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Abstract

The emerging field of radiomics, which consists of transforming standard-of-care images to quan-

tifiable scalar statistics, endeavors to reveal the information hidden in these macroscopic images. This

field of research has found different applications ranging from phenotyping and tumor classification

to outcome prediction and treatment planning. Texture analysis, which often consists of reducing

spatial texture matrices to summary scalar features, has been shown to be important in many of the

latter applications. However, as pointed out in many studies, some of the derived texture statistics are

strongly correlated and tend to contribute redundant information; and are also sensitive to the parameters

used in their computation, e.g., the number of gray intensity levels. In the present study, we propose

first to consider texture matrices, with an emphasis on gray-level co-occurrence matrix (GLCM), as a

non-parametric multivariate objects. The proposed modeling approach avoids evaluating redundant and

strongly correlated features and also prevents the feature processing steps. Then, via the Wasserstein

distance from optimal mass transport theory, we propose to compare these spatial objects to identify

computerized tomography slices with dental artifacts in head and neck cancer. We demonstrate the

robustness of the proposed classification approach with respect to the GLCM extraction parameters and

the size of the training set. Comparisons with the random forest classifier, which is constructed on scalar

texture features, demonstrates the efficiency and robustness of the proposed algorithm.
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I. INTRODUCTION

The importance of medical imaging has expanded to all major area of health care, includ-

ing oncology. Motivated by the goal of unveiling the information hidden in standard-of-care

images, the research field of radiomics has emerged [1]. Radiomics, which consists of the high-

throughput extraction of quantitative features from medical images using automated quantification

algorithms, is becoming a powerful tool in different applications, e.g., outcome prediction, tumor

classification, treatment planning, and personalized therapy [2], [3], [4], [5] to cite few examples.

Texture analysis, which refers to the quantification of spatial variations in gray levels within an

image or region of interest (ROI), is widely used and has been successful in different studies,

e.g., [6], [7], [8].

Usually in the radiomics research field, characterizing texture consists first of computing

multivariate texture matrices such as gray-level co-occurrence matrix (GLCM), run-length matrix

(RLM), size zone matrix (SZM), and neighborhood gray-tone difference matrix (NGTDM), and

then reducing these multivariate objects to scalar summary statistics. This reduction step may

lead to a loss of the spatial information that is inherent in texture matrices. In fact, Vickers

and Modestino [9] noted in their work that using scalar features of GLCM for a classification

task is suboptimal and that better results may be obtained by using the spatial GLCM directly

in their proposed maximum likelihood classifier. Moreover, it has been pointed out in several

studies that some of the resulting summary statistics (i) are highly correlated which may lead

to overfitting [10], [11], [12], and (ii) also depend on gray-level discretization [13]. In [14],

the authors propose to model GLCM as a multivariate object using a latent Gaussian Markov

random field model in order to avoid the loss of spatial information. The method has shown

promising results in classifying benign and malignant adrenal lesions. Moreover, considering the

GLCM as a density function resulted in texture features that are less sensitive to the gray-level

quantization, as shown in [15], [16].

Motivated by these recent works, we propose in this study: (i) to consider texture matrices in

general, and GLCM in particular, as non-parametric multivariate objects; and (ii) use Wasserstein

distance, from Optimal Mass Transport (OMT) theory, as a metric to compare them for the

purpose of classifying computed tomographic (CT) slices with dental artifacts in head and neck

cancer (H&NC). The OMT problem seeks the most efficient way to transform one distribution
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of mass to another given a cost function [17]. It origins go back in 1781, when Gaspar Monge

formulated the problem of finding the minimal transportation cost to redistribute earth for

building fortifications [18]. Leonid Kantorovich in 1942, relaxed Monge’s formulation to find an

optimal coupling of distributions using linear programming [19]. Since then, OMT has played

a crucial role in many fields of science and engineering; see [20], [21]and references therein.

The increased interest in the use of OMT-based metrics, known as Wasserstein distance or

Earth-Mover’s-Distance (EMD) in the engineering field, is mainly due to their natural ability

to capture spatial information when comparing signals, images, or other types of data. This

allows to provide various data distributions with different geometric interpretations, which we

are seeking to capture from spatial texture matrices in the present work.

II. MATERIALS AND METHODS

Dental artifacts can dramatically attenuate the quality of CT images and make their analysis

challenging. It is essential, therefore, to develop an automated algorithm to detect CT slices with

dental artifacts in H&NC. This preliminary preprocessing phase will allow taking measures to

reduce the effect of the noisy slices when using the images for other modeling purposes. In

this section, we present an automatic classification algorithm, which is based on the idea of

considering GLCM as a multivariate object, not a summary of scalar statistics, and employs the

Wasserstein distance to compare pairs of GLCMs.

A. Data characteristics

The proposed method was applied to two datasets: (i) an internal dataset of 44 H&N CT

scans from our institution, resulting in 1165 axial slices with voxel sizes ranging from 0.0914−

0.1367cm (median: 0.0977cm) and slice thickness 0.1− 0.3cm (median: 0.25cm), and (ii) an

external dataset of 24 H&N CT scans from the open-source archive TCIA [22], resulting in 679

slices with voxel sizes ranging from 0.0352−0.0977cm (median: 0.0488cm) and slice thickness

0.0450−0.5009cm (median: 0.25cm). Both datasets were resampled to 0.0977cm×0.0977cm×

0.25cm prior to analysis, resulting in 1235 and 620 slices from internal and external datasets,

respectively. Each CT slice was labeled as noisy or clean based on the presence of dental artifacts

by a medical imaging expert, resulting in 334(27.04%) noisy and 901(72.96%) clean slices from

MSK cohort, and 53(8.55%) noisy and 567(91.45%) clean slices from TCIA cohort.
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B. Radiomic texture features

CT images were thresholded (at the 5th percentile) to exclude regions of air, followed by

morphological processing to extract the patient’s outline. GLCMs were extracted within the

resulting mask using the radiomics extension of the Computational Environment for Radiolog-

ical Research (CERR) [23]. GLCMs were computed by combining contributions from all 2-D

neighbors, using 4 different gray levels from 16− 128 and 5 different sampling rates between

±15% from the original resolution. The resulting parameters are listed in Table I. Additionally,

25 scalar features, which are listed in Table II, were extracted from the GLCMs to be used in

a machine learning classifier for comparison purpose.

Voxel resolution 0.0830cm×0.0830cm, 0.0903cm×0.0903cm, 0.0977cm×0.0977cm, 0.1050cm×0.1050cm, 0.1123cm×0.1123cm

No. gray levels 16, 32, 64, 128

TABLE I: GLCM extraction parameters.

1 : Energy 10 : Inverse difference normalized 18 : Cluster tendency

2 : Joint entropy 11 Inverse variance 19 : Cluster shade

3 : Joint max 12 : Difference entropy 20 : Cluster prominence

4 : Joint average 13 : Difference variance 21 : Haralick correlation

5 : Joint variance 14 : Sum average 22 : Auto-correlation

6 : Contrast 15 : Sum entropy 23 : First measure of information correlation

7 : Inverse difference moment 16 : Sum variance 24 : Second measure of information correlation

8 : Inverse difference moment normalized 17 : Correlation 25 : Dissimilarity

9 : Inverse difference

TABLE II: GLCM-based scalar features.

C. Image classification algorithm using spatial GLCMs and Wasserstein distance

We use the theory of OMT [17] to define distances between spatial GLCMs, which we consider

as 2-D probability distributions.
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Let ρ0, ρ1 be two d-dimensional probability distributions defined on Ω⊂Rd . The Wasserstein-

1 distance is defined as follows:

inf
π:Ω×Ω→R

∫
x,y∈Ω

‖x− y‖p π(x,y)dxdy,

subject to
∫

y∈Ω

π(x,y)dy = ρ0(x), ∀x ∈Ω

∫
x∈Ω

π(x,y)dx = ρ1(y), ∀y ∈Ω

π(x,y)≥ 0, ∀x,y ∈Ω

(1)

where ‖.‖p, 1≤ p≤ ∞, is the ground metric of the Wasserstein distance. The variable π is the

set of joint distributions π : Ω×Ω→ R whose marginal distributions are ρ0, ρ1.

An equivalent alternative formulation of the Wasserstein-1 distance, which is simpler and

computationally more efficient, is defined by the following optimization problem:

inf
m:Ω→Rd

∫
x∈Ω

‖m(x)‖p dx,

subject to ∇ · (m(x)) = ρ0(x)−ρ1(x), ∀x ∈Ω

m(x).n(x) = 0, ∀x ∈ ∂Ω

(2)

where “∇·” denotes the divergence operator, n(x) is the normal to the boundary ∂Ω, and m is a

d-dimensional field satisfying the zero flux boundary condition [24]. A fast numerical scheme

that relies on multilevel primal-dual optimization algorithms was proposed in [25] to solve (2).

This latter numerical scheme is adopted in the present study.

• Proposed classification algorithm: We start by normalizing the computed GLCMs to be

2-D probability distributions. This step, essential to apply the balanced OMT theory introduced

earlier, doesn’t affect the textural pattern. However, interestingly, it was found in recent studies

that this step offers some advantages. It adjusts for heterogeneity in lesion size [14], and produce

texture features that are invariant to the quantization gray-levels [15], [16]. We then partition the

available data to training and test sets, where the training dataset consists of a subset of MSK

slices, and the test dataset is comprised of the whole TCIA slices. The proposed supervised

classifier mainly relies on comparing 2-D normalized GLCMs of the test CT slices with the

ones of the training set using Wasserstein-1 distance. We point out that the comparison between
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the GLCMs extracted from MSK and TCIA cohorts is performed using the same values of

the extraction parameters (voxel resolution and number of gray levels). The main steps of the

proposed classification algorithm, which are depicted in Figure 1, are given as follows

(i) We randomly select a subset, N1 = 50, of noisy and clean slices, denoted ns j and cs j, for

j = 1 : N1, respectively, from the training cohort.

(ii) Then, for a given TCIA slice denoted si, i = 1 : N2, with N2 = 620, we compute the

Wasserstein distance between its corresponding GLCM and the ones of all noisy and clean

MSK slices. This step is repeated 5 times, resulting two matrices Mr
c =W r

1 (si,cs j)∈RN2×N1

and Mr
n =W r

1 (si,ns j) ∈ RN2×N1 , for r = 1 : 5.

(iii) Based on the averaged comparison with respect to the training dataset between W r
1 (si,cs j)

and W r
1 (si,ns j), the class for slice si is concluded.

(iv) Finally, Youden’s J index = (sensitivity + specificity – 1), which is a way of summarizing

sensitivity and specificity metrics into a single numeric value, was used to assess the

accuracy of the classification results.

III. RESULTS

We evaluated the performance of the proposed algorithm for different parameter combinations

involved in the computation of GLCM. We also compared the results of the proposed classifier

with the random forest classifier, which uses the scalar features shown in Table II. Robustness

of both algorithms with respect to the GLCM computation settings and size of the training set

was carried out as well.

Figure 2 depicts Youden’s J index that combines the performances of classifying the noisy and

clean slices correctly, i.e., sensitivity and specificity, in a single number. The best performance

of 77.76% (sensitivity: 87.2%, specificity: 90.57%) is achieved for a gray-level discretization

level of 16 and voxel resolution of 0.83mm× 0.83mm. It is worth noting, however, that the

performance for other combination pairs of GLCM extraction parameters is also good with

small variability between the relatively bad and best performances (mean = 76.66 %, std =

1.54 %). Regarding the random forest classifier, the best performance of 76.24% (sensitivity:

89.07%, specificity: 87.17%) is achieved with gray-level quantization of 32 and voxel resolution

of 1.05mm×1.05mm as illustrated in Figure 2. We emphasize, however, that the performance
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Fig. 1: Flowchart of the proposed classification algorithm for CT slices with dental artifacts in

H&NC.

of the random forest technique is more sensitive to the GLCM computation settings (mean =

69.94 %, std = 3.63 %).

We also tested the sensitivity of the performance of the classifiers to different sizes of training

data. The results of the proposed classifier and the random forest are given in Tables III and

IV, respectively. The OMT/spatial GLCM based method performs better than the random forest

approach for a small number of training data (10 slices). Even for this small number of training

data, the proposed algorithm was not very sensitive to the GLCM computation settings, while
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Fig. 2: Classification accuracy results using 100 traning data (50 noisy and 50 clean). Upper

panel: Proposed OMT/spatial GLCM classifier. Lower: Random forest classifier.
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the random forest method fails to achieve good performance for all the considered extraction

parameter pairs, as depicted in Figure 3. Increasing the size of the training set leads to a significant

increase in the accuracy of the random forest approach, while the proposed method achieves

comparable good classification results (see Tables III and IV).

Size of training set
10 (5 noisy/5 clean) 40 (20 noisy/20 clean) 100 (50 noisy/50 clean) 400 (200 noisy/200 clean)

mean (std) mean (std) mean (std) mean (std)

Sensitivity (test data) 0.8594 (0.0043) 0.8699 (0.0028) 0.8703 (0.0023) 0.8704 (0.0024)

Specificity (test data) 0.8840 (0.0148) 0.8949 (0.0172) 0.8962 (0.0166) 0.8975 (0.0153)

Youden’s J index (test data) 0.7434 (0.0158) 0.7648 (0.0162) 0.7666 (0.0154) 0.7680 (0.0143)

TABLE III: Robustness of the classification results to the size of training dataset using the

proposed OMT/spatial GLCM based classifier. The mean and std represent the average and

standard deviation of the classification accuracy for the different combination pairs of GLCM

extraction parameters.

Size of training set
10 (5 noisy/5 clean) 40 (20 noisy/20 clean) 100 (50 noisy/50 clean) 400 (200 noisy/200 clean)

mean (std) mean (std) mean (std) mean (std)

Sensitivity (test data) 0.5660 (0.0821) 0.8741 (0.0204) 0.8848 (0.0154) 0.8909 (0.0103)

Specificity (test data) 0.5283 (0.1227) 0.7711 (0.0454) 0.8145 (0.0451) 0.8574 (0.0284)

Youden’s J index (test data) 0.0943 (0.1639) 0.6452 (0.0357) 0.6994 (0.0363) 0.7483 (0.0254)

TABLE IV: Robustness of the classification results to the size of training dataset using random

forest and GLCM scalar features. The mean and std represent the average and standard deviation

of the classification accuracy for the different combination pairs of GLCM extraction parameters.

IV. DISCUSSION

In this study, we investigated two ideas related to texture analysis for medical images. The

first idea is based on directly utilizing texture matrices, not their scalar summary statistics,

as multivariate radiomic features. The second idea consists of using a robust metric, the so-

called Wasserstein distance, on these high-dimensional objects to classify CT images with dental
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Fig. 3: Classification accuracy results using 10 traning data (5 noisy and 5 clean). Upper panel:

Proposed OMT/spatial GLCM classifier. Lower: Random forest classifier.
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artifacts in H&NC. Combining these two ideas has resulted in a classification algorithm that is

less sensitive to the GLCMs computation parameters. It also does not need a large number of

training data to achieve high classification performance.

The potential of using the GLCM as a multivariate object for an oncological application

recently introduced in [14]. In this work, the authors used a Gaussian Markov random field

model to characterize GLCMs. Their modeling approach was employed to distinguish between

benign and malignant adrenal lesions based on CT scans, and the obtained results were promising

compared to different machine learning methods that were based on scalar feature quantities.

The concept though of using multidimensional parametric models such as Markov random field

to capture texture is old [26], [27], but never used in oncology to the best of our knowledge.

Even though there is no precise universal definition for texture [11], it still remains a key

element of visual perception to analyze images in different fields, particularly the cancer research

field. Therefore, more efforts need to be employed to go beyond the summary texture features

by considering the multivariate structure of texture matrices. Doing so, hopefully, will avoid

information loss of the functional patterns that describe the perfusion, density, or morphology

of tumor microenvironment.

This work is the first proof-of-concept study that offers some new insights in dealing with

texture to reveal the intrinsic heterogeneity observed in medical images. Further research in-

vestigations need to be conducted in the future to show the applicability and potential use of

multivariate texture matrices (GLCM, RLM, SZM, NGTDM) and OMT theory for other purposes

besides medical image classification, e.g., in outcome prediction and treatment planning. A

potential future direction is to combine the geometrical texture features, which consists of the

Wasserstein distance between texture lattices, with other types of radiomic features, e.g., shape,

to build appropriate machine learning prediction models.

V. CONCLUSION

We developed a classification algorithm for 2D medical images based on the Wasserstein

distance and the multivariate GLCMs. Overall, the proposed classifier approach outperformed

the random forest method, which does not leverage the spatial information in GLCMs, in terms

of robustness to the GLCM extraction parameters as well as the size of the training set.
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