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Abstract10

Many recent microbial genome collections curate hundreds of thousands of genomes. This volume complicates11

many genomic analyses such as taxon assignment because the associated computational burden is substantial.12

However, the number of representatives of each species is highly skewed towards human pathogens and model13

organisms. Thus many genomes contain little additional information and could be removed. We created a frugal14

dereplication method that can reduce massive genome collections based on genome sequence alone, without the15

need for manual curation nor taxonomic information.16

We recently created a genome representation for bacteria and archaea called “nanotext”. Thismethod embeds each17

genome in a low-dimensional vector of numbers. Extending nanotext, our proposed algorithm called “thinspace”18

uses these vectors to group and dereplicate similar genomes.19

We dereplicated the Genome Taxonomy Database (GTDB) from about 150 thousand genomes to less than 2220

thousand. The resulting collection increases the percent of classified reads in a metagenomic dataset by a factor21

of 5 compared to NCBI RefSeq and performs equal to both a larger as well as a manually curated GTDB subset.22

With thinspace, massive genome collections can be dereplicated on regular hardware, without affecting downstream23

results. It is released under a BSD-3 license (github.com/phiweger/thinspace).24
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Introduction25

New microbial genome collections curate hundreds of thousands of genomes.1–3 However, many organisms tend26

to be overrepresented.4 For example, 9.5% of genomes in the Genome Taxonony Database (GTDB)3 belong to E.27

coli. This redundancy complicates downstream analyses. For example, to assign reads to taxa, a k-mer index is28

required,5 and this index can only be computed on a large compute cluster for genome collections of even moderate29

size. One way to approach this problem is to dereplicate the collection, i.e., to remove copies of similar genomes.6,730

Two genomes are typically considered similar if their average nucleotide identity (ANI) is above some threshold,31

such as 0.95 at the species level.8 However, to compare each genome with all others in the collection scales32

quadratically with the size of the collection. We recently proposed “nanotext”, a method to represent genomes33

based on their protein domains, just like documents can be represented by the words they contain.9 Each genome34

is represented as an “embedding”, an n-dimensional vector of numbers. These vectors can be used as direct input35

to many dimensionality reduction and clustering algorithms. Here we propose “thinspace”, an algorithm that can36

dereplicate vast collections with millions of genomes on standard hardware without affecting task performance on37

read-based taxon assignment.38

Results39

We dereplicated the entire GTDB with 150 thousand genomes down to 20 thousand (7.5%) on a regular laptop in40

under a day using a new dereplication algorithm called “thinspace”. The algorithm starts from a collection of genome41

sequences and precomputed embeddings. Each embedding is a latent representation of a genome’s protein con-42

tent in a 100-dimensional vector of numbers.9 The algorithm returns the dereplicated input collection. Thinspace43

uses a divide-and-conquer approach and proceeds in two main steps. First, genome vectors are grouped using an44

unsupervised, density-based clustering method, where similar genomes – i.e., genomes with overlapping protein45

content – end up in the same cluster. Because genomes are represented in few dimensions, this clustering scales46

to potentially billions of data points.10,11 Second, within each cluster, pairwise nucleotide distances are computed47

for each genome against all others. The resulting distance matrix describes a graph, where an edge connects48

two vertices (genomes) if their pairwise ANI exceeds 0.95, a threshold commonly applied to discern species-level49

groups.8,12 For each connected component of this graph, the genome with the largest N50 is chosen as represen-50
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tative in the resulting, dereplicated collection. Large clusters are a resource constraint (e.g. a single cluster with51

13,876 members of E. coli in the GTDB). Therefore, clusters that contain more than 500 genomes are processed52

in batches and iteratively recombined until a stable number of representatives is found. The entire cycle is re-53

peated twice to increase the number of dereplicated genomes (25% reduction in the second iteration, less then 5%54

thereafter).55

Dereplication efficiency is dependent on the quality of the clustering of similar genomes during the first step of56

the thinspace algorithm. The identified clusters contain homogenous taxa, and taxa rarely spread across cluster57

boundaries. We quantified this at the species (genus) level, with a Rand score of 0.65 (0.71) and a mutual infor-58

mation score of 0.76 (0.80), where 0 indicates a random allocation of point labels to clusters and 1 means perfect59

separation.60

We validated our approach on a metagenomic read classification task for 20 recently sequenced biogas samples,61

comparing the collection of dereplicated genomes from thinspace (n=21,798) against a manually created, high-62

quality subset of genomes from the GTDB (n=24,706), hereafter called “GTDB 25k”.4 Both approaches perform63

near-identical on this task with the same percentage of long reads classified (GTDB 25k: 39.2% ± 13.6%, thinspace:64

39.4% ± 13.7%, Figure 1), and they slightly underperform a much larger collection of GTDB genomes (n=54,000,65

40.9% ± 14.2%, p=1, Bonferroni-corrected ANOVA).13 The classification based on the NCBI RefSeq collection66

retrieves only about one fifth of those taxonomic hits (8.5% ± 9%, p<0.001, Bonferroni-corrected ANOVA). For short67

reads, these results are replicable, with a larger classification variance due to less information per read (Figure 1).68

We compared the performance of thinspace to the current standard dereplication technique of all-vs-all distance69

computation. Popular examples include dRep,6 which estimates the (nucleotide) distance between genomes with70

an efficient k-mer based method called Mash,14 as does our algorithm at the cluster level. For performance, there71

are two main considerations: First, the amount of memory required to store a genome (representation) limits the72

number of genomes that can be compared simultaneously to one another. Second, the number of pairwise com-73

parisons determines the number of CPU hours required for the distance computations.74

Thinspace uses the nanotext genome representation of a genome as a vector of numbers9 and requires 2 KB per75

genome (for a vector of 100 dimensions with floating-point numbers). Mash requires at least five times more to76

represent a genome, with about 10 KB for 1,000 32-bit hash integers, depending on the “sketch size”14 (Table77
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Figure 1: Performance of indices used in taxonomic read classification and built from different col-
lections of genomes: NCBI RefSeq, the Genome Taxonomy Database (“GTDB 54k”), a manual
dereplication of the GTDB (“GTDB 25k”)4 and the dereplicated collection created using thinspace.
Performance was assessed on short (Illumina) and long (Nanopore) reads generated from 20
metagenomic biogas samples. As has been observed previously,13 all GTDB-based collections
increase the number of classified reads dramatically compared to NCBI RefSeq (p<0.001). Re-
sults are similar for long and short reads. Surprisingly, when one reduces the number of reference
genomes to about one representative genome per species, the percentage of reads classified does
not decrease significantly, neither by manual (“GTDB 25k”4) nor automatic curation (thinspace).
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1). To compare each genome in the GTDB to all others, 10.63 billion distance calculations in 48.19 CPU hours78

are needed. The divide-and-conquer approach of thinspace reduces this to 0.41 billion comparisons in 1.86 CPU79

hours (3.85%, Table 1). The hashing of all genomes by Mash is required in both approaches.80

Table 1: Required resources for genome dereplication of the entire Genome Taxonomy Database
(GTDB, about 150 thousand genomes). Compared are an all-vs-all k-mer based approach (Mash,
usingMinHash genome sketches)14 and the thinspace algorithm, which relies on nanotext genome
embeddings.9 The latter drastically reduces the required resources and can thus scale to far larger
collections with millions of genomes.

metric unit all-vs-all thinspace

memory per genome kilobyte >10 2

calculate distance matrix CPU hours 48.19 1.86

number of comparisons billion 10.63 0.41

Discussion81

Microbial genome collections are growing towards a million genomes and beyond. Using these vast collections in82

downstream tasks is often impossible, due to the equally large compute resources required. We solve this problem83

by first representing genomes as vectors of numbers, and then clustering and dereplicating them in a divide-and-84

conquer strategy, which reduces the computational requirements dramatically. Common “batch” strategies, in which85

the genome collection is randomly split into subsets,2 are avoided. Our algorithm does not require a priori taxonomic86

knowledge of the input genomes. The result performs equally well compared to manual dereplication on a common87

classification task.88

Thinspace performs two computations that the all-vs-all method does not: First, each genome needs a protein89

domain annotation, and all annotations are used to train the nanotext genome model.9 Second, the genome em-90

beddings have to be clustered. Thinspace uses the HDBSCAN algorithm, which scales to billions of data points.10,1191

The clustering performance can be further augmented by first reducing the dimensions of the embedding vectors,92

for which thinspace provides an option using the UMAP algorithm.15 This upfront cost has advantages compared93

to an approach purely based on nucleotide distance: Nanotext vectors can correctly represent even incomplete94

5

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/855262doi: bioRxiv preprint 

https://doi.org/10.1101/855262
http://creativecommons.org/licenses/by-nc/4.0/


genomes,9 which Mash cannot.6 Also unlike Mash, nanotext can reliably calculate pairwise genome distances be-95

low an ANI of 0.8.9,14 In conclusion, thinspace can dereplicate millions of even incomplete genomes over large96

distances on standard hardware in a reasonable time.97

Methods98

For genome embeddings, we used the nanotext library (v0.1, github.com/phiweger/nanotext) with the “core” model99

which emphasises core genes for genome comparison. The resulting vectors of numbers were clustered using100

HDBSCAN.15 To assess the quality of the clustering, we use theRand score (adjusted)16 and themutual information101

score (adjusted)17 as implemented in the sklearn library (v0.21.3, scikit-learn.org). Clusters were dereplicated using102

custom scripts developed by Ryan Wick (github.com/rrwick/Assembly-Dereplicator) as was the reformatting of the103

results (github.com/rrwick/Metagenomics-Index-Correction) to be compatible with index generation by Centrifuge.5104

We compared precomputed indices from NCBI RefSeq and the GTDB13 to those we generated for dereplicated105

GTDB subsets, one that was manually curated4 and one generated by thinspace. After assigning reads of at least106

150 bases to taxa, the Centrifuge output was filtered to above a quality score of 250. The biogas metagenomes107

are available from the European Nucleotide Archive (ENA) under the project accession PRJEB34573.108
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