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Abstract 
 
Chemical reactions among small molecules enable untargeted metabolomics analysis, in which 

small molecules within tissue samples are identified through high-throughput assays. In standard 

mass spectrometry-based metabolomics, first significant small molecules are identified, then 

their biochemical relationships are probed to reveal biological fate (environmental studies) or 

biological impact (physiological response). However, we propose that biochemical relationships 

could be directly retrieved through untargeted high-resolution paired mass distance (PMD), 

which investigates chemical pairs in the samples without a priori knowledge of the identities of 

those participating compounds. We present the potential for this chemical reaction detector, or 

‘reactomics’ approach, linking PMD from the mass spectrometer to biochemical reactions 

obtained via data mining of known small molecular metabolites/compounds and reaction 

databases. This approach encompasses both quantitative and qualitative analysis of reaction by 

mass spectrometry, and its potential applications include PMD network analysis, source 

appointment of unknown compounds, and biomarker reaction discovery instead of compound 

discovery. Such applications may promote novel biological discoveries that are not currently 

possible with classical chemical analysis.  
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Introduction 
 
Metabolomics or non-targeted analysis using high-resolution mass spectrometry is one of the 

most popular analytic methods for unbiased measurement of organic compounds (1, 2). A typical 

metabolomics sample analysis workflow follows a metabolite detection, statistical analysis, and 

annotation/identification of compounds using MS/MS and/or authentic standards. However, 

annotation or identification of unknown compounds is time consuming and sometimes 

impossible, which may limit biological interpretation (3). Through MS/MS, experimentally 

obtained fragment ions of the chemical of interest can be matched to a mass spectral database 

(4), but many compounds remain unreported and therefore unmatchable. Alternately, rules- or 

data mining-based prediction of in silico fragment ions is successful in many applications (2, 5), 

yet these approaches are prone to overfitting the known compounds. Finally, the final validation 

step requires commercially available or synthetically generated analytical standards for 

unequivocal identification, but such standards may not be available for all compounds. In this 

case, the workflow of compounds identification is always biased towards known compounds, 

and biological information from unknown compounds is not fully used.  

 

Biochemical knowledge, through the integration of known relationships between biochemical 

reactions (e.g., pathway analysis), could also help provide potential molecular structures for 

annotating unknown compounds (3). Such methods are readily used to annotate compounds by 

chemical class. For example, the referenced Kendrick mass defect (RKMD) can be used to 

predict lipid class by first identifying a lipid through a specific mass distance (14.01565 Da) then 

identifying specific mass distances of heteroatoms to further determine lipid class (6). Similarly, 

isotope patterns in combination with specific mass distances characteristic of halogenated 

compounds (e.g., +Cl/-H, +Br/-H) can be used to screen halogenated chemical compounds in 

environmental samples (7). For these examples, known mass relationships among compounds 

are used to annotate unknown classes of compounds, providing evidence that a general 

relationship based annotation has the potential to uncover unknown information from samples. 
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The most common relationships among compounds are chemical reactions. Substrate-product 

pairs in a reaction form by exchanging functional groups or atoms. In fact, almost all organic 

compounds originate from biochemical processes, such as carbon fixation (8, 9). As in base 

pairing of DNA (10), organic compounds follow biochemical reaction rules that thereby result in 

characteristic mass differences between paired substrates and their products. Our concept, paired 

mass distance (PMD), reflects such rules by calculating the mass differences of two compounds 

or charged ions. Mass distances can also directly reveal isotopologue information (11), adducts 

from a single compound (12), or adducts formed via complex in-source reactions (13). High-

resolution mass spectrometry (HRMS) can directly measure such paired mass distances with the 

mass accuracy needed to provide reaction-level specificity. Therefore, HRMS has the potential to 

be used as a ‘reaction detector’ to enable reaction-level annotations. Such reaction level 

information from the samples will provide an evidence-based link between protein/enzyme level 

changes in the samples with compounds/metabolite level changes, providing additional 

biological information. 

 

Here, we use multiple databases and experimental data to provide a proof-of-concept for using 

mass spectrometry as a reaction detector. We discuss potential applications of this approach, 

such as PMD network analysis which can be used to search for biologically related metabolites 

to a targeted compound of interest, source appointment which can be used to characterize 

unknowns as endogenous or exogenous, and biomarker reaction discovery which can be used to 

calculate reaction level changes as a predictor of disease. 

Definition 
 
We first define a reaction PMD (PMDR) using a theoretical framework. Then we demonstrate 

how a PMDR can be calculated using Kyoto Encyclopedia of Genes and Genomes (KEGG) 

reaction R00025 as an example (see equation 1). There are three KEGG reaction classes 

(RC00126, RC02541, and RC02759) associated with this reaction, which is catalyzed by enzyme 

1.13.12.16. 

 

Ethylnitronate + Oxygen + Reduced FMN <=> Acetaldehyde + Nitrite + FMN + Water [1] 
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In general, we define a chemical reaction (PMDR) as follows: 

 

S1 + S2 + … + Sn <=> P1 + P2 + … + Pm (n >= 1, m >= 1)     [2], 

 

where S means substrates and P mean products, and m and n the number of substrates and 

products, respectively. A PMD matrix [M1] for this reaction is generated:  

 

 S1 S2 ... Sn 

P1 |S1-P1| |S2-P1| ... |Sn-P1| 

P2 |S1-P2| |S2-P2| ... |Sn-P2| 

... ... ... ... ... 

Pm |S1-Pm| |S2-Pm| ... |Sn-Pm| 

[M1] 

 

For each substrate, Sk, and each product, Pi, we calculate a PMD. 

Assuming that the minimum PMD would have a similar structure or molecular framework 

between substrate and products, we select the minimum numeric PMD as compound PMD 

(PMDSk), of that reaction (Eq. 3).   

 

PMDSk = min(|Sk-P1|,|Sk-P2|,...,|Sk-Pm|) (1<=k<=n)     [3] 

 

Then, the PMDR is defined as the set of substrates’ PMD(s) (Eq. 4): 

 

PMDR = {PMDS1, PMDS2,...,PMDSn}      [4] 

 

For KEGG reaction R00025, S1 is ethylnitronate, S2 is oxygen, S3 is reduced FMN, P1 is 

acetylaldehyde, P2 is nitrite, P3 is FMN, P4 is water, m =3, and n=4. In the PMD matrix [M2] for 

this reaction, shown below, we define PMDEthylnitronate = 27.023 Da, PMDOxygen = 12.036 Da and 

PMDReduced FMN = 2.016 Da. 
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 Ethylnitronate Oxygen Reduced FMN 

Acetaldehyde 29.998 Da 12.036 Da 414.094 Da 

Nitrite 27.023 Da 15.011Da 411.120 Da 

FMN 382.080 Da 424.115 Da 2.016 Da 

H2O 56.014 Da 13.979 Da 440.110 Da 

[M2] 

 

In our example, PMDR is 27.023 Da that is equivalent to the mass difference between two carbon 

atoms and three hydrogen atoms; PMDR is 12.036 Da for the additions of two carbon atoms and 

four hydrogen atoms and loss of one oxygen atom; and PMDR is 2.016 Da for the addition of two 

hydrogen atoms. One reaction can have multiple PMDR , but no more than n PMDR has two 

notations: one is shown as an absolute difference of the substrate-product pairs’ exact masses or 

monoisotopic masses with unit Da. Another notation is using elemental compositions. Here, we 

describe an elemental composition instead of chemical formula, because this notation also 

describes the gain and loss of elements, and therefore the neat mass change. In our example 

reaction, the PMDR can also be written as +2C3H, +2C4H/-O, and +2H. This elemental 

composition can be linked to known chemical processes retrieved from a reaction database, i.e., 

KEGG. For example, +2H represents the elemental composition change of a reaction involving a 

double bond breaking such as our KEGG example RC00126, and +2C3H indicates reaction with 

nitronate monooxygenase (EC:1.13.12.16) or reaction class RC02541. However, some elemental 

compositions, such as +2C4H/-H in our example, might not have a clear mechanism (e.g., no 

suggested KEGG reaction selection). By this definition, PMDR can be generated automatically in 

terms of elemental compositions or mass unit in Da.  

Results and discussion 

PMD analysis of a reaction database 
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To demonstrate the feasibility of using mass spectrometry as a chemical reaction detector, here 

we show that common and biologically relevant reactions can be written as PMDR. KEGG, with 

11262 reactions and 10213 unique formulas, was used as a reference reaction database (14). We 

calculated PMDR for all KEGG reactions and identified 2020 unique reactions (in Da, three 

decimal places). There are several common PMDR values; the 20 highest-frequency values 

covered 7712 KEGG reactions with frequency larger than 100. High-frequency PMDs were 

directly associated with similar biochemical reactions such as oxidation, breaking of double 

bonds, and phosphate transfer reaction (Table 1). This unique property of PMDs facilitates 

annotation of reaction class or reaction-associated enzymes between a pair of compounds 

without a priori knowledge of the identity of each compound. Furthermore, PMDs with low 

frequency can be used as biomarkers of unique reactions.  

 

However, the reaction database also has limitations. For example, PMDR 17.003 Da is the mass 

distance between H2O and H(+), but could not be linked to any known reaction class or enzyme, 

making the PMDR difficult to explain biologically (Table 1). Some PMDR values involved in 

active phosphorus compounds such as ATP or ADP might not be detectable by mass 

spectrometry. Finally, the reaction database is limited to known KEGG reactions and therefore 

does not cover unknown reactions or PMDR. In sum, however, PMD analysis of a reaction 

database provides inference on the reactions among compounds. Using the KEGG database as 

described, we generated a PMD database for reference annotation that is included in our open-

source software package, pmd (https://yufree.github.io/pmd). 

 
Table 1. Top 20 high-frequency KEGG reaction PMDR and corresponding example reaction, 
reaction class, and enzyme. 
 

PMD 
(Da) 

Freq Example 
reaction 

class 

Example 
enzyme 

Example reaction 

1.008 2029 RC00001 1.1.1.42 NAD(+) + succinate <=> fumarate + H(+) + NADH 

2.016 1732 RC00095 1.3.1.84 NAD(+) + propanoyl-CoA <=> acryloyl-CoA + H(+) + NADH 

15.995 1169 RC00002 2.7.4.6 ATP + GDP <=> ADP + GTP 

13.979 1128 RC01658 1.13.12.22 deoxynogalonate + O2 <=> H(+) + H2O + nogalonate 

17.003 936 NAa NA H2O + hypotaurine + NAD(+) <=> H(+) + NADH + taurine 
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79.966 729 RC00002 3.6.1.3   ATP + H2O <=> ADP + H(+) + phosphate 

14.016 594 RC00060 1.5.3.1 S-Adenosyl-L-methionine + Glycine <=> S-Adenosyl-L-homocysteine 
+ Sarcosine 

0 532 RC00302   5.1.1.3 L-glutamate <=> D-glutamate 

162.053 365 RC00049 3.2.1.23 H2O + lactose <=> D-galactose + D-glucose 

18.011 359 RC00331 4.3.1.17 L-serine <=> 2-aminoprop-2-enoate + H2O 

0.984 344 RC00477 3.5.4.17 ATP + H2O <=> ITP + Ammonia 

1.032 262 RC00006 1.4.1.2 L-Glutamate + NAD+ + H2O <=> 2-Oxoglutarate + Ammonia + NADH 
+ H+ 

159.933 243 RC00634  
 

4.2.3.10 Geranyl diphosphate + H2O <=> (-)-endo-Fenchol + Diphosphate 

42.011 237 RC00004 2.3.1.54 Acetyl-CoA + Formate <=> CoA + Pyruvate 

12 228 RC00738 1.13.11.27 3-(4-Hydroxyphenyl)pyruvate + Oxygen <=> Homogentisate + CO2 

27.995 176 RC00292 3.5.4.16 GTP + H2O <=> 7,8-Dihydroneopterin 3'-triphosphate + Formate 

43.99 168 RC00626  1.1.1.42 Oxalosuccinate <=> 2-Oxoglutarate + CO2 

31.99 136 RC00388 1.13.11.1 Catechol + Oxygen <=> cis,cis-Muconate 

177.943 131 RC00637 4.2.3.15 Geranyl diphosphate <=> Myrcene + Diphosphate 

42.01 106 RC00070 3.6.1.20 Acetyl adenylate + H2O <=> AMP + Acetate 

a: no associated reaction class to this PMD. 
 

Mass spectrometry as a reaction detector 

 
Qualitative PMD analysis 
We propose that PMD analysis can be applied using mass spectrometry. Mathematically, a PMD 

of uncharged compounds is equivalent to the PMD of their charged species observed during 

mass spectrometry, as long as both compounds share the same adducts, neutral losses, and 

charges. In our example reaction, reduced FMN has a monoisotopic mass of 458.120265 Da 

while FMN has a monoisotopic mass of 456.104615 Da. Spectra from the human metabolome 

database (HMDB) (15) showed that common ions for reduced FMN and FMN using liquid 

chromatography (LC)-HRMS in negative mode are typically [M-H]- with m/z 457.1124 and 

455.0968, respectively. The mass distance of the monoisotopic masses is 2.016 Da, as is the 

mass distance of the observed adducts. In cases such as this, mass spectrometry can be used to 

detect the PMD of paired compounds.  
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A challenge with HRMS is that for each analyte there is usually not a single ion, but redundant 

peaks that include various adducts, in-source fragments, neutral losses, and isotopes that are 

generated from the same analyte. For PMD analysis we assumed that compounds involved in 

paired biological reactions will generate the same type of redundant peaks in the mass spectra. 

To perform PMD analysis, we must first reduce the number of redundant peaks into independent 

peaks. Using the GlobalStd algorithm (12) or psuedu-spectra from annotation tools such as 

CAMERA (16) or RAMclust (17), a single peak representing the same type (adduct, neutral loss, 

or isotope) between paired analytes is selected for each cluster of redundant peaks. When the 

resulting filtered peaks are used for PMD analysis, they can then be linked to a specific 

biological reaction (PMDR).  

 

Once PMDs are calculated, linking the PMDR to specific elemental compositions will provide 

valuable biological context. However, annotation of the elemental compositions of certain PMD 

is dependent on high-resolution mass spectrometers. Low-resolution instruments that only 

measure nominal mass may not be specific enough to distinguish elemental compositions. For 

example, PMD 14 Da could be the addition or loss of a nitrogen atom or the addition of one 

oxygen atom and loss of two hydrogen atoms.  

 

Here, we use HMDB (15) to compare low-resolution versus high-resolution measurements in 

determining elemental compositions. HMDB contains 114,100 compounds with 11,523 unique 

chemical formulas with known elemental compositions. PMD, as well as the elemental 

composition, was computed for the unique chemical formulas rounded to one, two, or three 

decimal places. Higher frequencies of a PMD are observed when rounding to fewer digits, 

suggesting the presence of false positives (Table 2). As confirmation of the annotation accuracy, 

we determined how many of the PMDs in Table 2 resulted from a change in chemical formula 

linked with the appropriate PMD for the range of reported decimal places (Table 3). For 

example, of the 4934 ion pairs with a PMD of 14.016 Da, > 97% of the pairs included an 

elemental change of +C2H. However, when two decimal places were reported, e.g., PMD of 

14.02 Da, only 60% of the 8003 ion pairs included an elemental change of +C2H. For the top 10 

PMDs, accuracy > 94% was observed when the PMDs were rounded to three decimals, only ≥ 

51% when rounded to two decimal places, and < 10% when only 1 or 0 decimals were used (see 
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Table 3), confirming that high-resolution mass spectrometry is required for qualitative PMD 

analysis and elemental composition annotation.  

 
Table 2: Frequency of PMDs calculated from compounds in HMDB with decreasing mass 
accuracy. 

PMD(digits = 3)* Frequency PMD(digits = 2) Frequency PMD(digits = 1) Frequency PMD(unit) Frequency 

14.016 4934 14.02 8003 14.0 50419 14 156245 

2.016 4909 2.02 7959 2.0 50467 2 156260 

28.031 4878 28.03 7799 28.0 50797 28 155410 

26.016 4229 26.02 7343 26.0 48517 26 154346 

15.995 4214 15.99 7731 16.0 51278 16 155811 

12.000 3861 12.00 7145 12.0 49335 12 155339 

56.063 3861 56.06 6699 56.1 36417 56 151894 

42.047 3771 42.05 6558 42.0 49808 42 153764 

30.011 3698 30.01 6761 30.0 51241 30 154369 

24.000 3689 24.00 6963 24.0 48099 24 154278 

* Ten selected PMDs that occurred most frequently based on three decimal places.  

 
Table 3: Effect of mass accuracy on elemental composition annotation accuracy of top-ten 
selected PMDs from Table 2.  

 PMD(digits = 3) PMD(digits = 2) PMD(digits = 1) PMD(unit) 

+C2H 0.9755 0.6014 0.0955 0.0354 

+2H 0.9703 0.5984 0.0944 0.0352 

+2C4H 0.9783 0.6119 0.0939 0.0356 

+2C2H 0.9775 0.5630 0.0852 0.0309 

+O 0.9808 0.5346 0.0806 0.0307 

+C 0.9826 0.5310 0.0769 0.0283 

+4C8H 0.9653 0.5564 0.1026 0.0286 

+3C6H 0.9737  0.5599 0.0737 0.0275 

+C2HO 0.9440 0.5163 0.0681 0.0260 

+2C 0.9810  0.5197 0.0752 0.0273 

 
 

Quantitative PMD analysis  
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In addition to qualitative analysis, peaks that share the same PMD can be summed and used as a 

quantitative group measure of that specific ‘reaction’ in the sample, thereby, providing a 

description of chemical reaction level changes in a sample without annotating individual 

compounds. There were two types of PMD across samples: static PMD in which intensity ratios 

between the pairs were stable across samples, and dynamic PMD in which the intensity ratios 

between pairs changed across samples. Only static PMDs, those with similar instrument 

response, can be used for quantitative analysis to avoid the complexity of changes from multiple 

peaks(see Table 4 for theoretical example). Similar to another non-targeted analysis (18), we 

suggest an RSD between quantitative pair ratios < 30% and a high correlation between the paired 

peaks’ intensity ( > 0.6) to be considered a static PMD. We provide functions in the pmd 

package to determine static PMD. 

 

Table 4. Demonstration of the selection of quantitative PMD pairs. Mass pair [A, B], [C,D], and 

[E,F] were involved in the same PMD. Only [A, B] and [E, F] are considered static PMD and 

suitable for quantitative analysis since their intensity ratios were stable across sample 1 and 

sample 2.  

 Aa B Intensity ratio C D Intensity ratio E F Intensity ratio 

Sample 1 100 50 2:1 100 50 2:1 30 40 3:4 

Sample 2 1000 500 2:1 10 95 2:19 120 160 3:4 

a peak intensity of theoretical m/z. 

 

While in-source reactions, mass accuracy, and stable paired mass intensity ratio are three 

important considerations for reaction-level qualitative and quantitative analysis via PMDs, the 

described tools and methodologies, namely, removal of redundant peaks, use of HRMS, and 

static PMD selection, can overcome these challenges to enable use of HRMS as a reaction 

detector. 

Reactomics 

We suggest ‘reactomics’ as a new approach to investigate reaction-level changes in biological 

and environmental samples and to link untargeted metabolomics data with biological processes. 

While we envision multiple possible applications for Reactomics, here we describe three 

examples. These applications are facilitated by our free and open-source software (pmd package, 
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version 0.1.6, https://yufree.github.io/pmd) for performing this analysis with annotation using 

both KEGG and HMDB databases. 

PMD network analysis 

PMD network analysis enables identification of metabolites associated with a known biomarker 

of interest. For example, links between high-frequency PMDs from the KEGG reaction database 

and a target analyte can be determined. Selected metabolites caffeine, glucose, bromophenol, and 

5-cholestene were paired with other metabolites in the KEGG reaction database using the top-20 

high-frequency PMDs from Table 1. Different topological properties (e.g., number of nodes, 

communities, etc.) of compounds’ PMD network were observed for each selected target 

metabolite (Figure 1). Comparing these networks with known pathways may allow tentative 

annotation of unknown pathways. For example, an unknown compound with a similar 

topological structure as caffeine (see Figure 1), might have similar biological activity to caffeine.  

 

In fact, PMD network analysis can also be used in combination with classic identification 

techniques, to enhance associated networks with targeted biomarkers. As proof-of-concept, we 

re-analyzed data from a published study to find the biological metabolites of exposure to 

tetrabromobisphenol A (TBBPA) in pumpkin (19, 20) using a local, recursive search strategy 

(see Figure 2). Using TBBPA as a target of interest, we searched for PMDs linked with 

debromination process, glycosylation, malonylation, methylation and hydroxylation, which are 

phase II reactions (e.g., primary metabolites) found in the original paper (19). The identified 

peaks with these PMDs were added to the network as secondary metabolites, and the process 

repeated until all PMDs and extensions were exhausted. Using PMD network analysis, we 

identified 22 unique m/z ions of potential TBBPA metabolites; 15 of these were unique ions not 

described in the original study. Most of the potential metabolites of TBBPA were found as 

higher-generation TBBPA metabolites (Figure 2), which are too computationally intensive to be 

identified using in silico prediction.  
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Figure 1. PMD networks for four selected compounds from the KEGG reaction database. 
Networks are limited to relationships with the 20 top-frequency PMDs.  
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Figure 2. Metabolites of TBBPA in pumpkin seedlings' root samples. Edges between two nodes 
were defined as Pearson's correlation coefficients > 0.6 and shared reactions related PMDs 
including 77.91 Da for debromination, 162.05 Da for glycosylation, 86 Da for malonylation, 
14.02 Da for methylation, and 15.99 Da for hydroxylation. Previously-reported metabolites are 
labeled. 

Source appointment of unknown compounds 

When an unknown compound is identified as a potential biomarker, determining whether it is 

associated with endogenous biochemical pathways or exogenous exposures can provide 

important information toward identification. We found that high-frequency PMDs from HMDB 

are dominated by reactions with carbon, hydrogen, and oxygen (Table 3), suggesting links to 

metabolism pathways. Therefore, if an unknown biomarker is mapped using a PMD network, 

connection to these high-frequency PMDs would suggest an endogenous link. However, 

 
s 
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separation from this network is expected for an exogenous biomarker in which the reactive 

enzyme is not in the database, the exogenous compound is secreted in the parent form, or if it 

undergoes changes in functional groups such as during phase I and phase II xenobiotic 

metabolism processes. In this case, endogenous and exogenous compounds should be separated 

by their PMD network in samples. 

 

Topological differences in PMD networks for endogenous and exogenous metabolites were 

explored using compounds from The Toxin-Toxin-Target Database, T3DB, which annotates 

their entries as endogenous or exogenous origin, and carcinogenic classifications (20). T3DB 

contains 3673 compounds with 2686 unique formulas and 255 endogenous compounds. To avoid 

too many random PMDs with high frequency from exogenous compounds and to focus on those 

with known adverse health associations, we calculated the PMDs between all of the 255 

endogenous compounds and 705 exogenous compounds with carcinogenic 1, 2A, or 2B 

classifications and constructed a PMD network from the top-20 high frequency PMDs. A 

majority of the endogenous compounds were connected into a large network, while the 

exogenous compounds’ networks were much smaller (Figure 3). Interestingly, carcinogenic 

compounds were not connected by high-frequency PMDs. In fact, the average degree of 

connection with other nodes was 8.1 for endogenous compounds and 2.3 for carcinogenic 

compounds. In this case, metabolites with very high or very low degrees of connectivity would 

suggest whether that compound is endogenous or exogenous, respectively.  
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Figure 3. PMD network of 255 endogenous compounds and 705 exogenous carcinogens from 
T3DB database. 

Biomarker reactions 

Reactomics can also be used to discover biomarker ‘reactions’ instead of biomarker 

‘compounds’. Unlike typical biomarkers that are a specific chemical compound, biomarker 

reactions contain all peaks within a fixed PMD relationship and correlation coefficients cutoff. 

Thus, quantitative PMD analysis can be used to determine if there are differences between 
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groups (e.g., control or treatment, exposed or not-exposed, etc.) on a reaction level. Such 

differences would be described as a biomarker ‘reaction’.  

 

In the publicly available dataset MTBLS28 (21), four independent peaks from 1807 samples 

generated the quantitative responses of PMD 2.02 Da. This biomarker reaction (e.g., +2H from 

our annotated database) was significantly decreased in case samples compared with the control 

group (t-test, p < 0.05; see Figure 4). The original publication associated with this dataset did not

report any molecular biomarker associated with this reaction (21). Thus, quantitative PMD 

analysis can offer additional information on biological differences between groups at the reaction 

level that may be lost when focused on analysis at the chemical level. Furthermore, these results 

suggest that follow-up analysis in this population should include targeted analysis of proteins or 

enzymes linked with +2H changes. 

 

on 
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Figure 4. Quantitative PMD analysis identifies PMD 2.02 Da as a potential biomarker reaction 
for lung cancer (MTBLS28 dataset).  
 

Conclusion 
 
We provide the theoretical basis and empirical evidence that high-resolution mass spectrometers 

can be used as reaction detectors through calculation of high-resolution paired mass distances 

and linkage to reaction databases such as KEGG. Reactomics, as a new concept in 

bioinformatics, can be used to find biomarker reactions or develop PMD networks. These 

techniques can provide new information on biological changes, to ultimately promote novel 

biological inferences that may not be observed through classic chemical biomarker discovery 

strategies.  
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