Abstract
In logical reasoning, difficulties in inhibition of currently-held beliefs may lead to unwarranted conclusions, known as belief bias. Aging is associated with difficulties in inhibitory control, which may lead to deficits in inhibition of currently-held beliefs. No study to date, however, has investigated the underlying neural substrates of age-related differences in logical reasoning and the impact of belief load. The aim of the present study was to delineate age differences in brain activity during a syllogistic logical reasoning task while the believability load of logical inferences was manipulated. Twenty-nine, healthy, younger and thirty, healthy, older adults (males and females) completed a functional magnetic resonance imaging experiment in which they were asked to determine the logical validity of conclusions. Unlike younger adults, older adults engaged a large-scale network including anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) during conclusion stage. Our functional connectivity results suggest that while older adults engaged the ACC network to overcome their intuitive responses for believable inferences, the IFG network contributed to higher control over responses during both believable and unbelievable conditions. Our functional results were further supported by structure-function-behavior analyses indicating the importance of cingulum bundle and uncinate fasciculus integrity in rejection of believable statements. These novel findings lend evidence for age-related differences in belief bias, with potentially important implications for decision making where currently-held beliefs and given assumptions are in conflict.
Footnotes
A new analysis has been added to the paper following the Reviewer's comments.