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ABSTRACT: 

Many biological processes are regulated by single molecules and molecular assemblies 

within cells that are visible by microscopy as punctate features, often diffraction limited. 

Here we present detecting-NEMO (dNEMO), a computational tool optimized for accurate 

and rapid measurement of fluorescent puncta in fixed-cell and time-lapse images. The 

spot detection algorithm uses the à trous wavelet transform, a computationally 

inexpensive method that is robust to imaging noise. By combining automated with manual 

spot curation in the user interface, fluorescent puncta can be carefully selected and 

measured against their local background to extract high quality single-cell data. Integrated 

into the workflow are segmentation and spot-inspection tools that enable almost real-time 

interaction with images without time consuming pre-processing steps. Although the 

software is agnostic to the type of puncta imaged, we demonstrate dNEMO using smFISH 

to measure transcript numbers in single cells in addition to the transient formation of 

IKK/NEMO puncta from time-lapse images of cells exposed to inflammatory stimuli.  
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INTRODUCTION: 

Quantitative imaging of single cells enables measurement with subcellular resolution of 

dynamic biological processes that regulate critical cellular behaviors. Processes of the 

central dogma such as active transcription, single mRNA transcripts, sites of active 

protein translation, and other regulatory multi-protein assemblies can be observed by 

fluorescence microscopy as punctate structures within the cell (1-6). Spatiotemporal 

dynamics of signaling proteins, quantified in single cells by live-cell imaging, have 

revealed mechanistic insights into signal-response relationships in signal transduction 

networks in addition to sources of cell-to-cell variability (7-9). However, most live-cell 

imaging approaches use fluorescent biosensors and fusion proteins that report within 

large subcellular compartments, such as the cytoplasm or nucleus, and quantification of 

punctate structures is often limited to fixed-cell and low-throughput applications. Accurate 

detection and quantification of biological puncta is necessary to examine their roles in 

regulating cellular behaviors, and computational analysis is often the rate-limiting step of 

experimental pipelines. 

 The nuclear factor (NF)-κB signal transduction pathway is a master regulator of 

inflammatory responses to injury and infection (10). Following activation of the pathway 

by inflammatory cytokines, such as interleukin-1 (IL-1) or tumor necrosis factor (TNF) 

among others, a series of intracellular signaling events transduce the NF-κB signal. 

Upstream kinase activation by the NF-κB essential modulator protein (NEMO, also known 

as IKKɣ) is a necessary step in regulation of the classical NF-κB signaling cascade (11). 

Following cytokine stimulation, NEMO is recruited to polyubiquitin scaffolds associated 

with cytokine-ligated receptor complexes where NEMO-interacting IκB kinases (IKKs) are 
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activated through induced proximity with other signaling mediators (12-16). In cells that 

express EGFP fused to NEMO exposed to inflammatory cytokines, EGFP-NEMO 

transiently localizes to punctate fluorescent structures near the plasma membrane (16, 

17). The number and timescales of EGFP-NEMO-enriched puncta reveal quantitative 

properties of receptor-associated protein complexes that transmit information from the 

inflammatory milieu into the NF-κB transcriptional system. 

 Here we present detecting NEMO (dNEMO), a free application that uses wavelet-

based spot detection and supervised segmentation to detect and measure properties of 

fluorescent puncta in fixed-cell and time-lapse images. We show that the wavelet-based 

approach is significantly faster than traditional Gaussian fitting methods and allows for 

almost real-time interaction with single cells in quantitative imaging data. Intuitive tools 

for cell segmentation, spot inspection, and background correction, in addition to manual 

and automated selection of puncta based on quantifiable features (e.g. size, location, 

fluorescence) ensure that single cell data are of the highest quality. Results are formatted 

for easy coordination with other software packages, such as single-particle tracking 

applications and other analyses of structural dynamics (18). Using smFISH and live-cell 

data for EGFP-NEMO as demonstrations, we show that dNEMO is a versatile workspace 

for rapid, precise, and robust measurement of fluorescent puncta in digital images.  
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RESULTS: 

dNEMO identifies near diffraction-limited fluorescent puncta in 2D and 3D images 

Wavelet-based approaches are used in image analysis for de-noising, compression, and 

feature extraction with low computational cost (19, 20). In wavelet-based feature 

extraction applications, the source image is decomposed into wavelet maps, a series of 

images where contrast is enhanced for particular spatial features. Since the wavelet 

transform sequentially applies a different convolution matrix at successive levels of the 

algorithm, the size and qualities of spatial features that are enhanced in each wavelet 

map can be modulated. 

The à trous wavelet transform accurately detects and localizes isotropic diffraction-

limited spots such as fluorescent mRNA puncta in single molecule FISH images (21, 22). 

As the wavelet map transform level increases, zeros are progressively inserted into the 

convolution matrix (Figure 1A, see also Supplementary Figure 1). Comparing 

experimental images of diffraction-limited spots at the first level of the wavelet algorithm 

(L1 wavelet map), noise and the smallest puncta in the source image were enhanced 

(Figure 1B, 2nd column). Consistent with previous findings (22, 23),  the L2 wavelet map 

(Figure 1B, 3rd column; see also Movie S1) enhanced contrast for puncta at or near the 

diffraction limit. At higher levels, larger puncta were more resolved (L3 wavelet map; 

Figure 1B, 4th column) at the expense of reduced clarity for smaller puncta. Although 

users of dNEMO can select a wavelet map appropriate for their application, the L2 wavelet 

map was used for all subsequent experiments to detect small molecular assemblies. 

To identify fluorescent puncta near the diffraction limit, the L2 wavelet map was 

segmented using thresholding and watershed algorithms in dNEMO. Briefly, the 
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background is removed from the L2 wavelet map by setting pixel values below a user-

defined threshold to zero and multiplying other pixel values by -1 to generate an inverted 

wavelet map. A watershed is then applied to define local basins in the inverted wavelet 

map. The dNEMO interface updates the source image in real-time to assist users with a 

first-pass visual estimation for puncta identified under the chosen threshold value (Figure 

2, top panel). The spatial coordinates for each basin and the surrounding path are used 

to define the centroid and perimeter respectively for each of the fluorescent punctum. 

Puncta are then evaluated to prevent over-segmentation, where a single punctum with a 

noisy spatial distribution of fluorescence is erroneously segmented by the watershed into 

two or more puncta. To resolve over-segmentation, the paths that connect all pairs of 

centroids separated by less than 10 pixels are scanned for a minimum intensity value. If 

a minimum is not found, the puncta are consolidated, and properties of the merged 

punctum are recalculated. Similarly, centroids falling within 3 pixels of each other are 

combined because this is within the resolution limit of our optical imaging system. 

For analysis of puncta in 3D images, wavelet maps are produced for each 2D slice 

of the image stack. Centroids identified in each slice are referenced against centroids in 

adjacent slices and puncta are merged between slices of the image stack if the X-Y 

coordinates of their centroids fall within a Euclidean distance of 2 pixels. Using this 

approach in parallel with fluorescence information for the same punctum in adjacent 

image slices, an axial component of each centroid can be calculated and overlapping 

spots can be resolved (Supplemental Figure 2). Fluorescence properties for each 3D 

punctum can be either aggregated across image slices or measured at the image slice 

that corresponds to the axial centroid. Once user-defined settings are established, 
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dNEMO is typically run in batch processing mode so that the methods for puncta detection 

are identical across all images in an experiment. 

 

Local background correction and cell segmentation for accurate quantification of 

puncta in single cells 

Slow-varying background from non-specific dye accumulation and free fluorescent 

proteins that are not part of molecular assemblies, among other sources, will contribute 

to the measured intensity of a punctum. To correct for these effects, dNEMO collects local 

background pixel information for each punctum in the source image. Puncta identified in 

the inverted wavelet map are dilated (24) to define annular rings around each punctum 

with user-defined offset and width (Figure 2, middle right panel and Supplemental Figure 

3; see also Methods). A distribution of pixel intensities in the source image is measured 

within each annulus to establish the mean fluorescence intensity of the local background. 

For pixels identified in puncta, fluorescence intensity values are measured in the source 

image and the local background is subtracted. To ensure accurate estimation of the local 

background, annuli pixels are not collected in the vicinity of other puncta (Supplemental 

Figure 3B). Instead of using procedural generation of annuli for each punctum, the 

method in dNEMO operates directly on the wavelet map and consequently background 

correction is rapid. 

To associate and compare puncta between single cells, dNEMO contains an 

interactive polygon tool for manual cell segmentation (Figure 2, middle left panel). All 

puncta contained within the polygon are associated and puncta features, such as their 

number and distributions of fluorescent intensities among others, can be collated for each 
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single cell (Figure 2, middle left panel). As a demonstration, we used dNEMO to detect 

single molecules of mRNA from smFISH images of TNF-induced expression of the 

NFKBIA gene (25). Although there was significant variability in transcript numbers when 

compared between single cells, the size and fluorescence intensity distributions of puncta 

were similar (Figure 3).  

In the final analysis for 2D and 3D images, fluorescent and spatial properties are 

measured for each background-corrected punctum. User-defined bounds for the size and 

intensity of puncta can be used to filter puncta within a chosen range of fluorescence and 

size. In the user interface, filtered puncta are indicated with a red circle (Figure 2, middle 

right panel) which can also be hidden for visual clarity. The interface also provides tools 

for manual exclusion of erroneously identified puncta, and a spot-inspector tool to 

examine features of puncta in closer detail. Cell segmentation is independent from the 

detection and curation of puncta, and features are updated post hoc for each segmented 

cell if user-defined settings for spot detection are changed. 

 

Spot detection in dNEMO is rapid and accurate 

In comparison with spot-fitting methods, such as 3D Gaussian or maximum likelihood 

estimation (26), the wavelet-based approach in dNEMO does not require iterative 

estimation of parameters or image pre-processing steps. To compare against our 

application, we selected the software package FISH-quant (27) primarily because it 

implements a 3D Gaussian fitting method for detection of transcripts and it’s actively used 

in the research community. For example, we had previously used FISH-quant to detect 

single mRNA molecules in the context of stochastic transcription events (28).  
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Although the localization accuracy and runtime of the à trous and Gaussian fitting 

methods have been compared at the level of the algorithm  (22), we set out to make a 

practical comparison of applications using simulated and fixed-cell data. To test both 

applications, we generated noisy experimental images using a theoretical point spread 

function (PSF) to simulate diffraction-limited fluorescent puncta in a slow-varying 

background with varying amounts of Gaussian noise (Top row, Figure 1b; Supplemental 

Figure 4a; see also Methods). We compared localization accuracy for dNEMO and FISH-

quant using the same sets of simulated images. With ground truth information for the 

position and number of puncta in simulated data, we found that both applications have 

almost negligible localization error in low noise, but error rates for dNEMO remained lower 

for images with greater noise (Supplemental Figure 4b). Wall-clock time for single core 

performance using whole-image smFISH data showed that dNEMO is over 15-fold faster 

than FISH-quant on a modern laptop computer (Supplemental Figure 4c), with an 

estimated 80% elapsed execution time dedicated to the over-segmentation algorithm.  

We finally compared accuracy of the background-corrected intensity for detected 

puncta by comparing intensity values for a raw image with a deconvolved image. 

Deconvolution is a computationally expensive pre-processing approach that redistributes 

out-of-focus light in a 3D image, thereby increasing the effective image resolution and 

precision of intensity measurements. R2 values demonstrated that background corrected 

intensity values for raw and deconvolved images (Supplemental Figure 4d) are almost 

equivalent, and significantly greater than uncorrected images (R2 values of 90 and 58 

respectively; Supplemental Figure 4e). We therefore conclude that image pre-processing 

steps such as deconvolution do not necessarily increase the relative accuracy of dNEMO 
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intensity measurements in arbitrary units. Taken together, when images are collected in 

the linear regime of an imaging sensor such as the sCMOS used here, spot quantification 

in dNEMO is rapid, accurate, and robust to noise in imaging data. 

 

Keyframing to detect time-varying features of puncta in time-lapse images  

Keyframing is a process in animation that denotes the start and end frames in a 

time series where parameter values change. dNEMO uses a keyframing approach for 

users to make changes for any user-defined parameter and to track single cells in time-

lapse experiments. For example, a user may define a region of the time-lapse where the 

wavelet map threshold or the user-defined bounds for acceptable puncta are modified to 

account for effects of photobleaching or other systematic artifacts. A more common use 

for keyframing in dNEMO is to adjust the segmentation polygon to account for morphology 

changes and cell movement over the time-lapse image (Figure 2, bottom panel). 

 To demonstrate keyframing we analyzed a time-lapse image of CRISPR/Cas9-

modified U2OS cells that express EGFP-tagged NEMO from its endogenous gene locus 

in response to IL-1(16). Formation of NEMO puncta in single cells were tracked by making 

keyframe adjustments to cell segmentation polygons (Figure 4A; see also Movie S2). 

Fluorescent properties of NEMO puncta were followed over the time-lapse to monitor 

time-courses for adaptive changes in NEMO puncta numbers in addition to distributions 

for fluorescent properties for NEMO puncta over time in each cell (Figure 4B). By selecting 

appropriate parameters, such as the wavelet map level and limiting boundaries for puncta 

intensity or size, punctate structures can be accurately measured and curated in digital 

images to produce high-quality single-cell datasets.    
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DISCUSSION: 

In this work we have shown that dNEMO is an effective tool for quantification of 

fluorescent puncta in fixed-cell and time-lapse images. The à trous wavelet algorithm 

progressively removes high frequency noise within fluorescent images and can be used 

to enhance puncta near the diffraction limit and larger. When compared with established 

methods, dNEMO performs with comparable or better localization accuracy, depending 

on the amount of noise in the source image, and is significantly faster. Although dNEMO 

is suitable for detection of relatively bright structures in epifluorescence images, model 

fitting may still be the preferred method for detection of structures with lower signal-to-

noise (29, 30). Keyframing in dNEMO provides an effective interface to curate single cell 

data and correct for systematic effects in imaging data. We demonstrate dNEMO using 

fixed-cell smFISH and live-cell enrichment of EGFP-NEMO to puncta and expect dNEMO 

will also excel at quantifying other fluorescence reporters, including components of the 

central dogma, protein assemblies, and bright vesicular structures. 

 Updates to dNEMO are expected to further reduce its runtime and enhance its 

capabilities. One notable limitation of the current dNEMO implementation is the 

disproportionate amount of overhead dedicated to the over-segmentation algorithm. We 

expect that these can be mitigated through updates for parallelization of the over-

segmentation process or by modifications to the watershed algorithm that reduce the 

computational expense while maintaining accuracy. Beyond runtime improvements, one 

of the largest bottlenecks is the manual segmentation of cells. We are actively considering 

experimental methods for labeling and incorporating an automated cell segmentation 

approach into dNEMO, either directly or through a plug-in system where users can 
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choose their own cell segmentation method. Finally, we are also streamlining dNEMO 

data structures for compatibility with existing single-particle tracking packages (31), so 

that time-varying properties of single puncta can be tracked and associated with single-

cell responses.  

 Tools dedicated to the processing of biological images have enabled many studies 

of single cell variability and dynamics, and contributed to the discovery of emergent 

cellular properties. dNEMO fills a gap in the scientific community by providing a simple 

workspace for users to interact with biological puncta in fluorescence microscopy images 

that are central to fundamental cellular processes. The software is controlled with a 

MATLAB user interface or as a stand-alone executable, and is available as 

Supplementary Software or at https://github.com/recleelab along with a user manual and 

test data used to generate the figures in this article.   
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METHODS: 

The dNEMO user interface 

The user interface is a MATLAB-based application which provides several means of 

interaction with single-channel images and movies. Users load a given image or movie 

into the application. The two overarching processes of the application, cellular 

segmentation and puncta identification, are independent of one another and do not rely 

on each other to properly function. Puncta are identified by creating a keyframe to perform 

the wavelet transform over the frames of a time-lapse image. Further curation is handled 

using an interactive distribution of identified puncta within the current image and imposing 

limits based on spot size or intensity among other measured properties. Settings like the 

wavelet map level and the minimum number of consecutive slices of a 3D image a spot 

must appear in are user-defined parameters. Once the user settings are established for 

an experiment, the same settings are batch processed over all indicated images. A cell 

segmentation button in the interface initiates a process where the user defines a cell 

perimeter with an interactive polygon. The user then moves forward through the frames 

of a time-lapse movie and manipulates the polygon to define changing boundaries of the 

same cell. Once cells are segmented and puncta are localized, data for a single cell time-

course are automatically combined and stored and the number of puncta identified per 

cell is displayed in a graph in the lower right-hand corner of the dNEMO GUI. A detailed 

view of identified puncta can be shown using a dedicated ‘spot inspector tool’, and spots 

erroneously identified by the wavelet transform (larger objects, vesicular artifacts) can be 

manually excluded with an interactive removal tool. Results can be saved and reloaded 

within the dNEMO interface for further analysis. All per-cell and per-spot trajectories are 
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stored in the resulting output files in MATLAB and Excel-compatible formats.  

 

The à trous wavelet transform 

Implementation of the à trous wavelet algorithm is largely adapted from Izeddin and 

colleagues (22). Briefly, the raw image is convolved with a matrix to create a wavelet map 

of the initial image. The L1 kernel is initially populated with values supplied by the third 

order B-spline (B3) (32). As the level of the transform increases (L2, L3, etc.) zeros are 

inserted between each of the initial matrix values at increasing amounts. This effectively 

adds “holes” in the convolution matrix with more zeros inserted as the level of the wavelet 

transform increases (see Supplemental Figure 1). Subtracting the convolved image from 

the initial image produces a wavelet map. To identify puncta, a user-defined value is	

multiplied by the standard deviation of the distribution of pixel intensities in the wavelet 

map to define a threshold. The threshold is used to classify pixels as either background 

or foreground. Sub-threshold pixel values are set to 0 and considered background, 

foreground pixels are associated with puncta and analyzed further in the following 

watershed segmentation and analysis steps.  

 

Watershed segmentation 

To determine centroids within each identified region within the wavelet map we used the 

MATLAB (Mathworks) watershed function. Pixel values for the selected wavelet map (L1, 

L2, etc.) are inverted so that foreground objects act as “catchment basins” for the 

watershed transform. For each punctate structure identified by the watershed transform, 

properties of interest are measured as defined by the user, including centroid location, 
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size, and intensity of the punctum, among others (see guide packaged with software).  

 

Local background correction 

Background correction is performed locally for individual puncta in the source image. A 

binary mask is created representing the regions identified by the à trous wavelet transform 

and dilated by a user-defined number of pixels (Supplemental Figure 3). Pixel intensity 

values are collected from the annular ring around each punctum and used as the 

punctum’s local background. An additional user-defined parameter can be assigned to 

offset the inner diameter of the annular ring. The buffer region excludes the background 

pixels that immediately surround the punctum and may contain out-of-focus light from the 

fluorescent source. The background pixel values measured in the annular ring for a 

punctum are averaged and subtracted from each pixel identified within the punctum in the 

source image.  

 

Cell segmentation 

Segmentation of individual cells is performed by the user using an interactive polygon 

tool. This polygon can be further adjusted by the user in subsequent frames to account 

for morphology changes and cell movements over time. Cell segmentation uses the 

keyframing approach described above. 

 

Simulated images with diffraction-limited objects 

Three-dimensional matrices of size 512 x 512 x 64 (X, Y, Z) were populated with zeros. 

A polygon containing pixel values comparable with intensity values found in cellular 
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regions in fluorescence microscopy images was inserted into every z-plane of each matrix 

to approximate slow-varying background fluorescence, such as unbound dyes or 

fluorescent proteins that do not reside in puncta. Pixel values within each polygon were 

increased moving from the polygon’s edges towards the polygon’s center and eventually 

plateaued at some constant value halfway between the polygon’s edges and centroid. A 

small Gaussian smoothing filter was applied to each pixel associated with the inserted 

polygon. Theoretical point spread functions (PSFs) produced by the software package 

PSFGenerator (33) were individually inserted into the three-dimensional matrix within the 

bounds of the previously created polygon. To emulate punctate structures whose 

fluorescence would not be uniform when captured under a microscope, individual PSF 

pixel values were multiplied by a brightness factor randomly selected in the range [0.5, 1] 

prior to insertion. Once the matrix contained both simulated cellular regions and 

theoretical PSFs, multiple instances of the same matrix were produced with increasing 

noise. Gaussian noise was introduced to the matrix from a distribution with increasing 

standards of deviation up to 300. The MATLAB code to produce a set of simulated images 

of some dimensions [height, width, depth] with N number of theoretical PSFs and 

Gaussian noise along S standards of deviation is provided alongside the dNEMO 

application here: https://github.com/recleelab. 

 

Comparison with FISH-quant results 

Simulated images containing theoretical point spread functions (PSFs) approximating 

diffraction-limited objects of known coordinates and intensities were analyzed separately 

using dNEMO and FISH-quant (27). Puncta were identified in both dNEMO and FISH-
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quant using the tools available in the “Spot Filter” or “Spot Detection” components, 

respectively. Additional post-processing of the puncta identified using FISH-quant was 

performed using the “Thresholding” tool supplied in FISH-quant. Puncta were considered 

successfully identified if the measured centroid was within a Euclidean distance of 2 of 

the true centroids. Error rates for puncta localization accuracy were determined as the 

simulated image was subjected to Gaussian noise of increasing standards of deviation 

(Supplemental Figure 4). The error rate was determined as the number of false positives 

and number of false negatives found in each image over the total number of signals 

present within the image (either 1500, 2500, or 5000 theoretical PSFs; Supplemental 

Figure 4a).  

 

Benchmarking dNEMO results 

The same fixed-cell smFISH 3D image (1024 x 1024 x 45) image was analyzed with 

dNEMO and FISH-quant on a 2015 MacBook Pro laptop (16 GB RAM, 2.5 GHz 

processor) or a Intel® Xeon® PC (128 GB RAM, 2.3 GHz processor). Times were 

measured using native methods in MATLAB for the core punctum detection algorithms 

and fluorescence intensity quantification. Reported times do not include image pre-

processing steps in FISH-quant (background correction and background region 

assignment, among others), image loading times, or other user-GUI interactions.  The 

smFISH image was analyzed 5 times in each application for statistical comparisons 

(Supplemental Figure 4c). 
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Comparing smFISH transcripts identified in raw and deconvolved images 

NFKBIA transcripts detected by smFISH in HeLa cells were obtained from a previous 

study (25) and were deconvolved with SoftWoRx using hardware specifications for the 

DeltaVision microscope (Applied Precision, GE Healthcare Life Science) used for the 

original image acquisition. Both images were analyzed with dNEMO and mean intensities 

for the same puncta were compared between images. We show both the uncorrected 

mean intensity and mean intensity corrected for local background (Supplemental Figure 

4e). The R2 value for identified puncta is improved significantly (Supplemental Figure 4f), 

demonstrating the accuracy for measurement of background-corrected puncta.  
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SUPPLEMENTAL INFORMATION:  

Supplemental information includes four figures and two movies can be found with this 

article online. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/855213doi: bioRxiv preprint 

https://doi.org/10.1101/855213
http://creativecommons.org/licenses/by/4.0/


AUTHOR CONTRIBUTIONS: 

Conceptualization, R.E.C.L.; Methodology, R.E.C.L., G.J.K., and N.S.; Software G.J.K., 

N.S., and R.E.C.L.; Image Acquisition, J.A.C., Y.G., Q.Z., and R.E.C.L.; Software Testing, 

J.A.C., Y.G., Q.Z.; Writing – Original Draft, G.J.K. and R.E.C.L.; Writing – Review & 

Editing, R.E.C.L., G.J.K., J.A.C., Y.G., and N.S.; Visualization, R.E.C.L. and G.J.K; 

Funding Acquisition, R.E.C.L.; Supervision, R.E.C.L. 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/855213doi: bioRxiv preprint 

https://doi.org/10.1101/855213
http://creativecommons.org/licenses/by/4.0/


ACKNOWLEDGMENTS  

We thank Sanjana Gupta, Chaitanya Mokashi, and David Schipper for helpful 

discussions. We also thank Suzanne Gaudet for the use of smFISH images. This work 

was funded by NIH grant (R35-GM119462) to R.E.C.L. 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/855213doi: bioRxiv preprint 

https://doi.org/10.1101/855213
http://creativecommons.org/licenses/by/4.0/


FIGURE LEGENDS: 

Figure 1: The à trous wavelet transform on simulated and experimental images 

(a) 3D representations of the convolution matrix (kernel) for levels 1 through 3 of the 

wavelet transform. (b) Images for simulated data (top), smFISH-labeled NFKBIA 

transcripts (middle), or GFP-NEMO (bottom), along with the associated L1, L2, and L3 

wavelet maps. The L2 wavelet map enhances contrast for diffraction-limited puncta in 

fluorescence microscopy images. Scale bar 25 microns.  

 

Figure 2: Overview of the dNEMO workflow 

(a) In the first operation performed by the application, the image undergoes the à trous 

wavelet transform, producing a wavelet map, which is subsequently segmented using by 

watershed to identify puncta. (b) Individual cells are separately identified through an 

interactive manual segmentation tool operated by the user (middle left). (c) Once 

identified by the wavelet transform, identified puncta can be curated based on features 

like intensity and size. Puncta intensities are corrected using local background pixels for 

each individual punctum. (d) Settings used to define valid puncta for a single image are 

propagated over sets of time-lapse images creating a keyframe. Combined with previous 

segmentation of individual cells, punctum features are quantified over time and 

associated to single cells. 

 

Figure 3: Identification of smFISH transcripts in fixed-cell images 

(a) NFKBIA transcripts in HeLa cells labeled by smFISH are identified using dNEMO and 

associated to single cells. Scale bar 50 microns. (b) Distribution of puncta identified in 
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individual cells reported by intensity (top) or size in number of pixels (bottom). 

Fluorescence per spot was corrected using the local background about each spot (see 

Supplemental Figure 3).  

 

Figure 4: Quantification of EGFP- NEMO in live-cell time-lapse images 

(a) Live-cell time-lapse images of U2OS cells expressing EGFP-NEMO from its 

endogenous locus exposed to 100 ng/mL IL-1. NEMO transiently localized to punctate 

structures and were identified with dNEMO and associated to individual cells. Scale bar 

20 microns. (b)  Analysis of puncta identified within single cells over time. The number of 

puncta (top), the distribution of puncta intensities (middle), and the distribution of puncta 

sizes (bottom) are shown per cell over time. 
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a) Wavelet Transform and spot identification

b) Cell Segmentation
and spot association

c) Spot quantification and curation

d) Keyframing and quantification of spot features in time-lapse images
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