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Abstract 

Brain atrophy, largely driven by tau deposition, is the most proximal correlate of cognitive decline in 

Alzheimer’s disease (AD). Understanding the heterogeneity and longitudinal progression of brain 

atrophy during the disease course will play a key role in understanding the mechanisms of AD.  

The aim of this study is to propose a framework for longitudinal clustering that: 1) incorporates 

simultaneous clustering of longitudinal multivariate neuroimaging measures, 2) leverages 

information of individuals with irregularly sampled observations (different sampling times), 3) 

compares clusters with a control group, 4) allows the study and fixation of potential confounding 

effects, 5) can provide visualization of the resulting clusters for interpretation, 6) measures the 

uncertainty of clustering. We aimed to include amyloid-β positive AD patients and amyloid-β 

negative cognitively unimpaired (CU) subjects with longitudinal data, three sMRI scans over two 

years. Cortical thickness and subcortical volume measures from the longitudinal stream of FreeSurfer 

6.0 pipeline were used as input for cluster analysis.   

Using the proposed methodology, we found 3 distinct longitudinal brain atrophy patterns in AD 

patients: a typical diffuse AD pattern (n=34, 47.2%), and 2 atypical AD patterns: Minimal atrophy 

(n=23 31.9%) and Hippocampal sparing (n=9, 12.5%). We also identified outlier observations (n=3, 

4.2%) and observations with uncertain classification (n=3, 4.2%). The clusters of AD patients differed 

not only in regional distributions of atrophy at baseline, but also in atrophy progression over time, 

age at AD onset, cognitive deficits at baseline and cognitive decline over time. 

A framework for the longitudinal assessment of variability in cohorts with several neuroimaging 

measures was successfully developed and the results show that it can be used to understand 

heterogeneity in the context of AD. 

Keywords: longitudinal clustering, Alzheimer’s disease, ADNI, heterogeneity, mixed effects, structural 

MRI, cortical atrophy, hippocampal atrophy. 
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1. Introduction 

Imaging biomarkers of brain morphology have been increasingly used in research and clinical routine 

during the last decades (Dickerson & Sperling, 2005). More specifically, dementia research has 

utilized such markers for the investigation of disease-related patterns from populations around the 

world and many cohorts with complete neuroimaging data are now available to the research 

community (Frisoni et al., 2013; Whitwell, 2018). Structural neuroimaging markers are also used for 

selection of participants for clinical trials in Alzheimer’s disease (AD) (Menéndez-González, de Celis 

Alonso, Salas-Pacheco, & Arias-Carrión, 2015). The availability of longitudinal data provides us with 

the opportunity to assess changes over time in healthy and pathological individuals. A new challenge 

for the imaging research community is the incorporation of longitudinal information in their study 

designs (Caruana, Roman, Hernández-Sánchez, & Solli, 2015). Other challenges include the 

assessment and fixation (ceteris paribus) of different study effects, the meaningful visualization of 

group differences and finally the simultaneous optimization of all these procedures for the sake of 

reproducibility in the presence of pragmatic sample sizes. 

Unsupervised classification (clustering) is widely applied to neuroimaging data when the aim is to 

unveil heterogeneous features within samples (Whitwell, 2018). When samples include only one 

diagnosis, a common use of clustering methods is to investigate whether the neuroimaging measures 

of interest show heterogeneous patterns within that same diagnostic label. Several studies have 

investigated the heterogeneity in AD with the aim to define disease specific subtypes (Byun et al., 

2015, 2015; Corlier et al., 2018; Park et al., 2017; Poulakis et al., 2018; Schwarz et al., 2018; Varol, 

Sotiras, & Davatzikos, 2017; Whitwell et al., 2012; Young et al., 2017). When samples include more 

than one diagnosis, the main aim of unsupervised clustering methods is to investigate whether 

neuroimaging markers can be used to distinguish between the diagnostic classes without specifying 

them with a label. The clustering methods that are used today are mostly cross-sectional, in the 

sense that they utilize baseline observations for a set of individuals. In the AD research field, many 

studies have focused on the unbiased identification of cortical and subcortical patterns of atrophy 
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with structural MRI (sMRI). One recent study utilizes longitudinal atrophy markers to find sets of 

brain regions with common progression patterns (Marinescu et al., 2019). However, to date no 

cluster-based study has included longitudinal atrophy data in their method scheme, in order to 

identify groups of individuals with similar atrophy trajectories and our current study intends to meet 

this necessity. 

In studies where the aim is to investigate neuroimaging measures in association to some clinical 

outcome, we often wish to account for or exclude the effect of confounders that can potentially 

introduce bias and may drive the results of our analysis. More specifically, in connection with cluster 

analysis, two approaches are widely used in the literature. The first approach, is called the residual 

(de-trending) method (Falahati et al., 2016; Voevodskaya et al., 2014). In this approach a “correction” 

is applied to a neuroimaging measurement with respect to a confounder that should not affect the 

results of the main analysis. The adjusted measurement will not be correlated with the confounder 

anymore. After that, we apply the clustering algorithm on the de-trended data (Corlier et al., 2018; 

Hwang et al., 2016; Noh et al., 2014; Varol et al., 2017; Zhang et al., 2016). When using the de-

trending approach, the statistical tests that we need increase dramatically in numbers (one 

correction for each vertex/voxel/region of interest). Moreover, the cluster parameters are not 

optimized conditional to the original data but given the artificial data (de-trended data). All these 

features can make the interpretation of results more difficult and introduce errors in reproducibility, 

since the results are based on a chain of statistical procedures that are not connected in statistical 

terms. According to the second approach (for confounders in a clustering study), it is suggested to 

incorporate the effect that we want to account for in the analysis (Dong, Honnorat, Gaonkar, & 

Davatzikos, 2016; Young et al., 2017). This can be achieved with the addition of a fixed effect in the 

case of a statistical clustering model.  

Another important feature of a neuroimaging clustering study is the comparison of differences in 

brain morphology between clusters of individuals. This comparison commonly involves, i) groups of 

the same pathology with different atrophy patterns or ii) a pathological group and a cognitively 
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unimpaired group with similar demographical characteristics, or other combinations of comparisons 

between groups. This step is either incorporated in the clustering procedure, or it is performed as an 

independent post-clustering step. When this step is not included in the clustering procedure but 

added as a separate step, we need to correct the resulting images for multiple statistical comparisons 

since multiple models are implemented for that purpose. This issue can be avoided in the case of a 

simultaneous clustering and visualization. 

Previous clustering studies grouped AD patients based on sMRI features from a single time-point 

(Dong et al., 2016, 2017; Ferreira et al., 2017; Noh et al., 2014; Park et al., 2017; Poulakis et al., 2018; 

Varol et al., 2017). Their conclusions were based on a single observation in time and the chance that 

those clusters reflect different stages of the disease and not particular patterns of atrophy (distinct 

AD subtypes) cannot be excluded. A longitudinal clustering design can reduce the risk that the results 

will reflect different disease stages. Even if the clusters reflect different disease stages, we can infer 

them with higher certainty than in a cross-sectional study. Moreover, the follow up MR acquisitions 

can be irregularly distributed between subjects may drop-out or miss certain visits. We model this 

feature in order to obtain accurate estimates of atrophy progression. 

In this study, we aimed to design and assess a framework for longitudinal clustering that 

incorporates: 1) simultaneous clustering of several longitudinal neuroimaging measures (multivariate 

data over time), 2) information for individuals with irregularly sampled observations, 3) comparison 

of the clusters with a control group, 4) the study and fixation (optional) of effects that should not 

drive the resulting clusters, 5) visualization of the resulting clusters for interpretation, 6) measures of 

uncertainty in the clustering. Our overall goal is to perform all the aforementioned methodological 

steps in one statistical model in order to avoid the statistical pitfalls of a “pipeline” study that limits 

the ability to correctly identify disease mechanisms because of weak statistical inferences. The 

designed framework is applied to longitudinal sMRI data of mainly amyloid-β (Aβ) positive AD 

patients and Aβ negative cognitively unimpaired (CU) subjects over a period of two years (three sMRI 

time points). To validate the results from our new longitudinal clustering framework, we included all 
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data with longitudinal information from our previous cross-sectional clustering study (Poulakis et al., 

2018). This allows us to compare the results from cross-sectional and longitudinal clustering in the 

same dataset. To be able to estimate cluster-specific atrophy trajectories in time is a very important 

aspect that has been overlooked by previous cross-sectional AD subtypes studies. 

 

2. Material and Methods 

2.1. Participants 

We used data obtained from the Alzheimer’s disease neuroimaging initiative (ADNI), a large project 

launched in October 2004 in North America from Michael W. Weiner, MD. The initial goal of the 

ADNI 1 cohort that will be used for the analysis, was to gather neuroimaging data that would help to 

better detect and track AD in its early stages. More specifically, positron emission tomography, MRI 

and other data from individuals diagnosed with AD, mild cognitive impairment (MCI) and elderly CU 

were collected between 2004 and 2010 from different sites of USA and Canada. The inclusion criteria 

for AD patients were the following: 1) to fulfil the NINCDS/ADRDA probable AD criteria, 2) a Clinical 

dementia rating scale (CDR) global score between 0.5 and 1, and 3) an MMSE total score between 20 

and 26. The exclusion criteria for AD included: the use of psychotropic medication that could affect 

memory, history of significant head trauma, evidence of significant focal lesions at the screening MRI, 

and the existence of a significant neurological disease other than AD. For the healthy cognitively 

unimpaired (CU) subjects, inclusion criteria were an MMSE total score between 24 and 30 and a CDR 

global score equal to 0. Exclusion criteria for CU subjects comprised presence of depression, MCI or 

dementia. For more information on the ADNI study, see http://adni.loni.usc.edu/about/. 

We included all subjects with longitudinal sMRI data and available CSF data (101 AD and 113CU) from 

our previously published cross-sectional study on AD subtypes (Poulakis et al., 2018). This was done 

to be able to compare the cross-sectional and the longitudinal clustering approach in a proper way in 

the same set of participants. In total 75 subjects were excluded due to bad longitudinal image quality 
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and processing results (see below). At baseline, 94% of the AD subjects were Aβ1-42 positive, while 

only 31 CUs were included, since we wanted them all to be negative for Aβ1-42 and Ptau. The cut-offs 

for Aβ1-42 and Ptau used, are discussed by (Shaw et al., 2009). Moreover, the CU sample was further 

limited by additional inclusion criteria: 1) remain as CU subjects across all the available follow-ups 

and not only the ones that are used in this study (0-36 months of continuous follow up for the 31 CU 

subjects), 2) have longitudinal MRI for all the time points of the analysis.   

Altogether, 104 individuals were included in the final analysis, 72 AD patients (72 subjects had 

baseline and 12 months MRI scans, and 57 subjects had a 24 months MRI scan) and 31 CU (baseline, 

12- and 24 months MRI scans).  

Table 1. Sample demographics. 

 AD patients CU subjects 

N 72  31  

Females  N (%) 34 (47.2%) 15 (48.4%) 

Age mean (sd) 76 (7.4) 74 (4.4) 

Age at disease onset  median(mad) 71 (8.9) - 

Years of education  median(mad) 16 (3) 16 (3) 

MMSE  median(mad) 24 (1.5) 29 (0) 

CDR global score median(mad) 0.72 (0.25) 0 (0) 

ApoE e4 allele carrier N (%) 50 (69.4%) 3 (9.7%) 

CSF Aβ1-42, median(mad) 137.38 (23.98) 234.11 (20.88) 

CSF pTau 181, median(mad) 37.5 (12.6) 18 (4.45) 

ADAS word recall mean (sd) 6.17 (1.43) 2.81 (0.95) 

Mad: maximum median distance, MMSE: mini mental state examination, ADAS: Alzheimer’s disease assessment scale, CDR: 
Clinical Dementia Rating, CSF: cerebrospinal fluid, ADAS: Alzheimer’s disease assessment scale. CSF values are in pg/ml. CU: 
cognitively unimpaired. 

 

2.2 MRI acquisition and preprocessing 

The MRI dataset consists of high-resolution sagittal 3D 1.5T T1-weighted Magnetization Prepared 

RApid Gradient Echo (MPRAGE) volumes (voxel size 1.1×1.1×1.2 mm3). Full brain and skull coverage 

were required and detailed QC was applied to all the images (Simmons et al., 2011).  
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Images underwent pre-processing with the longitudinal stream of the FreeSurfer pipeline (version 

6.0), where a subject specific template is used (Reuter, Schmansky, Rosas, & Fischl, 2012). 

Information about the FreeSurfer pipeline can be found in the following link 

(http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferAnalysisPipelineOverview). Parcellation with 

the Desikan-Killiany (Desikan et al., 2006) atlas was applied in order to extract regional average 

cortical thickness values. For this study we utilized cortical thickness values for 34 cortical regions 

and 7 subcortical volumes (hippocampus, amygdala, putamen, caudate, thalamus, accumbens, 

pallidum) from each hemisphere (Supplementary table 2). Estimated total intracranial volume (eTIV) 

was also extracted for the needs of the statistical modelling of the volumetric data (Buckner et al., 

2004). This segmentation approach has previously been used for multivariate classification of 

Alzheimer’s disease and healthy controls, neuropsychological-image analysis and biomarker 

discovery (Ferreira et al., 2014; Maioli et al., 2015; Westman et al., 2010). All data was processed 

through theHiveDB system (Muehlboeck, Westman, & Simmons, 2014). The FreeSurfer output 

underwent manual visual QC to find errors in parcellations/segmentations to ensure optimal 

estimation of thickness and volumes. After QC, 28 AD and 48 CU subjects were excluded because of 

low output quality, image quality, or because less than two continuous time points existed per 

subject after the QC. Finally, one AD patient was excluded due to failed parcellation of regions that 

are included in the analysis. 

2.3 Statistical analysis 

2.3.1 Data standardization   

The cortical thickness and subcortical volume ROI data of AD patients were standardized based on 

the sample of cognitively unimpaired subjects, including mean centering and unit variance scaling. 

The two main benefits of mean centering and unit variance scaling of the patients’ data are: 1) after 

the transformation, each ROI value will represent how many standard deviations below the average 

CU an AD subject’s value is; 2) since we have volume and thickness data, after transformation, all the 

variables will have the same unit and fair statistical comparisons will be possible (without affecting 
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the kurtosis or skewness of the distributions). This transformation has previously been applied for 

cross-sectional assessment of AD subtypes (Park et al., 2017; Westman, Muehlboeck, & Simmons, 

2012; Zhang et al., 2016). In this study, we adapted this procedure to longitudinal data in order to 

account for the atrophy that is caused by the normal ageing process in the CU group over time 𝑧𝑗,𝑡
𝑖 =

𝑥𝑗,𝑡
𝑖 − 𝜇̂𝑗,𝑡

𝐶𝑈 / 𝜎̂𝑗,𝑡
𝐶𝑈,where 𝑥 is the original measurement of subject 𝑖, in the time point 𝑡 for the region 

𝑗, while 𝜇̂ and 𝜎̂ are the mean and standard deviation of the CU group at time 𝑡 and region 𝑗. After 

this calculation, each value will resemble an atrophy level corrected for normal aging levels and also 

normal decline over time, which was not done previously, and is crucial for biological and clinical 

interpretation of brain atrophy. 

 

2.3.2 Statistical longitudinal clustering 

We set out to test an analytical framework that enables us to investigate longitudinal patterns in 

sMRI feature analysis. For this reason, we considered a multivariate mixture model that allows us to 

incorporate many brain regions in the model. Moreover, in our effort to establish a general 

framework that will be able to facilitate both continuous and discrete data trajectories in the 

clustering, while accounting for the longitudinal design of the study, we decided to choose a 

generalized linear instead of general linear (mixed effects) approach. In addition, such an approach 

allows us to incorporate fixed and random effects that can serve in different ways in sMRI and other 

modalities. The algorithm clusters the random intercepts and slopes of each individual’s outcomes of 

interest (ROI measures in this study) with repeated measurements instead of repeated 

measurements data of each individual subject. Hence, a pair of subjects with similar estimated 

trajectories of atrophy (similar starting value/intercept and slope over time) will be grouped 

together, while subjects with different trajectories will be assigned to different groups. A Gaussian 

distribution is used to model the ROI data (general linear model), but data of ordinal or nominal 

nature can be analysed by changing the link function. Since the random effects in the model account 
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for the repeated measurements, the fixed effects remain to be defined. As mentioned in the 

introduction, accounting for external effects that might drive the resulting clusters within the model 

is convenient in this kind of analysis. Therefore, fixed effects are estimated for each of the external 

variables that we want to assess during the clustering analysis. Such an approach allows fitting the 

resulting cluster profiles (atrophy maps) for different combinations of fixed effects to investigate 

their regional contribution. Finally, since the longitudinal data from almost all cohorts with MR 

acquisitions typically have different numbers of visits per subject (irregularly sampled), we chose a 

model that can utilize all available measurements of each individual subject to calculate regression 

slopes. The model that combines all the aforementioned features (Multivariate Mixture of 

Generalized Mixed effect Models (MMGLMM), Arnošt Komárek and Komárková 2013), is applied to 

longitudinal trajectories of atrophy to study whether they vary within the AD dementia spectrum. 

The clustering algorithm estimates different outcomes. One outcome is the different cluster 

components. Each estimated multivariate Gaussian component resembles a pattern of atrophy that 

is observed in the dataset. Each individual subject is assigned a probability to belong to any of the 

components (soft clustering) rather than being assigned to a single component. The assignment of 

subjects into clusters is based on the maximum posterior probability rule (an individual is assigned to 

the component with the highest individual component probability). This is a much more realistic 

approach in comparison to hard clustering approaches used in most previous data-driven studies 

(Byun et al., 2015; Gamberger, Ženko, Mitelpunkt, & Lavrač, 2016; Na et al., 2016; Noh et al., 2014; 

Park et al., 2017; Varol et al., 2017), since heterogeneity in AD is modelled here as a continuum and 

allows for mixed patterns instead of single patterns. Hence, the data-driven algorithm provides 

explicit information on whether a subject has a distinct atrophy pattern or a mixture of patterns 

through the estimation of subject component probabilities. The proposed framework clusters 

subjects of a cohort into groups (provides probability of subjects to belong in any of the clusters) and 

not patterns of atrophy into groups for a cohort (clusters of regions/vertices) as in the study of 

Marinsecu and colleagues (Marinescu et al., 2019). 
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A schematic representation of the proposed analytical framework is portrayed in Figure 1. The time 

from the first visit (baseline) was defined as a random effect for the sake of comparability with the 

previous literature on AD subtypes were only one observation for each subject is included (Noh et al., 

2014; Poulakis et al., 2018). Therefore, the intercept of the model will correspond to the atrophy 

levels on the first visit and the slope will show how these atrophy levels change over the months 

after the first visit. The fixed effects of the model are age, sex, education, years from the onset of 

dementia, total intracranial volume, baseline CSF Aβ1-42 and pTau181. The resulting clusters are 

visualized in terms of their fitted values on the median intercept (i.e. baseline), 12 months and 24 

months after the baseline observation for a specific set of fixed effects and only fitted values below 2 

standard deviations of the CU mean are presented (only when values are below 95% of the CU 

sample) (Jack et al., 2017). Measures of dispersion (1st and 3rd estimate distribution quartile) are also 

visualized in order to assess within-cluster variance of cortical and subcortical atrophy. With those 

measures we can interpret how different the subjects within each cluster can be. Since this model is 

proposed for neuroimaging data, we also present the cortical maps of each individual and time point 

that was used in the analysis in the supplementary material to show how well the estimated 

components represent the individuals that are assigned to it. 

 

Figure 1. Flowchart of the analysis 
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The schematic representation of the analysis shows that all the steps after the data standardization are accomplished 
within the clustering and not in separate pipeline fashion like steps. ROI: region of interest, MMGLMM: Multivariate 
Mixture of Generalized Mixed effect Models. 

 

The statistical model that we chose to employ has all the features that were described above and its 

original specification and hyperparameter choices can be found in the supplementary material of 

that study (Arnošt Komárek & Komárková, 2013). The optimization was performed using the R 

language, version 3.4.1 (Arnost Komárek & Komárková, 2014). The model is fully Bayesian and thus 

the output of the Markov chain Monte Carlo (MCMC) simulation is exploited to make inference on 

the population and cluster specific parameters. To adequately explore the distributions of the 

estimated parameters and speed up convergence of the algorithm, we optimized the model from 

different initial values based on i) the packages’ default values (see supplement to Arnošt Komárek & 

Komárková, 2013), ii) previous study results (Poulakis et al., 2018) and iii) cross-sectional clustering 

on the baseline data including k-means clustering and hierarchical agglomerative clustering as well as 

the addition of uniform noise to increase randomness in the initialization (Gelman et al., 2013; 

Gelman & Rubin, 1992). To identify the optimal solution, we initially optimized models for 2-8 

clusters for all the different initializations, summing to 49 MCMC chains. Then we assessed i) the 

model deviances (-2*logLikehood) (Arnošt Komárek & Komárková, 2013), ii) the quality of parameter 

convergence with respect to MCMC with high autocorrelation (visual inspection of the MCMC trace 

plots and auto-correlation values) (Gelman et al., 2013) and iii) the quality of clustering with respect 

to observations with low classification certainty (See Supplementary table 1 for more information). In 

our hybrid model evaluation approach, all three quality criteria were considered as important in the 

assessment process (scaled to the same interval, 0-1) (Brooks & Roberts, 1998). 

 
3 Results 

3.1 Clustering evaluation. 

The reported results are based on 750000 iterations with 500 iterations thinning where 250000 

iterations were burn-in period, which therefore saved 1000 MCMC samples. The distributions of the 
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estimated parameters started converging after the burn-in samples and it remained stable 

afterwards for the rest of the simulations. As expected, the general tendency of the deviance for the 

different models decreased with the increasing amount of clusters (Supplementary table 1). The 

different initializations brought various outputs from which the one with the packages’ default 

settings was the worst in terms of deviance. The model with initialization in the means of the clusters 

from our previous study (Poulakis et al., 2018) and the addition of uniform noise for 8 clusters was 

optimal in terms of quality. 

Figure 2 shows the multidimensional scaling coordinates of the component-subject probability 

matrix. Subjects are coloured dependent on the cluster that they belong to. Clusters 7 and 8 

comprised 2 subjects each (Figure 2, A) and were thus considered outlier clusters under the 

maximum probability rule. Moreover, the classification of subjects into clusters with high posterior 

density (HPD) intervals showed that 3 out of 72 subjects (1 subject from cluster 7 and 2 subjects from 

cluster 2) had uncertain classification (Figure 2, B). These subjects were excluded from the post hoc 

analysis and interpretation. The data of the 6 subjects (outlier clusters 7 and 8, and HPD interval 

uncertain classified subjects; one of the subjects belonged in outlier cluster 7 and had uncertain 

classification under the HPD intervals method too) are presented in Supplementary figure and table 

3).  

The remaining 66 subjects were used for further analysis. The separation between the 6 clusters in 

terms of how probable it is for their subjects to belong to the same cluster is seen in figure 2 C where 

the clusters 1, 2 and 3 are clearly separated from each other. An additional visualization of the 1st, 2nd 

and 5th multidimensional scaled (MDS) components shows the separation between Cluster 4, 5 and 6 

(Figure 2, D).  
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Figure 2. Comparison of maximum probability and HPD interval classifications 
Three-dimensional representation of (Multidimensional scaled (MDS)) component-individual probabilities matrix (This 
matrix includes the probability of each subject to be in any of the clusters). The scatter plots represent subjects and are 
coloured according to the clustering based on two approaches, maximum probability and highest posterior density intervals 
(HPD). A) Subjects are coloured based on maximum probability classification (MDS components 1, 2 and 3). B) Subjects are 
coloured based on HPD intervals classification. In comparison to A, in B we added the uncertain classification with orange 
colour (Two subject from cluster 2 and 1 subject from cluster 7 cannot be classified to any cluster with high certainty). C) 
Colours are the same as in B, but we excluded from the plot the HPD uncertain classification subjects: orange and the 
outlier clusters 7: black and 8: yellow. D) The subjects are coloured exactly as in C but the MDS components 1, 2 and 5 are 
plotted, to showcase the separation between Cluster 4, 5 6. The names in the parenthesis after the cluster numbers refer to 
the figure 3 and table 2. 

 

3.2 Cluster characterization 

Three main patterns of atrophy were found in the dataset: i) typical AD pattern (clusters diffuse 1, 2 

and 3) (Figure 3 B), ii) a minimal atrophy pattern (Figure 3A) and iii) a hippocampal sparing pattern 

(hippocampal sparing early and late onset) (Figure 3C). 
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Figure 3. Fitted values for cortical thickness and subcortical volumes for the different 
patterns of atrophy 

Atrophy fitted values of the 6 longitudinal atrophy components for the AD sample. Each row presents the median fitted 
values of the cortical and subcortical atrophy of the 6 components for three time points (baseline, 12 and 24 months from 
the first measurement). The data are presented as cognitively unimpaired group z-scores. A: Minimal atrophy pattern, B: 
Diffuse AD atrophy pattern, C: hippocampal sparing AD atrophy pattern. Fixed effects: Intracranial volume = average 
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Intracranial volume, Sex= female, Age = 75 years, Time from onset of dementia = 5 years, Education = 16 years, CSF Aβ1-42 
= 100 pg/ml, CSF Ptau181P = 50 pg/ml. Data are presented as standard deviations below the estimated mean of the healthy 
cognitively unimpaired population. 
 
 

The Minimal atrophy cluster is characterized by initial atrophy in the entorhinal cortex (right) and 

longitudinal decrease in thickness first in the right and then in the left inferior temporal gyrus during 

the 24 months of follow up (Figure 3A).  The atrophy patterns in the three Diffuse clusters (reported 

as typical AD), more closely follow the NFTs pattern suggested by (Braak & Braak, 1991).However, 

differences do exist and may be attributed to age (even after correcting for this effect). Further, the 

atrophy in the Diffuse 3 cluster is more advanced (Figure 3B) and these subjects have lower cognitive 

performance (Table 2). This may be the reason for why the Diffuse 3 cluster only had MRI for 

baseline and 12 months follow-up. Within the hippocampal sparing AD subtype two clusters are 

observed. The degree of atrophy as well as the age at onset of dementia differentiate these two 

clusters (Figure 3C, Table 2). The early onset hippocampal sparing cluster has greater level of atrophy 

at baseline and accumulates atrophy faster over time, in contrast to the late onset hippocampal 

sparing cluster. In both clusters the precuneus and the inferior parietal gyri (Figure 3C) are atrophied. 

For a more comprehensive understanding of the atrophy distributions in the cortex of the different 

clusters, we can also utilize the 1st and 3rd quartile images that present the dispersion around the 

mean cortical atrophy of each cluster (Supplementary Figure 1). 

The six clusters did not differ in terms of sex distribution but they differed in the years of formal 

education, with the average education being around 16 years (Table 2). The lowest and highest 

median years of education are observed in the Diffuse 2 cluster (12 years) and the Hippocampal 

sparing early onset (18 years). The two clusters with hippocampal sparing patterns of atrophy, differ 

in several aspect such as the age of onset of dementia. The Minimal atrophy cluster has the slowest 

decline over time in MMSE and CDR, while the Hippocampal sparing early onset cluster has the 

steepest decline (Table 2, Supplementary figure 4). The Hippocampal sparing early onset cluster also 

has a steep decline in constructional praxis, and the greatest deficits in ideational praxis at baseline, 

but not steeper than the Diffuse 3 group. Although the Minimal atrophy cluster has the best scores in 
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all the ADAS subscales at baseline, the Hippocampal sparing late onset group has a better score in 

the word recognition task at baseline, but declines very fast during the next two years (2.7 

points/year).
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Table 2. Demographic and clinical characteristics of the clusters 

The data are presented as median (median absolute distance) unless otherwise stated. CSF: cerebrospinal fluid, MMSE: mini mental state examination, CDR: Clinical Dementia Rating, ADAS: 
Alzheimer’s disease assessment scale, m0 = first visit, m24 = visit after 24 months. Annual changes in the cognitive assessment scales were estimated with linear regression (follow up data as 
predictor, two parameters and variance estimation). Standard errors of the estimated parameters are included in brackets. No statistical tests between groups are performed due of small 
sample sizes in some of the groups. CSF values are in pg/ml.  

  Minimal atrophy Diffuse 1 (Typical AD) Diffuse 2 (Typical AD) Diffuse 3 (Typical AD) Hippocampal sparing early 
onset 

Hippocampal sparing late onset 

 m0 m24 m0 m24 m0 m24 m0 m12 m0 m24 m0 m24 

Demographics  

N (%) 23 (35%) 20 15 (23%) 13 15 (23%) 12 4 (6%) 4 (6%) 4 (6%) 4 (6%) 5 (7%) 2 

Females N(%) 9 (39.1%) 9 (45%) 7 (46.7%) 6 (46.2%) 8 (53.3%) 6 (50%) 2 (50%) 2 (50%) 2 (50%) 2 (50%) 2 (40%) 1 (50%) 

Age 76 (10.4) 78 (12.6) 74 (5.9) 76 (5.9) 79 (3) 81 (3.7) 73.5 (3.7) 73.5 (3.7) 66.5 (6.7) 66.5 (6.7) 70 (14.8) 74.5 (23) 

Age disease onset 70 (10.4) 71.5 (11.9) 68 (7.4) 72 (7.4) 75 (4.4) 73.5 (5.2) 68.5 (5.2) 68.5 (5.2) 59.5 (3.7) 59.5 (3.7) 67 (11.9) 70 (23.7) 

Years of education 16 (4.4) 15 (3.7) 14 (3) 14 (3) 12 (5.9) 13.5 (3.7) 16 (3) 16 (3) 18 (0) 18 (0) 16 (3) 15 (1.5) 

Apoe e4 allele carrier N(%) 18 (78.3%) 15 (75%) 12 (80%) 10 (76.9%) 9 (60%) 8 (66.7%) 3 (75%) 3 (75%) 2 (50%) 2 (50%) 2 (40%) 1 (50%) 

CSF biomarkers  

Aβ1-42 129.81 (17.57) 129.38 (16.54) 136.83 (41.35) 140.09 (27.1) 140.37 (25.43) 153.81 (11.4) 153.81 (11.4) 153.81 (11.4) 128.8 (17.09) 128.8 (17.09) 143.32 (5.69) 145.71 (9.24) 

PTAU181P 38 (13.34) 37.5 (14.83) 44 (20.76) 44 (20.76) 35 (5.93) 35.5 (5.93) 35.5 (5.93) 35.5 (5.93) 36.5 (14.08) 36.5 (14.08) 50 (35.58) 36 (20.76) 

Cognitive measures  

 Median (mad) 
Annual change 

(se) 
Median (mad) 

Annual change 
(se) 

Median (mad) 
Annual change 

(se) 
Median (mad) 

Annual change 
(se) 

Median (mad) Annual change (se) Median (mad) Annual change (se) 

MMSE 25 (1.5) -0.8(0) 22 (1.5) -2.2(0.1) 24 (1.5) -1.9(0) 21.5 (0.7) -3.3(0.1) 25.5 (0.7) -4.1(0.1) 23 (1.5) -2.6(0.1) 

CDR global 0.65 (0.24) 0.15(0) 0.77 (0.26) 0.27(0.01) 0.7 (0.25) 0.23(0.01) 0.88 (0.25) 0.25(0.02) 0.75 (0.29) 0.37(0.01) 0.6 (0.22) 0.22(0.01) 

ADAS 11  

ADAS Q1 Word recall 5.3 (1) 0.5(0) 7 (1.5) 0.2(0) 6.3 (1) 0.4(0) 8.3 (1) 0.7(0) 6.7 (2.7) 0.7(0.1) 6.3 (1) 0.5(0) 

ADAS Q2 Commands 0 (0) -0.1(0) 0 (0) 0.2(0) 0 (0) 0.1(0) 1 (0) 0.3(0) 0 (0) 0.6(0) 0 (0) 0.2(0) 

ADAS Q3 Constructional praxis 1 (0) 0.1(0) 1 (0) 0.1(0) 1 (0) -0.1(0) 1.5 (0.7) 0.3(0) 1 (0) 0.6(0) 1 (0) 0.2(0) 

ADAS Q4 Delayed word recall 8 (1.5) 0.5(0) 10 (0) 0(0) 9 (1.5) 0.4(0) 10 (0) 0(0) 9 (1.5) 0.3(0) 8 (0) 1.2(0) 

ADAS Q5 Naming objects and 
fingers 

0 (0) 0.1(0) 1 (0) 0.4(0) 0 (0) 0.3(0) 0.5 (0.7) 1.2(0) 0.5 (0.7) 0.4(0) 0 (0) 0(0) 

ADAS Q6 Ideational praxis 0 (0) 0.2(0) 0 (0) 0.6(0) 0 (0) 0.2(0) 0 (0) 0.7(0) 0.5 (0.7) 0.7(0) 0 (0) 0.4(0) 

ADAS Q7 Orientation 1 (1.5) 0.4(0) 2 (1.5) 1.1(0) 2 (1.5) 1.2(0) 3.5 (1.5) 0.8(0.1) 1 (0) 2(0) 2 (1.5) 1.1(0) 

ADAS Q8 Word recognition 6 (3) 0.6(0) 7 (3) 1.2(0) 8 (3) 0.4(0) 11 (0.7) -0.4(0.1) 7.5 (4.4) 0.9(0.1) 4 (1.5) 2.7(0) 

ADAS Q9 Remembering test 
instructions 

0 (0) 0.1(0) 0 (0) 0.3(0) 0 (0) 0.1(0) 0 (0) 0.7(0.1) 0 (0) 0.9(0) 0 (0) -0.2(0) 

ADAS Q10 Language 0 (0) 0.1(0) 0 (0) 0.2(0) 0 (0) 0.2(0) 0 (0) 0.2(0) 0 (0) -0.1(0) 0 (0) 0.3(0) 

ADAS Q11 Word finding 
difficulty 

0 (0) 0.4(0) 0 (0) 0.5(0) 0 (0) 0.4(0) 1.5 (0.7) 0.8(0.1) 1.5 (1.5) 0.1(0.1) 0 (0) 0.5(0) 

ADAS Q12 Comprehension of 
spoken language 

0 (0) 0.1(0) 0.1(0) 0 (0) 0.1(0) 0 (0) 0.1(0) 0 (0) 1.3(0.1) 0 (0) -0.4(0) 0 (0) 0.1(0) 
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3.3 Comparison to previous results 

The atrophy patterns of the different clusters have similarities with our previously reported cross-

sectional results on AD subtypes (Poulakis et al. 2018), while the differences yield from the 

longitudinal information that is now added in the algorithm. 

 

Table 3. Correspondence matrix 
  Longitudinal clustering results  

Names of 
clusters 

Minimal 
Atrophy 

Diffuse 
1 

(Typical 
AD) 

Diffuse 
2 

(Typical 
AD) 

Diffuse 
3 

(Typical 
AD) 

Hippocampal 
sparing early 

onset 

Hippocampal 
sparing late 

onset 

Cluster 
7 

Cluster 
8 

HPD 
uncertain 

Sum 

 
 

Cross-
sectional 
clustering 

results 

Diffuse 1 
(Typical AD) 

6 12 15 2 1 0 0 1 2 39 

Diffuse 2 
(Typical AD) 

0 0 0 2 0 0 0 1 0 3 

Hippocampal 
sparing 

0 0 0 0 3 4 0 0 0 7 

Limbic 
predominant 

0 1 0 0 0 0 1 0 1 3 

Minimal 
atrophy 

17 2 0 0 0 1 0 0 0 20 

 Sum 23 15 15 4 4 5 1 2 3 72 

Correspondence between the assignments of subjects in the cross sectional clustering (Poulakis et al., 2018) and the 

current longitudinal study (clustering according to the highest posterior density intervals). The cross-sectional study clusters 

are in the rows and the longitudinal study clusters are in columns. 

 

The subjects in the cross-sectional study (Poulakis et al., 2018) that were assigned to the Diffuse 1 

subtype are now distributed in more than one cluster with the highest prevalence in the Diffuse 1 

and 2  clusters (Table 3). Three subjects from the cross-sectional Diffuse 2 cluster are now in the 

Diffuse 3 (2 subjects) and cluster 8 (1 subject, outlier cluster). All the seven subjects from the cross 

sectional hippocampal sparing subtype are still in the Hippocampal sparing clusters. Three subjects, 

assigned to the limbic predominant atrophy pattern in the cross-sectional study are now in cluster 7 

(outlier cluster), Diffuse 1 and the HPD group. The subjects in the minimal atrophy group are still 

mainly in Minimal atrophy in the present study (17 subjects out 20) while two subjects are assigned 

to the Diffuse 1 cluster and one subject to the Hippocampal sparing late onset cluster. Out of four 

CSF Aβ1-42 negative AD subjects that are included in the current study, one subject is assigned to the 

longitudinal diffuse 2 cluster (was in the cross-sectional diffuse 1 cluster), one in the longitudinal 

outlier cluster 7 (was in the cross-sectional limbic predominant cluster) and two are assigned to the 
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longitudinal minimal atrophy cluster (both subjects were in the cross-sectional minimal atrophy 

cluster) (Table 3). 

 

4. Discussion 

The optimization of the longitudinal clustering model provided us with interesting findings that 

support its future use in imaging research for studying heterogeneity in healthy and pathological 

ageing. Clustering with several longitudinal measures that were irregularly sampled was successfully 

achieved. We incorporated information from a cognitively unimpaired sample to calculate age-

corrected levels of atrophy, while avoiding the need to correct for multiple comparisons. This 

allowed the direct visualization of atrophy trajectories. Estimated subject-component probabilities 

made it possible to assess whether subjects are clustered with high certainty or not. All these 

features provided us with useful insights that substantially helped in the interpretation of the 

clusters. Moreover, the assessment of some study effects within the model, can potentially assist to 

investigate which brain regions are statistically associated with them. The framework identified and 

characterized three overall groups of AD subjects with distinct atrophy patterns with different 

trajectories over time and cognitive profiles. 

 

4.1 Longitudinal clustering initialization and performance 

The use of the current dataset helped the evaluation of our framework, because the patterns of 

atrophy at baseline are known from our previous results (Poulakis et al., 2018). Thus, the longitudinal 

information incorporated in our framework helped us study if AD atrophy patterns at baseline 

change when information about the course of the disease is added. The optimization process was 

longer and more intensive for larger numbers of clusters, since every additional component 

increased the number of new parameters to be estimated. Initially, the packages’ default values for 

the parameters were used to see the extent of adaptation of the model to the data without any help 

of locally optimal solutions. The results showed that the model tends to produce 1-2 components 
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that represent the actual dataset, while the rest of the components have non-sensible values. 

Moreover, the subjects were classified with high certainty in these 1-2 realistic components. This is 

advantageous because it means that the probabilistic clustering correctly identifies the components 

that represent the data in the best way. However, the rest of the components remained empty, 

which is a sign that the algorithm estimates components with zero presence in the dataset if it is not 

given some hints on where the data actually lie in the parameter space. The model with default initial 

values was not considered adequate to describe the dataset since too many parameters had no 

meaning in our application.  

The decision to start the algorithm from the cross-sectional clustering results showed that when the 

algorithm is fed with initial information for the mixed-effect parameters, the components are more 

meaningful, in the sense that if not all, almost all the components have some subjects in them. 

However, some of the cross-sectional solutions may not be optimal since they were not specifically 

adjusted to the dataset. For example, when we started the cluster intercepts optimization (initial 

values) from a k-means cross-sectional clustering solution, the resulting model had low quality, 

because a more sophisticated method is needed to find suitable clusters that can describe the AD 

dataset. In contrast, when we started the optimization with initial values (for the cluster intercepts) 

from the cross-sectional AD subtypes results (Poulakis et al., 2018), the model received the best 

quality scores among the different initializations. The lack of initial values for the slopes of each 

cluster (we set the initial slopes to zero due to lack of longitudinal cluster information) might be the 

reason behind the superiority of a solution with the introduction of uniform noise. In this way, we let 

the algorithm search for an optimal solution that may not fit (in the parametric space) exactly to the 

previous study’s solution but in a parametric region close to it. Thus, we give more flexibility to the 

optimizer of the model to end up in the same values (as the cross-sectional study), only if these are 

the optimal ones. In this way, we avoid stumbling on a local optimum. 

We also checked that the variance of the posterior distribution of the fixed effects was considerably 

smaller than the large prior value that we set it to, in accordance to the Supplementary material of 
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the paper where the clustering methodology was presented (Arnošt Komárek & Komárková, 2013). 

The cluster-specific parameters (random effects) such as the mean, covariance matrix and proportion 

of cluster parameters were the most demanding parameters to optimize, especially in the case of 7 

and 8 cluster solutions. The visual inspection of the MCMC trace plots for these parameters showed 

large steps at the first thousand iterations (burn in period and some iterations later) and then a 

stable distribution (good chain mixing) is produced.  

The idea behind calculating a composite measure of model quality was inspired by the fact that all 

chains converged perfectly for none of the models. However, some autocorrelation was allowed to 

exist, which often happens in applications of Bayesian statistics (Gelman et al. 2013, chapter 11). We 

accepted a certain extent of autocorrelation within chains but did not accept any solution with high 

values (Dobson and Barnett 2018, chapter 13). The number of chains that had some autocorrelation 

among the random effects of the selected model was only 6% of the overall parameters, which is a 

reasonable amount (considering that the chains are generally mixing sufficiently well). 

This proposed clustering provides us with two additional types of information apart from the cluster 

assignment: 1) which subjects in a cohort are not well represented by one cluster (i.e. outliers), 2) 

which subjects are at risk of shifting from one cluster to another (for example from a cognitive 

normal cluster to a pathological cluster, i.e. HPD uncertain). In this study we also decided that two 

clusters of the output model should be considered as outliers. The number of observations that are 

needed in order to treat a cluster as an outlier is not well defined in the literature. However, we 

decided that 2 subjects are too few to allow an interpretation of the cluster characteristics and/or an 

extrapolation to the AD population. The estimated components should have a certain presence in the 

population in order to interpret them, otherwise the weakness of these clusters might introduce 

noise in the understanding of heterogeneity in the context of this application. For the sake of 

transparency, the data of the subjects that were excluded from interpretation are reported in the 

Supplementary Figure 3 and Supplementary Table 3. Overall, the longitudinal clustering model 

combined with a priori chosen initial values for the cluster specific parameters produced reasonable 
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cluster estimates for meaningful interpretation of our longitudinal neuroimaging data. 

 

4.2 AD subtypes and longitudinal clustering of brain atrophy 

The results of the model support that information about atrophy trajectories has the potential to 

advance our current understanding about the heterogeneity within AD. We identified three main 

patterns of atrophy with different atrophy signature over time:  i) a typical AD pattern, ii) an AD 

pattern where the cortex is mainly involved while the hippocampus is relatively spared and iii) a 

minimal atrophy pattern were subjects exhibited mild or no atrophy in cortical and subcortical 

regions. Within typical AD, we found three atrophy patterns. The most typical AD like atrophy 

pattern is observed in the Diffuse 1 cluster that has all the demographical and cognitive 

characteristics of AD, such as the age of AD onset (>65 years of age), MMSE (18.5±7.1) and CDR 

global (1.3±0.8) (Byun et al., 2015; Ferreira et al., 2017; Kim et al., 2005; Whitwell et al., 2012). The 

Diffuse 2 cluster is not substantially different in median fitted values from the Diffuse 1 cluster. 

However, the higher age at onset (7 years older) and the percentage of females (53.5% in 

comparison to 46.7%) in the Diffuse 2, together with the atrophy distribution dispersion in this 

cluster provided by the 1st and 3rd quartile atrophy maps (supplementary figure 1), is somehow 

reminiscent of the AD subtype known as limbic predominant AD (Byun et al., 2015; Ferreira et al., 

2017; Kate et al., 2018; Noh et al., 2014; Poulakis et al., 2018; Whitwell et al., 2012). We speculate, 

given the longitudinal data and the previous cross-sectional study results (Poulakis et al., 2018), that 

the limbic predominant atrophy patterns is part of the AD disease staging rather than a distinct 

subtype. For some reason this cluster has later onset but patients seem to follow the Braak staging 

for NFT distribution and spread, hence they will likely develop typical AD at advanced stages. 

Regarding the Diffuse 3 cluster, this is the most atrophied group of subjects in this dataset, its 

cognitive scores are very low and its frequency in the data is very small (4 subjects). Being already 

reported in previous results of our group (Poulakis et al., 2018), we can now show that this group 

consists of subjects with already advanced atrophy at the time of the MRI. The model estimates a 
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random intercept for each ROI at the time of the first MRI acquisition for each subject. Therefore, the 

few subjects of the diffuse 3 cluster were separated from the other two diffuse atrophy clusters, 

since they had very low intercepts (great amount of atrophy) in the limbic areas and association 

cortex, as we can see in figure 3.  

The Minimal atrophy cluster that includes subjects with minimal atrophy changes over time is a 

cluster of considerable interest since the low amount of atrophy correlates well to the very slow 

cognitive decline in this group. The frequency of minimal atrophy in the current study is higher than 

in previous studies (Byun et al., 2015; Ferreira et al., 2017; Poulakis et al., 2018), most probably due 

to the longitudinal design that allows subjects with slow cognitive decline to be followed up for a 

longer period. This interpretation is supported by the finding that the Diffuse 3 cluster, the more 

severe group, is the only cluster that did not have 24 months follow up (early drop-out). It is 

proposed that tau-related pathophysiology and abnormal levels of Aβ alone without significant 

atrophy are enough to produce the dementia symptoms in the minimal atrophy subtype (Ferreira et 

al., 2017), perhaps through disruption of relevant brain networks in the absence of overt brain 

atrophy (Ferreira et al 2019), in the context of lower cognitive reserve (Ferreira et al., 2014; Persson 

et al., 2017). 

The hippocampal sparing subtype with accumulation of atrophy mainly in cortical areas is a subtype 

that has been consistently reported in many studies (Byun et al., 2015; Dong et al., 2017; Ferreira et 

al., 2017; Na et al., 2016; Poulakis et al., 2018; Whitwell et al., 2012). Interestingly, our current study 

disentangled the observed hippocampal atrophy pattern in two different clusters with atrophy in the 

precuneus and the inferior parietal lobe. A unique characteristic of the most atrophied group of the 

two is the early onset as well as the high number of years of education, which is a proxy of cognitive 

reserve. This group seems to decline in cognition more rapidly than any other AD group, in 

agreement with the cognitive reserve hypothesis of faster disease progression in subjects with high 

reserve once a specific threshold has been reached (Stern, 2009). In contrast, the less atrophied 

hippocampal sparing group has a late onset in the AD symptoms, which might be the reason of the 
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less aggressive phenotype (Koedam et al., 2010). 

 

4.3 Comparison between longitudinal and cross-sectional AD atrophy clusters 

The subjects of this study in their majority are grouped in longitudinal clusters similar to our 

previously published study (Poulakis et al., 2018). However, subjects from the Diffuse 1 subtype of 

the cross-sectional study are now distributed in more clusters because of two main reasons: 1) The 

Diffuse 1 cluster from the cross-sectional study is a cluster that gathered the most typical AD 

patterns. However, the separation from the other clusters was not very clear as discussed in that 

study. This cluster had the highest heterogeneity within itself and in the multidimensional scaling 

plot it was located between the other clusters of atrophy with more distinct patterns. 2) Importantly, 

the longitudinal trajectories, with help of both intercepts and slopes have disentangled the courses 

of the disease for the subjects that before were clustered based only in one observation in that 

cluster (Diffuse 1 of the cross-sectional study). In the cross-sectional study (Poulakis et al., 2018) we 

observed 4 patterns of atrophy and found 5 clusters while in the current longitudinal study we 

identified 3 main patterns of atrophy in 6 clusters. The existence of two different patterns of atrophy 

within the hippocampal sparing subtype (with differences in the AD onset) remains to be validated in 

larger datasets, whilst shows the potential in this method to identify them. Altogether, these findings 

highlight the importance of longitudinal clustering methods to advance our current ability to unravel 

disease heterogeneity. Our current findings show that a certain proportion of the heterogeneity may 

be missed by cross-sectional clustering. 

There are also other aspects which differentiate between cross-sectional and longitudinal clustering. 

The statistical approach of the longitudinal clustering is based on distributional assumptions (each 

cluster has multivariate normal distribution), while the cross-sectional clustering was distance based 

(random forest). Therefore, the longitudinal model could accommodate fixed effects (variables that 

we want to account for), while the cross-sectional model could not (we de-trended these effects in 

advance). Another important methodological difference between the two approaches is the 
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visualization of the clusters. The cross-sectional design included one more step after the clustering to 

compare AD groups with the sample of CU subjects in terms of ROI volumes (p-value maps). This is 

indeed the standard approach. Instead, the longitudinal model has an internal measure of similarity 

between AD groups and the CU sample, namely the fitted value maps where p-values are not 

calculated. We achieved a comparison between healthy aging and AD clusters without overloading 

our dataset with statistical comparisons. More importantly the level of difference in actual cortical 

thickness or volume between two clusters of subjects (fitted value) is easier to interpret biologically 

and clinically than the statistical differences between clusters of subjects (p-values). 

 

4.4 Limitations and strengths of the study 

Our study has some limitations. The sample size is limited due to two main reasons. Firstly, we 

wanted to use the results of our previous study as a ground truth for the clustering. Additionally, the 

exclusion criteria for CU subjects and AD patients were very strict (See material and methods), to 

ensure that the former group resembles a true sample of the healthy population over time, while the 

latter group had no missing information that can bias the interpretation of the results. This was 

intended to be a methodological study, although some biological interpretations are done. Hence, 

for the methodological part we believe our current sample size is sufficient. Yet, it is our plan to 

replicate our current findings in a larger sample in the future. Furthermore, the variable used as time 

component in this study was the time from the first MRI acquisition, which helped the interpretation 

of the results in relation to the previous cross-sectional study, but it might limit the ability to assess if 

a cluster of AD subjects reflects a distinct pattern of atrophy or a stage of the disease (Ferreira et al., 

2017). Our study has some strengths as well. We demonstrated that incorporating longitudinal 

information in the clustering of imaging data is possible. We can now apply it to different imaging 

modalities in order to label longitudinal data and to better understand the mechanisms underlying 

the aging process. The estimated model makes it possible to do two more things that were not 

available before: 1) to estimate future levels of atrophy for any individual subject that belongs to the 
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clusters (prognostic value) and 2) to estimate cluster assignment of new subjects that are not 

included in the model training  (diagnostic value). 

 

4.5 Conclusion 

In conclusion, a framework for the longitudinal assessment of variability in cohorts with several 

neuroimaging measures was successfully tested and the results show that it can be used to 

understand complex processes in ageing and neurodegenerative disorders. 
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