Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The heading direction circuit of two insect species

Ioannis Pisokas, Stanley Heinze, Barbara Webb
doi: https://doi.org/10.1101/854521
Ioannis Pisokas
1School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: i.pisokas@sms.ed.ac.uk
Stanley Heinze
2Lund Vision Group, Lund University, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara Webb
1School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Recent studies of the Central Complex in the brain of the fruit fly Drosophila melanogaster have identified neurons with localised activity that tracks the animal’s heading direction. These neurons are part of a neuronal circuit with dynamics resembling those of a ring attractor. Other insects have a homologous circuit sharing a generally similar topographic structure but with significant structural and connectivity differences. In this study, we model the precise connectivity patterns in two insect species to investigate the effect of the differences on the dynamics of the circuit. We illustrate that the circuit found in locusts can also operate as a ring attractor and we explore the role and robustness of the connectivity parameters. We identify differences that enable the fruit fly circuit to respond faster to changes of heading while they render the locust circuit more tolerant to noise. Our findings demonstrate that subtle differences in neuronal projection patterns can have a significant effect on the circuit performance and emphasise the need for a comparative approach in neuroscience.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted November 25, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The heading direction circuit of two insect species
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The heading direction circuit of two insect species
Ioannis Pisokas, Stanley Heinze, Barbara Webb
bioRxiv 854521; doi: https://doi.org/10.1101/854521
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The heading direction circuit of two insect species
Ioannis Pisokas, Stanley Heinze, Barbara Webb
bioRxiv 854521; doi: https://doi.org/10.1101/854521

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4095)
  • Biochemistry (8788)
  • Bioengineering (6493)
  • Bioinformatics (23395)
  • Biophysics (11766)
  • Cancer Biology (9171)
  • Cell Biology (13292)
  • Clinical Trials (138)
  • Developmental Biology (7423)
  • Ecology (11389)
  • Epidemiology (2066)
  • Evolutionary Biology (15121)
  • Genetics (10415)
  • Genomics (14026)
  • Immunology (9152)
  • Microbiology (22111)
  • Molecular Biology (8793)
  • Neuroscience (47460)
  • Paleontology (350)
  • Pathology (1423)
  • Pharmacology and Toxicology (2486)
  • Physiology (3712)
  • Plant Biology (8069)
  • Scientific Communication and Education (1433)
  • Synthetic Biology (2216)
  • Systems Biology (6022)
  • Zoology (1251)