to compute
eigenvalues.

2.4 Eigenvalue-based fingerprint contribution measure

Suppose we have m compounds, each of which is expressed with n-bit 2D fingerprints.
That is, we have an m by n matrix A whose element ai,j represents the value of the j-th
fingerprint for the i-th compound. Let A[−i] be an m by n matrix that has all but the
i-th column of A with the i-th column replaced by a zero column. We computed the
contribution of the i-th (1 ≤ i ≤ n) fingerprint, hi as hi = H(A[−i]) where H(M) is
the eigenvalue-based entropy of matrix M given by Equation 2. Note that, because we
can first compute n-by-n matrix from ATA, the computation of each fingerprint entropy
depends on the number of the fingerprints and not on the number of compounds, which
is presumed to be very large.
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3 Results

3.1 Presence of highly correlated fingerprints

MACCS keys are 166-bit 2D structure fingerprints that are commonly used for the mea-
sure of molecular similarity. Because each bit is either on (i.e., 1) or off (i.e., 0), MACCS
166 keys can represent more than 9.3 × 1049 distinct fingerprint vectors. We generated
24,921 MACCS fingerprint vectors using the metabolite data we obtained from HMDB [17]
(see Methods). After filtering out duplicates, we ended up with 3,125 unique fingerprint
vectors. On average, thus, 8 metabolites were represented by the same MACCS finger-
print vector, indicating a high degree of collisions. The high level of collided metabolites
suggests the possibility that many MACCS keys describe related 2D substructure char-
acteristics.

To analyze the use of each MACCS key, we first counted the occurrence of on bit for
each key in the 3,125 unique fingerprint vectors (Fig. 1A). We found that 39% of the 166
MACCS keys are on (i.e., 1) for fewer than 10% of the fingerprint vectors, while only 1
key is on for more than 90% of the vectors. This skewed use of molecular fingerprints
(γ1 = 0.777) indicates that many fingerprint bits are set to be off (i.e., 0) in most of the
vectors, resulting in highly similar usage patterns. However, since Tanimoto coefficient,
the most commonly used 2D fingerprint-based similarity measure, does not consider the
off bits (see Methods), its similarity analysis of these HMDB metabolites may not be
influenced by the fingerprints with many off bits.

We next analyzed the association of MACCS keys whose on-bit counts are more moder-
ate and whose effects on similarity measure are assumed to be more profound. To this end,
we focused on a subset of the MACCS keys whose on-bit counts are in a range between 25%
and 75% of the total number of the unique vectors. We obtained 68 MACCS keys that sat-
isfied this constraint and computed their pairwise correlation coefficient values (Fig. 1B).
We found that a large fraction of the pairs (73%) had positive correlation (r ≥ 0). Out
of 2,278 fingerprint pairs, while none had strong negative correlation (r ≤ −0.5), 105
had strong positive correlation (r ≥ 0.5). Among these positively correlated pairs, the
127th and the 143rd fingerprints, both of which had 1,875 on-bit counts, had the perfect
positive correlation, suggesting that 2D structures characterized by these two fingerprints
are highly related. Although the correlation coefficient can capture only a limited type
of related fingerprints, these results suggest the prevalence of related fingerprints in the
predefined 2D fingerprint dictionaries.

3.2 Characterization of related fingerprints

We next sought to analyze the extent to which more general types of related fingerprints
were present in the MACCS and Pubchem fingerprint dictionaries. To this end, we gath-
ered 3202 metabolites found in the blood specimen from the HMDB metabolite dataset
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and filtered out compounds with duplicate 2D structures, duplicate fingerprint vectors,
and all-zero MACCS fingerprint vectors. In addition, we removed each compound whose
MACCS fingerprint vector has off bits for more than 90% of the fingerprints.

With this data preprocessing, we selected 1023 metabolites that have unique finger-
print vectors. The 1023 by 166 matrix formed with the MACCS fingerprints had the rank
of 144, where the column represents the fingerprints and the row represents the metabo-
lite (see Methods), indicating that the pattern of ∼15% of MACCS fingerprints can be
completely captured by the rest. The Pubchem fingerprints resulted in a 1023 by 881
fingerprint matrix which had the rank of 377, indicating even more pronounced effects of
rank deficiency with more than half of the fingerprints completely characterized by linear
combinations of 377 fingerprints.

To assess the degree of related fingerprints, we defined the relatedness using the
eigenvalue-based entropy (see Methods). This eigenvalue-based entropy measure indi-
cates the shape of the eigenvalue distribution [1], with its value ranging from 0 to 1 where
a higher value indicates that the matrix can be reconstructed with a linear combination
of a smaller number of eigenvectors. The distribution of the normalized eigenvalues for
the MACCS and Pubchem fingerprint matrices shows that the first component has a
high weight in both (Fig. 2A), indicating that their entropy values be lower. Indeed, the
entropy values of the original MACCS and Pubchem matrices were 0.474 and 0.355, re-
spectively. To measure the relatedness of the i-th fingerprint with the other fingerprints,
we computed the change in the entropy between the original fingerprint-feature matrix
and the feature matrix without the i-th fingerprint (see Methods). This can indicate the
contribution of the i-th fingerprint to shaping the eigenvalue distribution, which, in turn,
allows us to evaluate the degree to which the i-th fingerprint is linearly related to some
other fingerprints. Figure 2B shows the distribution of the fingerprint entropy values for
both the MACCS and Pubchem schemes. We found that there is a high peak at the en-
tropy value of the original fingerprint-feature matrix with many fingerprints having their
entropies in near the original one, indicating that these fingerprints do not contribute
much to the eigenvalue distribution and are highly related to some other fingerprints.

By measuring the relatedness based on the distance between the original entropy and
the entropy for each fingerprint, we selected related fingerprints from the original MACCS
and Pubchem fingerprint dictionaries. Let h0 and hi (1 ≤ i ≤ n) be the eigenvalue-based
entropy of the original feature matrix and for the i-th fingerprint, respectively. Then, we
selected the i-th fingerprint as a related feature if hi satisfies the following condition:

|hi − h0| < z

√∑n
j=1 (hj − h0)2

n
, (3)

where z is a reduced-level threshold parameter, which was set to 0.1, 0.2, and 0.3 in this
study. Based on this approach, we found that many fingerprints in the MACCS and
Pubchem dictionaries are related (Fig. 3). With the reduced level threshold being 0.1,
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0.2, and 0.3, we identified 28, 48, 62 related fingerprints in MACCS and 454, 525, and 555
in Pubchem, respectively. A larger fraction of the related fingerprints identified in the
Pubchem scheme with the low threshold value was expected given that the distribution of
its fingerprint entropies had a higher density of the fingerprints near the original entropy.

Effects of related fingerprints to decrease molecular similarity

Given the subsets of fingerprints that we obtained through the use of the fingerprint-based
entropy, we analyzed the effects of removing related fingerprints on the Tanimoto similar-
ity score. To this end, we first constructed 1023 by 1023 similarity matrix by computing
the similarity score for each metabolite pair and generated the normalized eigenvalues of
similarity matrices (Fig. 4A). The comparison of the first six components suggests that the
similarity matrices computed from fingerprint sets with various reduction levels in both
MACCS and Pubchem schemes are similar. Next, we measured the absolute difference of
522,753 distinct metabolite pairs between the original fingerprint set and reduced finger-
print sets. We found that the difference increases as the reduced level threshold increases
in both MACCS and Pubchem fingerprint dictionaries (Fig. 4B). While both fingerprint
schemes had quantitatively similar levels of absolute differences with the reduced level
at 0.01, the difference became wider as the threshold increases particularly in MACCS,
suggesting the effects of removing related fingerprints were greater in the MACCS scheme
even though a higher fraction of fingerprints were removed in the Pubchem scheme.

To further analyze the effects of related fingerprints on the Tanimoto similarity scores,
we grouped the metabolites in the blood specimen into four classes: drug; microbial;
plant; and endogenous, using metabolite information retrieved from HMDB. In each of
these four categories, we computed the average of the pairwise Tanimoto similarity scores.
The results show that the average similarity scores from the reduced fingerprint sets are
quantitatively close to those from the original fingerprint sets (Table 1). We also found
that similarity scores from the reduced fingerprint sets tend to be marginally higher than
those from the original fingerprint sets. In other words, the inclusion of related fingerprints
has negative effects and tends to slightly decrease the Tanimoto similarity score. This
trend is stronger in the Pubchem fingerprint scheme in which the fingerprint sets from all
of the three reduced levels resulted in higher similarity scores than the original one in all
of the four subclasses.

Removal of related fingerprints to increase similarity accuracy

Although our analysis showed the effects of related fingerprints on the Tanimoto similarity
measures, it is not clear if those effects can lead to qualitatively significant changes in
structural similarity-based molecule screening. To analyze potential effects of related
fingerprints in such SAR-based analysis, we used a dataset consisting of 100 drug-like
molecular pairs from DrugBank 3.0 [8], which 143 experts analyzed to provide their yes
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or no binary decisions about the structural similarity [5]. To serve this dataset as the
correct reference for similar compounds, we selected a subset of the 100 pairs whose
similarity was supported by at least 80% of the experts, resulting in 33 pairs of similar
compounds.

Using this dataset, we analyzed the performance of each fingerprint set by computing
three measures: the mean similarity value; the number of pairs with high similarity values
(i.e., sim ≥ 0.8); and the number of pairs with low similarity values (i.e., sim < 0.5). We
decided to only focus on these measures because in virtual screening molecular similarity
is used to filter out incompatible compounds and to generate initial hits with potentially
similar bioactive properties in order to capture them in follow-up screenings [13]. That
is, in the filtering for the initial hits, as long as true positives are included, the number
of false positives is not as important.

Table 2 shows the results of our analysis. We found that in both MACCS and Pub-
chem schemes, the reduced sets of fingerprints increased the average similarity scores of
the 33 pairs. The number of high similarity sores also increased by removing related fin-
gerprints; in the MACCS scheme, the original fingerprint set and the reduced fingerprint
set with threshold 0.03 resulted in 73% and 76% of the compound pairs with high similar-
ity scores, while in the Pubchem scheme, they resulted in 88% and 94% of the pairs with
high similarity scores. Furthermore, while the original fingerprint set and the reduced
fingerprint sets of the Pubchem scheme did not result in any compound pairs with low
similarity scores, in the MACCS scheme, the original fingerprint set had one pair with a
low similarity score, which had high enough scores in all of the reduced fingerprint sets.

Conclusions

Here, we studied the effects of related fingerprints on analysis of molecular similarity by
defining related fingerprints to be those that do not contribute to the shape of the eigen-
value distribution of the original fingerprint matrix. Using a dataset of human metabolites,
we found that commonly used 2D structure fingerprint schemes included many related
fingerprints, which led to qualitative differences in the molecular similarity analysis. Our
results emphasize the potential pitfall of having highly related fingerprints for SAR anal-
ysis and suggest that an increase in the number of structural fingerprints may not always
enhance the performance of molecular similarity analysis. Because our eigenvalue-based
entropy approach is an unsupervised method to select related 2D fingerprints, it can be
integrated seamlessly to exiting similarity-based VS pipelines which use 2D fingerprints
as feature vectors.
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Tables

Table 1. The average Tanimoto similarity score for five classes of metabolites in the
blood specimen for the MACCS and Pubchem fingerprint schemes with different
reduction levels.

scheme level drug microbial plant endogenous all
MACCS 0 0.3008 0.3531 0.3662 0.3211 0.3142
MACCS 0.1 0.2990 0.3489 0.3696 0.3190 0.3122
MACCS 0.2 0.2944 0.3536 0.3723 0.3188 0.3118
MACCS 0.3 0.3013 0.3578 0.3785 0.3211 0.3149
Pubchem 0 0.3048 0.3323 0.3873 0.2967 0.2968
Pubchem 0.1 0.3104 0.3390 0.3922 0.3012 0.3016
Pubchem 0.2 0.3167 0.3384 0.3974 0.3043 0.3053
Pubchem 0.3 0.3217 0.3395 0.4010 0.3071 0.3085

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/853762doi: bioRxiv preprint 

https://doi.org/10.1101/853762


12

Table 2. Summary of the results from 33 pairs of similar compounds with a high
consensus from 143 experts.

scheme level mean high sima low simb

MACCS 0.0 0.8724 24 1
MACCS 0.1 0.8745 24 0
MACCS 0.2 0.8748 24 0
MACCS 0.3 0.8801 25 0
Pubchem 0.0 0.9163 29 0
Pubchem 0.1 0.9224 30 0
Pubchem 0.2 0.9282 30 0
Pubchem 0.3 0.9334 31 0

aThe number of instances in which the similarity score is greater than or equal to 0.8.
bThe number of instances in which the similarity score is less than 0.5.
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Figure 1. Fingerprint usage patterns of MACCS 166 keys on HMDB metabolite
dataset. (A) The on-bit count of each key. (B) The pairwise Pearson’s correlation
coefficient value for each pair of 68 MACCS keys with moderate on-bit counts.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/853762doi: bioRxiv preprint 

https://doi.org/10.1101/853762


14

de
ns

ity

A

no
rm

al
iz

ed
 e

ig
en

va
lu

e

B

entropy
0.355 0.356 0.357

original entropy

Pubchem

0.4725 0.4750 0.4775 0.4800

original entropy

MACCS

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

component

Pubchem

MACCS
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Pubchem fingerprints.
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Figure 5. Illustration of 60 metabolite pairs with high levels of changes in Tanimoto
similarity measures. Heatmap showing the similarity scores of 60 metabolite pairs based
(y-axis) on given levels of reduced fingerprint sets (x-axis). From the MACCS and
Pubchem fingerprint dictionaries, 30 pairs are selected from each based on the difference
between the original set of fingerprints and a reduced set of fingerprints with reduced
level 0.3.
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