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ABSTRACT

MicroRNA (miRNA)-based therapies are an emerging class of targeted therapeutics with many potential applications. Ewing
Sarcoma patients could benefit dramatically from personalized miRNA therapy due to inter-patient heterogeneity and a lack of
druggable (to this point) targets. However, because of the broad effects miRNAs may have on different cells and tissues, trials
of miRNA therapies have struggled due to severe toxicity and unanticipated immune response. In order to overcome this hurdle,
a network science-based approach is well-equipped to evaluate and identify miRNA candidates and combinations of candidates
for the repression of key oncogenic targets while avoiding repression of essential housekeeping genes. We first characterized
6 Ewing sarcoma cell lines using mRNA sequencing. We then estimated a measure of tumor state, which we term network
potential, based on both the mRNA gene expression and the underlying protein-protein interaction network in the tumor. Next,
we ranked mRNA targets based on their contribution to network potential. We then identified miRNAs and combinations of
miRNAs that preferentially act to repress mRNA targets with the greatest influence on network potential. Our analysis identified
TRIM25, APP, ELAV1, RNF4, and HNRNPL as ideal mRNA targets for Ewing sarcoma therapy. Using predicted miRNA-mRNA
target mappings, we identified miR-3613-3p, let-7a-3p, miR-300, miR-424-5p, and let-7b-3p as candidate optimal miRNAs for
preferential repression of these targets. Ultimately, our work, as exemplified in the case of Ewing sarcoma, describes a novel
pipeline by which personalized miRNA cocktails can be designed to maximally perturb gene networks contributing to cancer
progression.

Conflict of Interest Statement: The authors have no conflicts of interest to disclose.1

Introduction2

Ewing sarcoma is a rare malignancy arising from a gene fusion secondary to rearrangements involving the EWS gene1. There3

are 200-300 reported cases each year in the United States, disproportionately affecting children2. High levels of inter-tumor4

heterogeneity are observed among Ewing sarcoma patients despite a shared EWS gene fusion initiating event3. Ewing sarcoma5

is also extremely prone to developing resistance to available chemotherapeutics 4. These features make it an ideal system to6

develop personalized therapies for resistant tumors or to avoid the development of resistance altogether.7

MicroRNA (miRNA)-based therapeutics, including anti-sense oligonucleotides, are an emerging class of cancer therapy5.8

Recent work has highlighted the critical importance of miRNAs in the development and maintenance of the cancer phenotype4–6.9

MiRNA dysregulation has been implicated in the development of each of the hallmark features of cancer7, and restoration10

of expression of some of these critical downregulated miRNAs has been studied as a potential treatment for several different11

cancers6, 8, 9. In particular, in the past decade, anti-sense oligonucleotide inhibitors of the STAT3 transcription factor have12

shown promise in the settings of lymphoma10, 11 and neuroblastoma12. MiR-34 has shown to be effective in pre-clinical studies13

for treatment of both lung cancer13–15 and prostate cancer16. Finally, miR-34 and let-7 combination therapy has been shown to14

be effective in pre-clinical studies of lung cancer15.15

MiRNAs have been recognized as potential high-value therapeutics in part due to their ability to cause widespread changes16

in a cell-signaling network5. A single miRNA molecule can bind to and repress multiple mRNA transcripts6, 17–19, a property17
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that can be exploited when designing therapy to maximally disrupt a cancer cell signaling network. This promiscuity of miRNA

Figure 1. Cartoon describing rationale for focusing on miRNA combination therapy. With single-agent therapy, both
target mRNA and non-target mRNA are inhibited an equal amount, potentially resulting in toxicity due to off-target effects.
With miRNA combination therapy, the common target mRNA is inhibited to a greater degree than any individual non-target
miRNA.

18

binding may also increase the risk of off-target effects and toxicity (Figure 1). For example, miR-34 was effective in pre-clinical19

studies for the treatment of a variety of solid tumors13–16, only to fail in a phase I clinical trial due to “immune-related serious20

adverse events”20. To capitalize on the promise of miRNA-based cancer therapy while limiting potential toxicity, we developed21

a systematic, network-based approach to evaluate miRNA cocktails. We focused on miRNA cocktails rather than single miRNA22

therapeutics due to the potential for miRNA cocktails to minimize toxicity compared to single miRNA regimens (Figure 1).23

In this work, we build on previous studies applying thermodynamic measures to cell signaling networks in the field of24

cancer biology21–23, as well as works that describe a method to use gene homology to map miRNAs to the mRNA transcripts25

they likely repress6, 17, 18. Reitman et al. previously described a metric of cell state analogous to Gibbs free energy that can26

be calculated using the protein-protein interaction network of human cells and corresponding transcriptomic data21. Gibbs27

free energy has been correlated with a number of cancer-specific outcomes, including cancer grade and patient survival22.28

Additionally, Reitman et al. leveraged Gibbs and other network measures to identify personalized protein targets for therapy29

in a dataset of low-grade glioma patients from The Cancer Genome Atlas (TCGA)21. Previous work has also highlighted the30

critical importance of miRNAs to maintenance and development of the oncogenic phenotype, and demonstrated the utility of31

applying miRNA-mRNA mappings. 6 In this work, we developed and applied a computational pipeline that leverages these32

network principles to identify miRNA cocktails for the treatment of Ewing sarcoma.33

1 Methods34

1.1 Overview35

We characterized six previously described Ewing sarcoma cell lines in triplicate 24 – A673, ES2, EWS502, TC252, TC32,36

and TC71 – using mRNA sequencing. By evaluating 6 distinct cell lines, we aimed to assess the heterogeneity inherent to37

Ewing sarcoma. We then defined a measure of tumor state, which we term network potential (Equation 1), based on both38

mRNA gene expression and the underlying protein-protein interaction (PPI) network. Next, we ranked mRNA targets based39

on their contribution to network potential of each cell line, aiming to approximate the relative importance of each mRNA to40

network stability. Relative importance of each mRNA to network stability was determined by calculating the change in network41

potential of each network before and after in silico repression of each mRNA (∆G, described in Section 1.5). After identifying42

these mRNA targets, we then identified miRNA and miRNA cocktails that preferentially acted to repress the most influential of43

the ranked mRNA targets, with the aim of defining synthetic miRNA-based therapy for down-regulation of these targets. Our44

computational pipeline is schematized in Figure 2.45

1.2 Data sources46

We utilized two data sources to develop our Ewing sarcoma cell signaling networks: the BioGRID protein-protein interaction47

database25 and mRNA expression data from 6 Ewing sarcoma cell lines, which are available on GEO (accession GSE98787).48

BioGRID The BioGRID interaction database contains curated data detailing known interactions between proteins for a variety49

of different species, including Homo sapiens. The data were generated by manual curation of the biomedical literature to50

identify documented interactions between proteins25. To assist in manual curation, the BioGRID project uses a natural language51
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Figure 2. Simplified schematic of our computational pipeline. We defined a measure of tumor state, which we term
network potential (Equation 1), based on both mRNA gene expression and the underlying protein-protein interaction (PPI)
network. Next, we ranked mRNA targets based on their contribution to network potential of each cell line, aiming to
approximate the relative importance of each mRNA to network stability. After identifying these mRNA targets, we then
identified miRNA and miRNA cocktails that preferentially acted to repress the most influential of the ranked mRNA targets,
with the aim of defining synthetic miRNA-based therapy for down-regulation of these targets.

processing algorithm that analyzes the scientific literature to identify manuscripts likely to contain information about novel52

PPIs. The dataset is therefore limited to protein interactions that are reliably reported in the scientific literature. As new53

research accumulates, substantial changes to the PPI network may occur. For example, between 2016 and 2018, the number54

of documented PPIs in Homo sapiens grew from 365,547 to 449,842. The 449,842 documented interactions in 2018 were55

identified through curation of 27,631 publications25. Importantly, the PPI network is designed to represent normal human56

tissue.57

Ewing sarcoma transcriptomics Second, we utilized mRNA expression data from in vitro experiments conducted on six58

Ewing sarcoma cell lines (3 biological replicates per cell line). RNA/miRNA extraction was performed with a Qiagen kit with59

on-column DNase digestion. These mRNA and miRNA expression data were then normalized to account for between sample60

differences in data processing and further adjusted using a regularized log (Rlog) transformation26, 27. Notably, methods for61

calculating network potential from this type of data require protein concentrations rather than mRNA transcript concentrations.62

For the purposes of this analysis, we assumed that concentration of protein in an Ewing sarcoma tumor was equivalent to63

the concentration of the relevant mRNA transcript. A large body of work suggests that mRNA levels are the primary driver64

of protein levels in a cell under steady state conditions (i.e. not undergoing proliferation, response to stress, differentiation65

etc)28–31. However, recent work in a 375 cancer cell lines has shown that mRNA expression may not be predictive of protein66

expression in the setting of malignancy32. For this reason, we included the protein-mRNA correlations from their experiments67
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alongside some of our key findings to provide needed context.68

1.3 Network development69

We first developed a generic network to represent human cell signaling networks using the BioGRID interaction database25.70

The BioGRID protein-protein interaction network can be downloaded as a non-linear data structure containing ordered pairs of71

proteins and all the other proteins with which they interact. This data structure can be represented as an undirected graph, with72

vertex set V , where each vertex represents a protein, and edge set (E ) describes the interactions between proteins.73

Using RNA sequencing data from 6 Ewing sarcoma cell lines in triplicate, we then ascribed mRNA transcript concentration74

for each gene as an attribute to represent the protein concentration for each node in the graph. Through this process, we75

developed networks specific to each cell line and replicate in our study (18 total samples).76

1.4 Network potential calculation77

Using the cell signaling network with attached cell line and replicate number specific normalized mRNA expression data, we78

defined a measure of tumor state following Reitman et al.21, which we term network potential. We first calculate the network79

potential of the i-th node in the graph:80

Gi =Ci ln
[

Ci

∑C j +Ci

]
. (1)

where Gi is equal to the network potential of an individual node of the graph, Ci is equal to the concentration of protein81

corresponding to node Gi, and C j is the concentration of protein of the j-th neighbor of Gi. Total network potential (G) of the82

network can then be calculated as the sum over all nodes:83

G = ∑
i

Gi. (2)

where G is equal to the total network potential for each biological replicate of a given cell line. We then compared total network84

potential across cell lines and biological replicates.85

1.5 Ranking of protein targets86

After calculating network potential for each node and the full network, we simulated "repression" of every node in each network87

by reducing their expression (computationally) to zero, individually33. Clinically, this would be akin to the application of a88

drug that perfectly inhibited the protein/mRNA of interest. Next, we re-calculated network potential for the full network and89

calculated the change in network potential (∆G) by subtracting the new network potential value for the network potential value90

of the “unrepressed” network. We then ranked each node in the network according to the change in network potential for further91

analysis. Our pipeline was designed to make use of parallel computing on the high-performance cluster (HPC) at Case Western92

Reserve University in order to complete these analyses.93

1.6 Identification of miRNA cocktails94

To generate miRNA-mRNA mappings, we implemented a protocol described previously34. Briefly, we identified all predicted95

mRNA targets for each miRNA in our dataset using the miRNAtap database in R, version 1.18.0, as implemented through the96

Bioconductor targetscan org.Hs.eg.db package, version 3.8.217. We used all five possible databases (default settings): DIANA97

version 5.06119, Miranda 2010 release6235, PicTar 2005 release6336, TargetScan 7.16437 and miRDB 5.06518, with a minimum98

source number of 2, and the union of all targets found was taken as the set of targets for a given miRNA. Through this mapping,99

we identified a list of mRNA transcripts that are predicted to be repressed by a given miRNA. Our code and processed data files100

are available on Github at: https://github.com/DavisWeaver/MiR_Combo_Targeting/.101

Using this mapping, as well as our ranked list of promising gene candidates for repression from our network analysis, we102

were able to identify a list of miRNA that we predict would maximally disrupt the Ewing sarcoma cell signaling network when103

introduced synthetically. To rank miRNA targets, we first identified all the genes on the full target list that a given miRNA was104

predicted to repress (described in Section 1.5). Next, we summed the predicted ∆G when each of these genes was repressed in105

silico to generate the maximum potential disruption that could be achieved if a given miRNA were introduced synthetically106

into an Ewing sarcoma tumor. We then ranked miRNA candidates in descending order of the maximum predicted network107

disruption (Figure 6).108

Given the documented cases of systemic toxicities associated with miRNA-based therapies, the miRNA that inhibits the109

most targets might not necessarily be the best drug target. We therefore sought to identify combinations of miRNAs that110

4/16

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2020. ; https://doi.org/10.1101/854695doi: bioRxiv preprint 

https://github.com/DavisWeaver/MiR_Combo_Targeting/
https://doi.org/10.1101/854695
http://creativecommons.org/licenses/by-nc/4.0/


individually repressed key drug targets, while avoiding repression of housekeeping genes that may lead to toxicity. We defined111

housekeeping genes using a previously described gene set38. In this study, housekeeping genes were identified by evaluating112

RNA sequencing data from a large number of normal tissue samples. Genes that are consistently expressed in all or nearly all113

tissue types were assumed to be so-called housekeeping genes. Our hypothesis is that by giving a cocktail of miRNAs with114

predicted activity against one or multiple identified drug targets, each individual miRNA could be given at a low dose such that115

only the mRNA transcripts that are targeted by multiple miRNAs in the cocktail are affected (Figure 1)116

We first transformed the projected change in network potential for each gene such that housekeeping genes exerted a positive117

change in network potential and the top 10 predicted targets exerted a negative change in network potential. We then ranked118

3-miRNA combinations according to their projected effect on network potential, where more negative changes in network119

potential were interpreted as most effective for maximizing on-target effects while minimizing off-target effects. As a further120

constraint, a gene had to be targeted by 2 or more miRNA in a given cocktail to be considered repressed. Each miRNA was121

assumed to downregulate a given gene by 20%, such that genes targeted by 2 miRs were assumed to have their expression122

decreased by 40%, and genes targeted by 3 miRs were assumed to have their expression decreased by 60%. We repeated our123

analysis, varying between 10% and 50% repression to assess the impact of this assumption on our predicted miRNA cocktails.124

Rather than evaluate every potential 3-miRNA combination, we limited our analysis to miRNA that target at least 2 of our125

10 target genes. We repeated this analysis to identify cocktails that target larger or smaller groups of mRNA (the top 5 or 15126

mRNA targets) in order to assess the stability of the predicted cocktail to changing conditions.127

2 Results128

2.1 Network Overview129

We calculated the network potential, a unitless measure of cell state, for each protein in the cell signaling networks for each130

of the six Ewing sarcoma cell lines in our experiment. An overview of the total network potential for each cell line and131

evolutionary replicate compared to total mRNA expression is presented in Figure 3. The histograms of network potential and132

mRNA expression demonstrate markedly different distributions (Figure 3A and Figure 3B), indicating that network potential133

describes different features of a cell signaling network compared to mRNA expression alone. Notably, network potential and134

mRNA expression for these cell lines are stable across different biological replicates, as demonstrated by the low interquartile135

range (Figure 3C and 3D). There were larger differences in both mean expression and network potential across cell lines (Figure136

3C and 3D) when compared to between-replicate differences. The global average network potential across all samples was137

−3.4×105 with a standard deviation of 1605.138

2.2 Identification of Protein Targets139

We identified TRIM25, APP, ELAV1, RNF4, and HNRNNPL as top 5 targets for therapy for each of the 6 cell lines based on140

the degree of network disruption induced following in silico repression of each gene. There was a high degree of concordance141

between cell lines among the top predicted targets, indicating that these targets may be conserved across Ewing sarcoma142

(Table S1). Of the top ten predicted targets, all 10 targets are conserved for all 6 cell lines. The top 50 protein targets are143

presented in Figure 4. Some of these identified genes may be essential housekeeping genes highly expressed in all or most cells144

in the body, making them inappropriate drug targets. TRIM25, and ELAV1, for example, are involved in protein modification145

and RNA binding, respectively39. We therefore repeated this analysis, limiting our search to gene targets that have been causally146

implicated in cancer40. With this limitation in place, we identified XPO1, LMNA, EWSR1, HSP90AA1, and CUL3 as the top 5147

targets for therapy when ∆G was averaged for all cell lines. The top 10 cancer-related targets for each cell line can be found in148

(Table S2). The top 50 protein targets (limited to those causally implicated in cancer) can be found in Figure S1.149

We also conducted gene set enrichment analysis for the all the genes represented in our cell signaling network (averaged150

across all samples). We ranked genes by network potential (averaged across all samples) and compared our gene set to the151

“hallmarks” pathways set, downloaded from the Molecular Signatures Database (MSigDB)41, 42. This analysis was conducted152

using the fGSEA package in R, which uses the Benjamini - Hochberg procedure to correct the false discovery rate43, 44. Our gene153

set was enriched (adjusted p-value < 0.05) in 24 of the 50 pathways included in the hallmarks set; including apoptosis, DNA154

repair, mTOR signaling, MYC signaling, and WNT β -catenin signaling. Our gene set was also highly enriched (normalized155

enrichment score = 1.73) in the miRNA bio-genesis pathway. The full results are presented in Table S3.156

2.3 Identification of miRNA Cocktails157

We identified several miRNAs that were predicted to dramatically disrupt the Ewing sarcoma cell signaling network (Figure 6).158

When averaging all cell lines, we identified miR-3613-3p, let-7a-3p, miR-300, miR-424-5p, and let-7b-3p as the ideal miRs159

for preferential repression of proteins predicted to be important for Ewing sarcoma signaling network stability. miR-3613-3p,160

let-7a-3p, miR-300, miR-424-5p, and let-7b-3p were predicted to cause an average network network potential increase (driving161

the system less negative) of 17382, 13034, 12746, 12364 and 12280, respectively (see Figure 6). It should also be noted that we162
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Figure 3. Network potential describes different features of a cell signaling network compared to mRNA expression
alone. Panel A: Histogram of mRNA expression for each gene (averaged across all samples). Panel B: Histogram of the
network potential for each gene (averaged across all samples) mRNA transcripts with an expression level of zero were excluded
from both histograms to better visualize the distribution of genes that are expressed. Panel C: Box plot showing the total
mRNA expression for each cell line. Panel D: Box plot showing the total network potential for each cell line.

were able to identify a substantial number of miRNAs with potential activity against the Ewing sarcoma cell signaling network.163

We identified 27 miRNAs with an average predicted network potential disruption of greater than 10,000. For comparison, the164

largest network change in network potential that could be achieved with a single gene repression across all cell lines was just165

2064 (TRIM25).166

These individual miRNAs target large numbers of transcripts in the cell and therefore may be difficult to administer167

as single-agents due to extreme toxicity. For example, the top miR candidate, miR-3613-3p, was predicted to repress 144168

distinct mRNA transcripts in the full target set. We therefore sought to identify cocktails of miRNA that could cooperatively169

down-regulate key non-housekeeping genes while avoiding cooperative down-regulation of housekeeping genes that may be170

associated with toxicity. When targeting the top 10 predicted proteins from our in silico repression experiments, a 3 miRNA171

cocktail of miR-483-3p, miR-379-3p, and miR-345-5p was predicted to be the most optimal across all cell lines (Figure 5A172

and Figure 5B). Under the same conditions, a 3-miR cocktail of miR-300, let-7b-3p, and let-7a-3p was predicted to be the173

least optimal among 16,215 tested combinations (Figure 5C and Figure 5D). Notably, the most and least optimal miRNA174

combinations had similar activity against the 10 targets (Figure 5A and Figure 5C). The worst cocktail was defined by high175

levels of cooperative downregulation of housekeeping genes rather than lack of efficacy against putative targets (Figure 5C and176

Figure 5D). Let-7b-3p and let-7a-3p were heavily represented in the least optimal cocktails tested, appearing in 10 of the 10177

worst 3 miRNA cocktails (Figure 5E). These highly promiscuous miRNA target large numbers of housekeeping genes, limiting178

their therapeutic utility alone or in combination (Figure 6B).179

Notably, many of the most promising miRNA when considering only their total predicted network disruption tend to appear180
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in the least optimal cocktails (Figure 6). This likely occurs because these miRNA tend to target large numbers of housekeeping181

genes and large numbers of genes overall. In contrast, the best miRNA cocktails tend to be composed of miRNA that target182

relatively few genes overall but exhibit some degree of target specificity. Put another way, they target the desired target183

genes while repressing relatively few essential housekeeping genes. An extreme example of this is the case of miR-345-5p.184

MiR-345-3p is in the bottom 50% of all miRNA when ranked by predicted network disruption, and is only predicted to repress185

10 different transcripts. However, because it selectively targets several of our targets of interest, this relative small total projected186

network disruption is actually an attractive feature that makes it easy to build effective cocktails that include miR-345-3p. As a187

result, miR-345-3p appears in 8 of the top 10 predicted 3 miRNA cocktails. To assess the stability of our results, we repeated188

this analysis, focusing on the top 5 or top 15 predicted protein targets. We also repeated this analysis, assuming 10 % and 50%189

repression per miRNA that target a given mRNA. The top and bottom predicted cocktails were similar across these conditions190

and across all six cell lines. We have included the full ranked list of all miRNA cocktails tested across all conditions on Github191

3 Discussion192

In this work, we described a novel methodology for the identification of potential miRNA cocktails for Ewing sarcoma therapy.193

First, we performed mRNA sequencing on six Ewing sarcoma cell lines (GEO accession GSE98787). We then defined a metric194

of cell state, network potential, based on mRNA expression and signaling network topology. Using in silico repression and195

change in network potential, we identified the most important proteins in the cell signaling network for each of the 6 cell196

lines. Notably, this set of proteins was enriched in 24 of the 50 pathways included in the “halmarks” gene set41, 42. The ranked197

protein set was also enriched for genes involved in the canonical miRNA biogenesis pathway6. We then evaluated more than198

16000 3-miRNA cocktails (per cell line) based on predicted ability to disrupt key proteins in the Ewing Sarcoma cell signaling199

network while avoiding cooperative down-regulation of essential housekeeping genes. We ranked these 3-miRNA cocktails to200

identify promising miRNA combinations for therapy of Ewing Sarcoma.201

The protein targets and miRNA candidates we identified in our dataset are consistent with the literature on Ewing sarcoma202

and cancer cell signaling, suggesting biological plausibility of our methodology. Of the top 50 protein targets that we identified,203

Figure 4. TRIM25, APP, ELAVL1, AND RNF4, and XPO1 are the top protein targets ranked by predicted disruption
following in silico repression. Panel A: Box and whisker plot describing the change in network potential following in silico
repression for each of the top 50 proteins. It is notable that EWSR1, the kinase associated with Ewing sarcoma development, is
considered highly influential in the cell signaling network by this method. Genes that have previously been causally implicated
in cancer according to the Cosmic database are highlighted in red40. Essential housekeeping genes (excluding those that are
causally implicated in cancer) are highlighted in blue. The heatmap on the x-axis corresponds to the protein-mRNA correlation
of each gene in the Cancer Cell Line Encyclopedia32. Panel B: Histogram depicting the distribution of Pearson correlation
between mRNA expression and protein expression from the Cancer Cell Line Encyclopedia for all nodes included in our final
Ewing sarcoma cell signaling networks. Proteins that were ranked particularly highly in panel A were labeled in panel B.
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15 were previously causally implicated in cancer40, including EWSR1, the proposed driver of Ewing sarcoma development. In204

addition, our network-based approach suggests that known oncogenic hub genes such as KRAS and MYC are prime targets for205

disruption in cancer cells.206

In addition, many of the miRNA we identified as potential therapeutic candidates have been previously studied due to their207

association with cancer outcomes, including members of the let-7 family, miR-300, miR-424-5p, miR-4282, miR-15a-5p, and208

miR-590-3p. Loss of expression of the let-7 family of miRNA has been widely implicated in cancer development45–48. In209

Ewing sarcoma specifically, low levels of let-7 family miRNA have been correlated with disease progression or recurrence45.210

The let-7 family of miRNA have also been studied as treatment for non-small cell lung cancer in the pre-clinical setting15.211

Loss of miR-300 has been previously correlated with development and aggressiveness of hepatocellular carcinoma49 as well212

as in oncogenesis of pituitary tumors50. Reduced expression of miR-424-5p and miR-4282 have each been implicated in the213

development of basal-like breast cancer51, 52. MiR-15a-5p has been shown to have anti-melanoma activity53. In addition,214

miR-590-3p has been show to suppress proliferation of both breast cancer54, and hepatocellular carcinoma55. The broad215

literature linking many of our proposed miRNA candidates for Ewing sarcoma treatment to the development and maintenance216

of cancer highlights the ability of our computational pipeline to identify potentially promising therapeutic candidates in this217

setting. Prior to application of these findings for treatment of Ewing sarcoma or any other disease, specific in vitro and in vivo218

validation is needed.219

The process by which putative miRNA targets were selected was based on sequence homology rather than direct experimental220

validation. As a result, it is possible that we included false positive miRNA targets in our analysis. For this study we relied on a221

protein-protein interaction network presumably curated from analyzing normal human cells. It is possible that the derangements222

observed in cancer cells could change the underlying interaction network of a tumor cell. In the future, it may be possible to223

utilize protein-protein interaction networks specific to cancer or even specific to the cancer type under study. We also used224

mRNA concentration as a surrogate for protein concentration in designing our cell signaling network. While this is not true225

in all cases, it is likely a reasonable approximation under steady state conditions28–31 (see Section 1.2 for more details). In226

addition, protein-mRNA correlations in the cancer cell line atlas for the top proteins identified by our pipeline were fairly good,227

ranging from 0.07 to 0.8 for the top 50 identified protein targets.32 (Fig S1).228

Despite these limitations, our findings may facilitate the development of novel therapies for patients suffering from Ewing229

Sarcoma. To this point, severe toxicity has limited the translation of miRNA-based cancer therapies to the clinical setting. Our230

pipeline may enable the development of better miRNA therapies that clear this hurdle and open up this promising avenue of231

therapy for patients suffering from cancer. In addition, this novel method can facilitate the rapid identification of key proteins in232

any cancer cell signaling network for which mRNA sequencing data is available. This may facilitate more rapid drug discovery233

and assist in the discovery of proteins and miRNA that play a significant role in the cancer disease process.234
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Figure 5. We identified miR-483-3p, miR-379-3p, and miR-345-5p as the optimal 3-miRNA cocktail for Ewing
Sarcoma therapy. We identified cocktails that are predicted to maximally downregulate target genes (red shading on the
figure), while avoiding downregulation of essential housekeeping genes to limit toxicity (blue shading on the figure). Panel A
shows the targeting heatmap for the best predicted cocktail for cell line A673. The miRNA that make up the cocktail are
presented on the y-axis. Putative gene targets are highlighted on the x-axis. Lines that span multiple miRNAs occur when a
gene is downregulated by 2 or more miRNAs in the cocktail. Panel B shows a histogram of the number of microRNA that
target a given housekeeping gene in the best cocktail. Panel C displays the targeting heatmap for the worst-performing cocktail
for cell line A673 among those tested for reference. Panel D shows a histogram of the number of microRNA that target a given
housekeeping gene in the worst predicted cocktail. Panel E shows a bar graph showing the miRNA that most frequently appear
in either the bottom or top 10 predicted cocktails (averaged across cell lines) for Ewing Sarcoma therapy.
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Figure 6. Many of the most promising miRNA candidates repress large numbers of essential housekeeping genes. We
identified the top miRNA for treatment of Ewing sarcoma, ranked by their predicted disruption of the Ewing sarcoma cell
signaling network. A: Boxplot showing the projected disruption in network potential for the top miRNA candidates (averaged
across all samples). The heatmap on the x-axis describes the number of essential housekeeping genes that each miRNA is
predicted to target. B: Scatterplot showing the relationship between projected network disruption and the number of putative
mRNA targets for a given miRNA. Red labels indicate miRNA that appear in 2 or more of the top 10 predicted cocktails. Blue
labels indicate miRNA that appear in 2 or more of the bottom 10 predicted cocktails.
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Supplemental Materials368

3.1 Additional Analyses369

As described in the main text, we ranked proteins according to their contribution to network stability by calculating the change370

in network potential following complete in silico repression of each protein. In the main text, we limited our analysis to proteins371

that had been causally implicated in cancer according to the cosmic database40. Here, we present the top 50 proteins (when372

network potential for all 6 cell lines was averaged) ranked by contribution to network stability, not limited to proteins that were373

causally implicated in cancer (Figure 4).374

Figure S1. Protein targets ranked by contribution to network stability. When averaging across cell lines, XPO1, LMNA,
EWSR1, HSP90AA1, and CUL3 were identified as the most important proteins in the Ewing sarcoma cell signaling network
(when limiting our analysis to proteins causally implicated in cancer40). When each protein was simulated as completely
repressed in silico, network potential was increased by 654, 456, 429, 425, and 399, respectively. The heatmap at the bottom of
the plot describes the protein-mRNA correlation for each gene in the cancer cell line atlas. Grey indicates no data was available.
It is reassuring that EWSR1, the kinase associated with Ewing sarcoma development, is identified as highly influential in the
cell signaling network by this method.

We also analyzed each cell line individually to identify the top protein targets for each cell line. In the main text, we limited375

this analysis to proteins that had been causally implicated in cancer40. Here, we present the top protein targets for each cell line,376

not limited to those proteins that had previously been causally implicated in cancer (Table S1).377

Gene set enrichment analysis We conducted gene set enrichment analysis, using all genes in our Ewing sarcoma cell378

signaling network as the gene set. We ranked this set of genes by change in network potential and used the “hallmarks” pathways379

set from the Molecular Signatures Database as the genomic background41, 42. We also included a gene set corresponding to380

the miRNA biogenesis pathway56. We used the “fgsea” R package version 1.8.0 to conduct the analysis using the following381

settings: nperm = 500, minSize = 1, maxSize = ∞, nproc = 0, gseaParam = 1, BPPARAM =NULL43. We found our gene set382

to be significantly enriched in several pathways related to oncogenesis, including DNA repair, apoptosis, and MTOR signaling383

(Table S3). These results indicate that network potential can identify a cancer-specific signal from mRNA expression data.384
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TC252 ES2 A673 TC32 EWS502 TC71
1 TRIM25 TRIM25 TRIM25 TRIM25 TRIM25 TRIM25
2 APP APP APP APP APP APP
3 ELAVL1 ELAVL1 ELAVL1 ELAVL1 ELAVL1 ELAVL1
4 RNF4 RNF4 RNF4 RNF4 RNF4 RNF4
5 HNRNPL HNRNPL HNRNPL HNRNPL HNRNPL HNRNPL
6 XPO1 XPO1 XPO1 XPO1 XPO1 XPO1
7 NXF1 NXF1 NXF1 NXF1 NXF1 NXF1
8 UBC TNIP2 UBC UBC UBC UBC
9 TNIP2 UBC TNIP2 TNIP2 TNIP2 TNIP2

10 MOV10 MOV10 MOV10 MOV10 MOV10 MOV10

Table S1. Top protein targets for each cell line. We ranked potential targets by predicted change in network potential when
each protein was modeled as repressed.

TC252 ES2 A673 TC32 EWS502 TC71
1 XPO1 XPO1 XPO1 XPO1 XPO1 XPO1
2 LMNA LMNA LMNA LMNA NTRK1 EWSR1
3 EWSR1 HSP90AA1 HSP90AA1 EWSR1 HSP90AA1 LMNA
4 HSP90AA1 EWSR1 EWSR1 HSP90AA1 EWSR1 HSP90AA1
5 CUL3 CUL3 CUL3 CUL3 LMNA CUL3
6 NTRK1 KRAS NTRK1 NTRK1 CUL3 RECQL4
7 TP53 TP53 RECQL4 TP53 RECQL4 KRAS
8 RECQL4 RECQL4 KRAS KRAS TP53 NTRK1
9 KRAS EGFR TP53 RECQL4 KRAS BRCA1

10 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 TP53

Table S2. Top cancer-associated protein targets for each cell line. We ranked potential targets by predicted change in
network potential when each protein was modeled as repressed, limited to proteins causally associated in cancer according to
the Cosmic database. Proteins that appear in the same position for ≥ 3 cell lines are bolded.

15/16

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2020. ; https://doi.org/10.1101/854695doi: bioRxiv preprint 

https://doi.org/10.1101/854695
http://creativecommons.org/licenses/by-nc/4.0/


pathway pval padj ES NES nMoreExtreme size
1 MITOTIC_SPINDLE 0.00 0.01 0.62 1.47 0.00 197
2 DNA_REPAIR 0.00 0.01 0.59 1.37 0.00 146
3 G2M_CHECKPOINT 0.00 0.01 0.72 1.68 0.00 187
4 APOPTOSIS 0.00 0.01 0.62 1.44 0.00 158
5 PROTEIN_SECRETION 0.00 0.01 0.63 1.44 0.00 94
6 APICAL_SURFACE 0.00 0.01 0.73 1.57 0.00 42
7 UNFOLDED_PROTEIN_RESPONSE 0.00 0.01 0.62 1.43 0.00 106
8 PI3K_AKT_MTOR_SIGNALING 0.00 0.01 0.69 1.58 0.00 104
9 MTORC1_SIGNALING 0.00 0.01 0.61 1.43 0.00 193

10 E2F_TARGETS 0.00 0.01 0.72 1.69 0.00 195
11 MYC_TARGETS_V1 0.00 0.01 0.80 1.89 0.00 193
12 OXIDATIVE_PHOSPHORYLATION 0.00 0.01 0.61 1.42 0.00 184
13 ALLOGRAFT_REJECTION 0.00 0.01 0.54 1.27 0.00 191
14 MIRNA_BIOGENESIS 0.00 0.01 0.80 1.73 0.00 40
15 WNT_BETA_CATENIN_SIGNALING 0.01 0.02 0.68 1.47 2.00 42
16 ANGIOGENESIS 0.01 0.02 0.72 1.53 2.00 34
17 TGF_BETA_SIGNALING 0.01 0.03 0.65 1.43 4.00 53
18 MYC_TARGETS_V2 0.01 0.03 0.64 1.41 4.00 58
19 P53_PATHWAY 0.01 0.03 0.51 1.19 5.00 194
20 UV_RESPONSE_UP 0.01 0.04 0.53 1.23 6.00 153
21 SPERMATOGENESIS 0.02 0.04 0.54 1.24 7.00 126
22 ADIPOGENESIS 0.02 0.04 0.50 1.18 8.00 191
23 INTERFERON_GAMMA_RESPONSE 0.02 0.04 0.50 1.18 8.00 193
24 INTERFERON_ALPHA_RESPONSE 0.02 0.05 0.56 1.28 10.00 91

Table S3. Genes ranked by network potential are enriched for several biological pathways related to cancer as well
as the miRNA bio-genesis pathway Pathways with an adjusted p-value < 0.05 are shown above. “ES” refers to enrichment
score and “NES” refers to the normalized enrichment score. “nMoreExtreme” refers to the number of random gene sets (out of
500) that were more enriched than the test set. Size refers to the number of genes in the pathway that were also present in our
mRNA expression dataset.
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