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Abstract:	21	
Neural oscillations are routinely analyzed using methods that measure activity in 22	
canonical frequency bands (e.g. alpha, 8-12 Hz), though the frequency of neural 23	
signals is not fixed and varies within and across individuals based on numerous 24	
factors including neuroanatomy, behavioral demands, and species. Further, 25	
band-limited activity is an often assumed, typically unmeasured model of neural 26	
activity and band definitions vary considerably across studies. These factors 27	
together mask individual differences and can lead to noisy spectral estimates and 28	
interpretational problems when linking electrophysiology to behavior. We 29	
developed the Oscillatory ReConstruction Algorithm (“ORCA”), an unsupervised 30	
method to measure the spectral characteristics of neural signals in adaptively 31	
identified bands which incorporates two new methods for frequency band 32	
identification. ORCA uses the instantaneous power, phase, and frequency of 33	
activity in each band to reconstruct the signal and directly quantify spectral 34	
decomposition performance using each of four different models. To reduce 35	
researcher bias, ORCA provides spectral estimates derived from the best model 36	
and requires minimal hyperparameterization. Analyzing human scalp EEG data 37	
during eyes open and eyes-closed “resting” conditions, we first identify variability 38	
in the frequency content of neural signals across subjects and electrodes. We 39	
demonstrate that ORCA significantly improves spectral decomposition compared 40	
to conventional methods and captures the well-known increase in low-frequency 41	
activity during eyes closure in electrode- and subject-specific frequency bands. 42	
We further illustrate the utility of our method in rodent CA1 recordings. ORCA is a 43	
novel analytic tool that will allow researchers to investigate how non-stationary 44	
neural oscillations vary across behaviors, brain regions, individuals, and species.  45	
 46	
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Introduction	47	
Neural	oscillations	are	increasingly	recognized	as	important	mesoscopic	48	
components	of	the	neural	code	(Buzsaki	2012;	Hanslmayr	et	al.,	2012;	Watrous	et	49	
al.,	2015a).	Several	lines	of	evidence	across	species	and	behaviors	demonstrate	that	50	
the	frequency	of	neural	oscillations	varies	across	individuals	and	shifts	to	support	51	
neural	communication	and	influence	behavior	(Klimesch	1999;	Rudrauf	et	al.,	2006;	52	
Cohen	2014;	Wutz	et	al.,	2018;	Watrous	et	al.,	2013;	Furman	et	al.,	2018;	Mireau	et	53	
al.,	2017).	Across-study	differences	in	both	the	recording	equipment	and	electrode	54	
positioning	relative	to	dipoles	may	further	contribute	to	frequency	variability.	55	
Finally,	inter-	and	intra-subject	frequency	variability	has	been	observed	even	when	56	
using	the	same	equipment	and	sampling	the	same	cortical	areas	(Haegens	et	al.,	57	
2014;	Zhang	et	al.,	2018).	These	factors	limit	researcher’s	ability	to	link	oscillations	58	
to	neuronal	spiking	and	behavior	in	individual	subjects,	particularly	under	59	
circumstances	in	which	frequency	variability	may	obscure	spectral	decomposition	60	
from	filtering	artifacts	(de	Cheveigne’	and	Nelken,	2019).	61	
	62	
To	overcome	such	frequency	variability	and	gain	statistical	insights	by	reducing	the	63	
number	of	comparisons	(i.e.	frequencies),	many	existing	approaches	perform	64	
spectral	decomposition	in	canonical,	a	priori	frequency	bands	(e.g.	“alpha”,	~8-12	65	
Hz)	and	average	results	over	subjects	(e.g.	Addante,	Watrous	et	al.,	2011),	although	66	
there	are	several	limitations	with	this	approach.	First,	defining	frequency	bands	can	67	
be	subject	to	researcher	bias	and	band	definitions	are	inconsistent	across	studies,	68	
leading	to	confusion	amongst	researchers	(Newsom	and	Thiagarajan,	2019).	Second,	69	
this	approach	conflates	periodic	and	aperiodic	components	of	the	signal	and	makes	70	
assumptions	about	waveform	shape	(Haller,	Donoghue,	Peterson	et	al.,	2018;	Cole	&	71	
Voytek,	2017),	and	is	rarely	quantified	or	compared	against	alternatives.	Finally,	the	72	
usage	of	canonical	frequency	bands	obscures	subject-level	variability.		73	
	74	
It	thus	remains	unclear	which	frequency	bands,	which	we	consider	as	implicit	75	
models	of	oscillatory	activity,	produce	the	best	spectral	decomposition	for	76	
individual	subjects.	We	posit	that	the	usage	of	canonical	frequency	bands	has	been	77	
historically	necessary	(Brazier	et	al.,	1961)	but	constitutes	an	untested	model	of	78	
oscillatory	activity	that	warrants	quantification.	Building	upon	prior	methods	that	79	
aim	to	identify	bands	based	on	time-averaged	power	spectra	(Haller,	Donoghue,	80	
Peterson,	et	al,	Watrous	et	al.,	2018)	and	quantify	oscillatory	components	of	neural	81	
signals	(Hughes	et	al.,	2012),	we	sought	to	derive	temporally-resolved	and	82	
electrode-specific	spectral	estimates	by	directly	quantifying	spectral	decomposition	83	
performance	using	different	frequency	bands.	84	
	85	
Here,	we	present	the	Oscillatory	ReConstruction	Algorithm	(“ORCA”)	that	is	86	
designed	to	capture	spectral	variability	and	improve	spectral	decomposition.	We	87	
introduce	new	methods	for	identifying	frequency	bands	based	on	either	spectral	88	
peaks	relative	to	the	signal	background,	spectral	variability,	or	explained	variance,	89	
and	compare	these	methods	to	canonical	frequency	bands.	ORCA	quantifies	spectral	90	
decomposition	performance	using	each	method	through	signal	reconstruction	and	91	
comparison	to	the	input	signal	and	provides	as	output	the	instantaneous	amplitude,	92	
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phase,	&	frequency	of	activity	in	optimized	bands.	ORCA	is	thus	a	novel	spectral	93	
decomposition	and	recomposition	algorithm	that	blindly	improves	spectral	94	
estimates	using	a	data-driven	approach	to	minimize	experimenter	bias.	Our	results	95	
demonstrate	that	ORCA	captures	subject-	and	electrode-specific	oscillatory	signals	96	
in	human	and	rodent	data,	improves	spectral	decomposition	compared	to	existing	97	
methods,	and	captures	classical	low-frequency	modulations	associated	with	eye	98	
closure	in	resting	scalp	EEG.	We	thus	provide	a	proof	of	principle	for	improving	the	99	
spectral	decomposition	of	diverse	neural	recordings.	100	
	101	
Results	102	
To	investigate	the	issue	of	frequency	variability	across	subjects,	we	first	analyzed	103	
the	frequency	content	in	a	scalp	EEG	dataset	recorded	from	22	subjects	during	eyes	104	
open	and	eyes	closed	resting	conditions.		We	used	a	reconstruction-based	approach	105	
that	quantifies	the	explained	variance	each	frequency	contributes	to	the	neural	106	
signal.	Figure	1A	shows	the	r2	values	for	the	first	3	subjects	in	the	dataset	and	107	
reveals	considerable	diversity	in	the	frequency	content	of	neural	signals	both	across	108	
subjects	and	electrodes.	Focusing	on	occipital	sensors	across	subjects,	we	109	
nonetheless	identified	a	peak	in	the	canonical	alpha	range	in	many	subjects	and	110	
sensors	(Figure	1B).		Interrogating	activity	at	individual	frequencies,	we	found	that	111	
average	r2	values	were	largest	at	occipital	sites	for	10	Hz	activity	in	the	canonical	112	
alpha	band	and	were	largest	at	frontal	midline	sites	for	activity	in	the	canonical	113	
delta	and	theta	bands	(Figure	1C).		Given	the	considerable	frequency	diversity	114	
across	subjects	and	electrodes	(Figure	S1),	these	observations	suggest	that	spectral	115	
decomposition	should	benefit	when	the	particular	spectral	characteristics	of	each	116	
EEG	channel	are	taken	into	consideration.		117	
	118	

	119	
Figure	1	Spectral	variability	across	subjects	and	electrodes.		120	
A)	Explained	variance	(r2)	at	each	electrode	and	frequency	in	the	first	3	subjects.	B)	121	
Explained	variance	for	all	subjects	at	3	posterior	electrodes,	O1,	POz,	and	02.	Most	122	
subjects	show	a	peak	in	explained	variance	around	10	Hz	but	with	considerable	123	
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frequency	variability	across	subjects.	C)	Group-averaged	r2	values	at	each	electrode	124	
location,	plotted	separately	for	activity	at	2,	6,	and	10	Hz.	Average	r2	values	are	125	
largest	over	frontal	sites	at	2Hz	and	over	posterior	sites	at	10	Hz.	126	
	127	
We	developed	ORCA	towards	this	goal,	aiming	to	improve	spectral	decomposition	128	
by	using	data-driven	band	identification	methods.	Figure	2	shows	a	schematic	of	the	129	
keys	steps	in	the	ORCA	algorithm	for	electrode	O1	from	subject	1	(see	methods	for	130	
further	details).	The	signal	is	pre-processed	and	subject	to	four	different	methods	131	
for	band	identification	(Figure	2A-B).	ORCA	uses	a	subset	of	the	recorded	signal	to	132	
identify	bands	and	avoid	over-fitting.	The	signal	is	band-pass	filtered	in	each	band	133	
(Figure	2C)	and	the	amplitude,	phase,	and	frequency	of	the	signal	in	each	band	are	134	
extracted	following	a	Hilbert	transform.	These	spectral	estimates	are	then	used	135	
during	spectral	recomposition	to	reconstruct	the	input	signal	(Figure	2D).	136	
Reconstruction	accuracy	is	quantified	via	r2	fit	between	the	input	and	reconstructed	137	
signal	(Figure	2E).	The	bands	and	spectral	estimates	that	produce	the	best	138	
reconstruction	are	retained	and	used	to	calculate	a	normalized	amplitude	measure	139	
in	each	band	(Figure	2F).	On	this	example	electrode,	bands	based	on	the	explained	140	
variance	(i.e.	Coeffecient	of	determination	method,	‘CoD’,	green)	outperformed	each	141	
other	method	in	reconstructing	the	neural	signal	(Figure	2E).	This	example,	along	142	
with	another	using	rodent	data	(Figure	2,	Supplement	1;	see	further	below	for	143	
rodent	results),	quantitatively	demonstrates	that	spectral	decomposition	can	be	144	
improved	using	electrode-specific	frequency	bands.		145	
	146	

	147	
Figure	2	ORCA	Schematic	148	
Schematic	of	the	key	steps	in	the	ORCA	algorithm,	illustrated	using	example	149	
electrode	O1	from	Patient	1.	For	an	example	using	rodent	data,	see	Figure	2	150	
Supplement	1.	A)	Step	1:	Preprocess	the	signal,	with	optional	steps	including	signal	151	
rectification,	notch	filtering	to	remove	line	noise,	broadband	filtering	to	restrict	152	
signal	activity	into	a	range	of	interest	(e.g.	.5-128	Hz),	and	downsampling.	B)	Step	2:	153	
Band	Identification.	Colored	boxes	indicate	different	possible	band	boundaries	154	
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identified	using	each	of	4	different	methods.	The	upper	green	panel	shows	bands	155	
identified	using	the	Coefficient	of	determination	(‘CoD”)	method,	which	proved	best	156	
on	this	electrode.	The	middle	panel	in	yellow	shows	band	identified	using	the	157	
spectral	coefficient	of	variation	and	bands	detected	using	a	peak-picking	algorithm	158	
are	shown	in	blue.	The	orange	panel	shows	bands	identified	using	the	PeakPick	159	
method	(Watrous	et	al.,	2018).	The	dashed	blue	line	shows	the	estimated	1/f	signal.	160	
The	purple	lower	panel	shows	the	classical	bands	.	C)	Step	3:	For	each	method,	161	
spectral	estimates	are	extracted	in	each	band	using	the	filter	&	Hilbert	transform	162	
method.	The	filtered	signal	in	each	CoD	identified	band	is	shown.	D)	Step	4:	Signal	163	
reconstruction	using	spectral	estimates	derived	from	each	band	identification	164	
method.	Colored	traces	show	the	reconstructed	signal	using	each	band	identification	165	
method.	The	black	trace	from	panel	A	is	superimposed	for	comparison.	R2	values	166	
indicate	the	explained	variance	of	the	reconstructed	data	segment	to	the	input	data	167	
segment.	E)	Step	5:	Reconstruction	quantification.	Scatter	plot	shows	the	raw	vs.	168	
reconstructed	signal	for	the	entire	recording	for	each	reconstruction	method.	Inset	169	
bar	graph	shows	the	proportion	of	time	each	band	identification	method	had	the	170	
largest	r2.	F)	Step	6:	Filtered	signals	and	spectral	estimates	from	the	method	with	171	
the	highest	reconstruction	accuracy	are	used	to	compute	normalized	amplitude	in	172	
each	band.	The	plot	shows	the	normalized	amplitude	in	each	band	defined	using	the	173	
CoD	method.	174	
	175	
We	ran	ORCA	on	each	electrode,	first	asking	which	band	detection	method	yields	the	176	
highest	reconstruction	accuracy.	Figure	3A	shows	the	best	method	for	each	subject	177	
and	electrode	and	reveals	that	custom	frequency	bands	outperform	classical	178	
frequency	bands	in	93%	of	electrodes.	More	specifically,	we	found	that	bands	179	
defined	using	the	CoD	method	were	best	across	57.8%	of	electrodes,	followed	by	180	
PeakPick	in	30.7%	of	electrodes.	The	spectral	coefficient	of	variation	(SCV)	method	181	
was	best	in	4.4%	of	electrodes	and	the	classical	bands	were	best	in	6.8%	of	182	
electrodes.	The	CoD	and	PeakPick	methods	were	best	over	frontal	and	posterior	183	
channels,	respectively	(Figure	3,	Supplement	1).	Assessing	electrodes	for	which	each	184	
method	was	best,	the	CoD,	PeakPick,	and	SCV	methods	identified	an	average	of	4.1,	185	
4.03,	and	4.3	frequency	as	compared	to	the	classical	6	frequency	bands.	This	186	
observation	rules	out	the	possibility	that	the	data-driven	methods	were	superior	187	
because	they	used	more	parameters	(i.e.	frequency	bands)	to	reconstruct	the	signal.	188	
Together,	these	findings	indicate	that	data-driven	methods	to	identify	frequency	189	
bands	can	improve	spectral	decomposition	and	argue	against	the	usage	of	a	priori	190	
frequency	bands	when	performing	spectral	decomposition.		191	
	192	
	193	
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	194	
Figure	3:	ORCA	improves	spectral	decomposition.		195	
A)	The	winning	band-identification	method	that	yields	the	highest	reconstruction	196	
accuracy	for	every	subject	and	electrode.	The	COD	method	produces	the	best	results	197	
overall,	both	quantified	across	subjects	at	each	electrode	(right	panel)	or	across	198	
electrodes	within	subject	(lower	panel).	B)	Reconstruction	accuracy	for	the	winning	199	
method	for	every	subject	and	electrode.	The	right	and	lower	panels	show	the	mean	200	
(red)	±	1	standard	deviation	(gray)	for	each	electrode	and	subject.	C)	Comparison	of	201	
the	best	method	versus	classical	frequency	bands,	expressed	as	an	effect	size.	202	
Curves	show	cumulative	probability	density	functions	of	effect	size	for	each	subject.	203	
The	black	line	indicates	data	pooled	over	all	subjects	and	electrodes.	D)	Scalp	plot	204	
showing	the	average	effect	size	(Cohen’s	q)	across	subjects	at	each	scalp	location.	205	
	206	
We	next	investigated	the	improved	performance	of	ORCA,	which	was	able	to	capture	207	
97.3%	of	the	signal	variance	on	average	when	using	the	best	method	on	each	208	
electrode	(Figure	3B).	We	then	quantified	the	improvement	in	spectral	209	
decomposition	between	different	methods.		After	Fisher’s	z-transform,	we	210	
compared	r2	values	from	the	best	method	vs.	classical	bands	(Figure	3B),	and	211	
observed	significantly	greater	r2	values	for	the	best	method	(paired	t-test,	t(1407)	=	212	
52.7,	p<10^-10).	Similarly	comparing	the	effect	size	of	improvement	between	the	213	
best	and	classical	band	methods	on	each	electrode,	the	majority	of	electrodes	(74%)	214	
showed	a	small	to	medium	effect	size,	with	substantial	variation	across	subjects	215	
(Figure	3C).	All	but	subject	6	showed	at	least	one	electrode	with	a	medium	effect	216	
size	(q>.3)	and	9/22	subjects	showed	at	least	one	electrode	with	a	large	effect	size	217	
(q>.5).		Frontal	and	occipital	channels	showed	the	largest	improvement	(Figure	3D).	218	
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These	results	demonstrate	that	ORCA	is	a	superior	alternative	to	conventional	219	
methods	for	spectral	decomposition	of	neural	data.	220	
	221	
Thus	far,	we	have	shown	that	ORCA	improves	spectral	decomposition	through	the	222	
identification	of	electrode-specific	frequency	bands.	We	next	determined	if	it	is	223	
feasible	to	make	group	level	inference	using	these	customized	frequency	bands	on	224	
each	channel	by	asking	how	activity	was	modulated	during	eyes	open	and	eyes	225	
closed	conditions.	Figure	4A	shows	an	example	electrode	whose	~10	Hz	activity	was	226	
significantly	modulated	during	eye	closure	(Bonferroni	p<.05	following	permutation	227	
test).		ORCA	captured	similar	activity	modulations	spanning	the	classical	alpha	and	228	
beta	bands	at	most	posterior	electrodes	in	this	subject	(Figure	4B).	229	
	230	

	231	

A

B

Subject 1 Channel Oz

Subject 1 Posterior Channels

Eyes Closed
Eyes Open
* p<.05
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Figure	4	ORCA	captures	subject	and	electrode-specific	activity	modulations	232	
during	eyes-open	and	eyes	closed	conditions.		233	
A)	Example	electrode	(Subject	1,	electrode	0z)	which	showed	increased	amplitude	234	
~10	Hz	oscillations	during	the	eyes-closed	condition.		Thick	lines	indicate	95th	235	
percentile	confidence	interval	for	frequencies	detected	in	each	band,	and	each	trial	236	
is	connected	with	a	thin	line	at	the	median	frequency	(small	dot).	B)	Bands	detected	237	
on	each	posterior	electrode	in	subjects	1.	Horizontal	bars	indicate	95%	confidence	238	
intervals	for	the	frequencies	detected	in	each	band	and	are	color-coded	according	to	239	
significant	differences	in	the	normalized	amplitude	of	activity	between	eyes	open-	240	
and	eyes-closed	task	conditions.		Black	rectangles	indicate	band	edges	and	dots	241	
within	each	band	indicate	median	frequency	of	activity.	Electrode	labels	are	color-242	
coded	by	the	best	band-identification	method	as	in	Figure	2	&	3.	Lower	panel	shows	243	
the	percentage	of	significant	electrodes	as	a	function	of	frequency.		244	
	245	
We	observed	a	similar	pattern	of	results	when	assessing	activity	across	all	subjects	246	
at	occipital	sensors	O1	and	O2	(Figure	5).	Despite	heterogeneity	in	the	frequency	of	247	
activity	in	these	subjects,	roughly	80%	of	subjects	showed	significant	activity	248	
increases	at	10	Hz	during	eyes	closed	conditions	over	central	and	posterior	249	
electrodes	(Figure	5C).	These	findings	indicate	that	it	is	possible	to	understand	250	
behavior-related	changes	in	EEG	signals	at	both	the	individual	and	group-level	using	251	
ORCA.	252	
	253	
We	next	sought	to	quantify	individual	differences	in	the	frequency	content	of	neural	254	
activity	using	the	output	of	ORCA.	We	calculated	the	inter-subject	correlation	255	
between	the	frequency	of	detected	activity	in	each	subject	(Figure	5	A-B	right	256	
panels;	Figure	5	Supplement	1).	This	analysis	revealed	that	the	most	prototypical	257	
subject	(Subjects	18	and	10	in	Figure	5A	and	B,	respectively)	showed	activity	with	258	
median	frequency	centered	slightly	above	12	Hz	that	would	likely	go	undetected	259	
using	a	fixed	definition	of	“alpha	activity”.	These	results	further	highlight	the	utility	260	
of	ORCA	in	revealing	individual	differences	in	neural	signals.		261	
	262	
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	263	
Figure	5	Group	level	analysis	of	resting	EEG	modulations	using	ORCA	264	
A)	Activity	modulations	in	each	subject	on	channel	O1.	Left	panel)	Horizontal	bars	265	
indicate	95%	confidence	intervals	for	the	frequencies	detected	in	each	band	and	are	266	
color-coded	according	to	significant	differences	in	the	normalized	amplitude	of	267	
activity	between	eyes	open-	and	eyes-closed	task	conditions.		Black	rectangles	268	
indicate	band	edges	and	dots	within	each	band	indicate	median	frequency	of	269	
activity.	Electrode	labels	are	color-coded	by	the	best	band-identification	method	as	270	
in	Figure	2	&	3	and	subjects	are	sorted	according	to	average	similarity	of	their	271	
activity	to	other	subjects	(right	panel;	see	also	Figure	5	Supplement	1).	Lower	panel	272	
shows	the	percentage	of	significant	subjects	as	a	function	of	frequency.	B)	Similar	to	273	
A,	but	depicting	bands	for	all	subjects	recorded	at	electrode	O2.	C)	Scalp	headmaps	274	
showing	the	percentage	of	subjects	showing	significant	modulation	of	activity	at	275	
each	frequency.	Most	subjects	showed	modulation	at	10	Hz	over	posterior	electrode	276	
sites.	277	
	278	
We	asked	how	well	ORCA	performs	using	other	types	of	neural	recordings	and	279	
analyzed	data	from	rodent	hippocampal	area	CA1	(PFC-2	dataset,	crcns.org,	280	
Fujisawa	et	al.,	2008).	We	observed	similar	performance	as	in	our	human	dataset	281	
(Figure	6),	finding	that	signals	on	most	channels	were	best	reconstructed	using	the	282	
CoD	method	rather	than	canonical	frequency	bands	(Figure	2,	Supplement	1).	ORCA	283	
adaptively	identified	activity	in	the	canonical	“theta”,	“slow	gamma”,	and	“fast	284	
gamma”	ranges	(Colgin	2016)	on	most	channels	(Figure	6B).	These	results	suggest	285	
that	ORCA	can	be	used	on	many	types	of	neural	signals	that	are	recorded	at	different	286	
spatial	scales.				287	
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	288	
Figure	6:	Analysis	of	rodent	CA1	recordings	using	ORCA.	A)	Upper:	Example	raw	289	
signal	from	channel	1	(black)	along	with	the	reconstructed	signal	using	CoD	bands	290	
(green).	Lower:	Scatter	plot	showing	the	raw	signal	against	the	reconstructed	signal	291	
using	each	band	identification	method.	B)	Upper:	Detection	time	as	a	function	of	292	
channel	number	(x-axis)	and	frequency	(y-axis).	Middle:	r2	values	for	each	channel	293	
for	the	CoD	and	canonical	band	methods.	Lower)	Effect	size	of	the	reconstruction	294	
improvement	for	the	CoD	method	relative	to	using	canonical	bands.	295	

Finally,	we	performed	several	control	analyses.	We	quantified	the	view	that	band	296	
boundaries	should	be	placed	far	from	the	signal	of	interest	(de	Cheveigne’	and	297	
Nelken,	2019),	finding	that	r2	values	are	diminished	when	a	band	boundary	is	298	
located	at	the	same	frequency	which	explain	the	most	signal	variance	(Figure	6,	299	
Supplement	2).	We	performed	a	split-halves	analysis	in	the	scalp	EEG	data	and	300	
found	a	strong	positive	correlation	(r=.72)	between	r2	values	derived	separately	on	301	
the	first	half	and	second	half	of	each	recording,	indicating	that	oscillatory	bands	are	302	
mostly	stable.	Lastly,	we	shifted	amplitude	and	phase	estimates	in	time	prior	to	303	
signal	reconstruction	in	order	to	test	the	temporal	precision	of	ORCA	and	the	304	
validity	of	its	output,	finding	that	signal	reconstruction	is	greatly	reduced	under	305	
these	circumstances	(Figure	6,	Supplement	3).		Taken	together,	our	results	306	
demonstrate	that	ORCA	provides	improved	spectral	estimates	in	both	time	and	307	
frequency	in	both	human	and	rodent	data,	providing	a	proof-of-principle	for	future	308	
work	assessing	how	electrode	and	band-specific	oscillatory	activity	co-varies	with	309	
behavior	in	spectrally-diverse	neural	signals	recorded	in	different	scales	and	310	
species.	311	
	312	
Discussion	313	
Analyzing	resting	EEG	and	rodent	hippocampal	recordings,	we	demonstrate	314	
substantial	spectral	variability	across	electrodes	and	subjects	in	a	comparatively	315	
simple	behavioral	setting,	highlighting	the	need	for	refined	approaches	when	316	
analyzing	oscillations.	To	this	end,	we	developed	several	novel	methods	for	317	
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identifying	frequency	bands	based	on	different	statistical	properties	of	each	318	
recording.	These	methods	are	incorporated	into	ORCA,	a	novel	algorithm	that	pits	319	
different	models	of	oscillatory	activity	against	one	another	to	best	capture	spectral	320	
variability	and	provide	improved	spectral	decomposition.	Notably,	93%	of	channels	321	
showed	improved	spectral	decomposition	using	these	new	methods	rather	than	322	
canonical	frequency	bands	(Figure	3).	ORCA	readily	identified	amplitude	323	
modulations	in	electrode-specific	frequency	bands	associated	with	eye	closure,	324	
consistent	with	decades	of	research	(Berger	et	al.,	1929;	Geller	et	al.,	2014;	Trujillo	325	
et	al.,	2017).	We	then	applied	ORCA	to	rodent	hippocampal	recordings	and	observed	326	
that	it	was	capable	of	blindly	identifying	theta	and	gamma	components	of	the	neural	327	
signal	(Colgin,	2016).	Our	results	thus	provide	a	proof-of-principle	for	using	ORCA	328	
to	analyze	electrophysiological	recordings	with	more	precision	and	with	less	bias	329	
than	has	been	previously	been	possible.		330	
	331	
Across	all	1408	EEG	channels,	93%	of	channels	showed	optimized	spectral	332	
decomposition	using	customized	frequency	bands	rather	than	canonical	frequency	333	
bands.	What	accounts	for	such	an	improvement?	We	believe	this	likely	occurs	334	
because	many	channels	in	our	EEG	dataset	have	activity	spanning	the	canonical	335	
frequency	band	boundaries	(Figure	5,	Figure	5	Supplement	1).	Given	that	it	is	336	
important	to	select	band	edges	away	from	the	signal	of	interest	in	order	to	avoid	337	
filtering	artifacts	(de	Cheveigne’	and	Nelken,	2019),	it	follows	that	placing	a	band	338	
boundary	at	12	Hz	using	canonical	bands	would	lead	to	poor	filtering	and	spectral	339	
estimation	(see	also	Figure	5,	Supplement	1).	We	conclude	that	spectral	340	
decomposition	improvements	rendered	by	ORCA	are	dependent	on	the	spectral	341	
content	of	the	underlying	data	and	thus	other	datasets	may	not	see	such	a	dramatic	342	
improvement	in	spectral	decomposition.	Nonetheless,	our	results	clearly	argue	343	
against	the	use	of	canonical,	“one-size-fits-all”	frequency	bands	when	performing	344	
spectral	decomposition,	and	provide	a	benchmark	for	quantifying	different	345	
oscillatory	models	and	spectral	decomposition	performance	through	signal	346	
reconstruction.		347	
	348	
We	use	the	term	“optimized”	to	refer	to	relative	increases	in	reconstruction	between	349	
different	frequency	band	models.	Going	forward,	band	detection	is	modular	such	350	
that	improved	methods	for	detecting	bands	may	be	incorporated,	as	was	the	case	351	
with	the	“CoD”	and	“SCV”	band	identification	methods.	Future	work	might	use	352	
genetic	algorithms	to	further	refine	band	identification	and/or	more	explicitly	353	
model	aperiodic	components	of	the	signal	(Haller,	Donoghue,	Peterson	et	al.,	354	
BiorXiv).	We	observed	that	frequency	bands	were	mostly	stable	over	time,	though	355	
this	warrants	further	investigation,	particularly	in	datasets	that	contain	diverse	356	
behavioral	states.	Future	work	may	extend	ORCA	by	defining	bands	on	smaller	357	
subsets	of	data	which	could	be	useful	for	data	cleaning	such	that	data	segments	with	358	
poor	decomposition,	perhaps	based	on	non-physiological	artifacts,	can	be	excluded	359	
based	on	statistically	principled	grounds.	360	
	361	
ORCA	draws	inspiration	from	and	builds	upon	prior	work	which	aims	to	identify	362	
and	quantify	oscillatory	components	of	neural	signals,	such	as	“Pepisode”/	“BOSC”,	363	
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“fooof”,	“bicycle”,	and	“MODAL”	(Hughes	et	al.,	2012;	Haller,	Donoghue,	Peterson,	et	364	
al	2018;	Watrous	et	al.,	2018;	Cole	&	Voytek,	2019).	Our	approach	blindly	identifies	365	
oscillatory	bands	with	very	minimal	parameterization,	quantifies	different	models	366	
of	oscillatory	activity	to	improve	spectral	decomposition	accuracy,	and	provides	367	
time-resolved	spectral	estimates	in	each	band.	These	features	provide	new	avenues	368	
to	standardize	analysis	procedures	across	research	groups.	Comparing	activity	over	369	
subjects,	ORCA	also	allows	for	the	identification	of	comparatively	typical	and	370	
atypical	frequency	content	of	neural	recordings	that	may	be	useful	clinically	by	371	
providing	normative	data.	Finally,	ORCA	outputs	a	relatively	low-dimensional,	372	
“compact”	representation	of	neural	signals	by	providing	time-resolved	amplitude,	373	
phase,	and	frequency	in	each	band	that	can	facilitate	interrogating	the	relation	374	
between	neural	spiking,	oscillatory	activity,	and	behavior.		375	
	376	
	377	
Methods	378	
We	first	provide	a	description	of	the	ORCA	algorithm	before	describing	its	key	steps	379	
and	how	it	was	applied	to	the	example	datasets.	380	
	381	
The	Oscillatory	ReConstruction	Algorithm	(ORCA):	382	
Overview	383	
ORCA	was	developed	in	Matlab	and	additionally	requires	the	wavelet	toolbox	for	384	
signal	reconstruction.	Matlab	code	for	the	algorithm	is	provided	on	Github	385	
(www.github.com/andrew-j-watrous/ORCA.		Figure	2	shows	a	schematic	of	the	key	386	
steps	in	the	ORCA	algorithm	and	we	describe	optional	preprocessing	and	validation	387	
steps	further	below.	ORCA	requires	an	input	signal	that	can	be	any	time-series	data,	388	
the	sampling	rate,	and	a	wide-band	frequency	range	to	be	analyzed	(e.g.	.5-150	Hz).	389	
ORCA	segments	this	broad	frequency	range	into	bands	using	4	different	methods	390	
(see	below)	and	the	signal	is	band-pass	filtered	in	each	band	between	the	band	391	
boundaries	(e.g.	3	to	12	Hz).		ORCA	then	calculates	spectral	estimates	(amplitude,	392	
phase,	and	frequency	of	the	filtered	signal)	in	each	band.	Spectral	estimates	pooled	393	
across	bands	are	then	used	to	reconstruct	a	signal.	To	measure	spectral	394	
decomposition	performance,	the	reconstructed	signal	is	compared	to	the	input	395	
signal	by	calculating	the	linear	fit	between	signals	(“regstats”	in	Matlab),	resulting	in	396	
an	r2	value	for	each	band	identification	method.	The	band-identification	method	397	
with	the	largest	r2	is	considered	the	“best”	method	and	the	spectral	estimates	and	398	
bands	from	this	method	are	retained,	while	those	from	the	other	methods	are	399	
discarded.	400	
	401	
Band	identification	402	

ORCA	uses	up	to	four	methods	to	determine	frequency	bands.	The	first	and	403	
simplest	method	allows	the	user	to	define	frequency	bands.	In	this	manuscript,	we	404	
used	this	method	to	investigate	spectral	decomposition	using	the	classical	frequency	405	
bands	(Figure	2B;	purple	bar),	defined	as	.5-4	Hz	“delta”,	4-8	Hz	“theta”,	8-12	Hz	406	
“alpha”,	12-25	Hz	“beta”,	25-60	Hz	“slow	gamma”	and	60-111	Hz	“fast	gamma”.	407	
Throughout	this	manuscript,	we	interchangeably	refer	to	this	method	as	“Classical”	408	
and	“Canonical”.		409	
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Each	other	method	defines	band	boundaries	based	on	different	statistical	410	
characteristics	of	the	neural	signal.	By	default,	these	statistics	are	computed	on	the	411	
first	half	of	the	input	signal	as	a	means	to	cross-validate	and	avoid	over-fitting.	The	412	
second	method,	“SCV”	(Figure	2B;	yellow),	uses	local	minima	in	the	spectral	413	
coefficient	of	variation	(SCV),	a	power-normalized	estimate	of	variability	at	each	414	
frequency.	Oscillatory	power	is	calculated	using	6-cycle	Morlet	wavelets	at	200	log-415	
spaced	frequencies	from	.5	Hz	to	the	Nyquist	frequency.	SCV	is	calculated	as	the	416	
standard	deviation	of	power	values	divided	by	the	mean	over	time	at	each	417	
frequency.	Band	edges	are	defined	as	local	minima	in	the	SCV	function.	The	rationale	418	
for	this	method	is	that	frequencies	with	comparatively	high	variability	may	contain	419	
transient	oscillations	while	frequencies	with	comparatively	low	variability	can	then	420	
be	taken	as	band	edges.		We	note,	however,	that	semi-continuous	oscillatory	signals	421	
such	as	rodent	hippocampal	theta	may	violate	this	assumption.		422	

The	“CoD”	method	(Figure	2B,	green	bars)	calculates	the	coefficient	of	423	
determination	(r2)	at	each	frequency	by	quantifying	the	fit	between	the	input	signal	424	
and	a	reconstructed	signal	based	on	activity	at	each	point	frequency.	Specifically,	425	
following	spectral	decomposition	using	a	continuous	wavelet	transform,	this	426	
method	uses	the	inverse	continuous	wavelet	transform	separately	at	each	frequency	427	
to	reconstruct	the	input	signal	and	quantifies	the	fit	between	the	input	and	428	
reconstructed	as	above.	Band	edges	are	defined	as	1)	local	minima	in	the	CoD	429	
function	and	2)	frequencies	in	which	the	explained	variance	is	less	than	what	is	430	
expected	by	chance.	The	rationale	here	is	to	use	the	CoD	function	to	identify	band	431	
boundaries	as	frequencies	with	comparatively	low	explained	variance	to	the	input	432	
signal.		433	
Finally,	for	comparison	to	previous	approaches	(Watrous	et	al.,	2018;	Lega	et	al.,	434	
2012;	Podvalny	et	al.,	2015),	we	included	a	fourth	method	(“PeakPick”;	orange	bars	435	
in	Figure	2B).		Using	the	same	power	values	as	in	the	SCV	method,	we	created	a	436	
power	spectrum	by	averaging	wavelet	power	values	over	time	and	fit	a	line	to	this	437	
spectrum	in	log-log	space	using	robustfit	in	Matlab.		Frequency	band	edges	were	438	
defined	as	those	frequencies	in	the	power	spectrum	that	transitioned	above	or	439	
below	this	fit.	Frequency	bands	for	all	methods	were	constrained	to	be	wider	than	.5	440	
Hz	in	order	to	ensure	accurate	filtering.	441	
	442	
Filtering	443	
Filtering	was	performed	as	in	the	original	“frequency	sliding”	algorithm	(Cohen	444	
2014),	with	one	modification	that	ensured	accurate	filtering	across	a	variety	of	445	
frequency	bands	with	different	bandwidths	(e.g.	.5-1	Hz,	.5-	50	Hz).		We	thus	446	
optimized	the	transition	bandwidth	for	each	frequency	band	by	filtering	using	447	
different	transition	widths	(.01-.13,	.03	steps)	and	retained	the	filtered	signal	with	448	
the	largest	correlation	to	the	raw	signal.	This	modification	was	necessary	for	449	
accurate	filtering	both	very	narrow	and	very	wide	frequency	bands.	Similar	to	450	
previous	work,	instantaneous	frequency	estimates	arising	from	phase-slips	(Cohen,	451	
2014)	that	were	outside	of	each	frequency	band	were	replaced	by	NaN	(Watrous	et	452	
al.,	2018;	eLife).	453	
	454	
Signal	Reconstruction	and	quantification	of	spectral	decomposition	performance	455	
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Reconstructed	signals	were	generated	using	a	synthetic	continuous	wavelet	456	
transform	matrix	using	the	instantaneous	amplitude,	phase,	and	frequency	of	457	
activity	in	each	band	and	then	applying	the	inverse	continuous	waveform	transform	458	
(icwt.m	in	Matlab).		This	synthetic	matrix	is	sparse,	with	only	as	many	non-zero	459	
values	as	detected	frequency	bands	at	each	time	sample,	and	thus	the	reconstructed	460	
signal	amplitude	is	arbitrarily	smaller	than	the	observed	signal.	Spectral	461	
decomposition	accuracy	was	determined	by	calculating	the	explained	variance	(r2)	462	
between	the	input	and	reconstructed	signal.	We	then	conducted	follow-up	analyses	463	
investigating	the	proportion	of	time	each	method	performed	best	(e.g.	Figure	2E)	by	464	
calculating	r2	values	in	1	second,	non-overlapping	windows	and	identifying	the	465	
method	with	the	largest	r2	in	each	window.	466	
	467	
Normalized	amplitude	calculation	468	

We	calculated	a	measure	of	normalized	amplitude	(Figure	2F)	using	a	cycle-469	
by-cycle	approach	(Cole	&	Voytek,	2017).	The	filtered	signal	in	each	band	is	parsed	470	
into	half-waves	by	identifying	peaks	and	troughs	in	the	filtered	signal	and	the	471	
amplitude	of	each	half-wave	is	then	calculated	as	the	absolute	value	of	the	peak	to	472	
trough	height.	To	account	for	the	approximately	inverse	relation	between	473	
oscillatory	frequency	and	amplitude,	we	normalized	each	half-wave	amplitude	by	474	
multiplying	it	by	its	instantaneous	frequency.		Each	half-wave	is	then	ranked	against	475	
all	others	across	the	full	recording	such	that	all	values	are	within	a	range	of	0	to	1	476	
(smallest	to	largest,	respectively).	477	

	478	
EEG	Dataset	and	analyses	479	

For	results	related	to	human	recordings,	we	analyzed	a	published	scalp	EEG	480	
dataset	(EEG;	Trujillo	et	al.,	2017)	of	22	subjects	recorded	during	eyes	open-	and	481	
eyes-closed	conditions.	This	dataset	consists	of	64	scalp	channels	sampled	at	256	Hz	482	
and	referenced	to	a	common	mode	sense	electrode	located	between	sites	Po3	and	483	
POz.	Subject	performed	a	total	of	8	minutes	of	interleaved,	60	second	blocks	of	484	
either	eyes-open	or	eyes-closed	conditions	(4	“trials”	each).	For	this	EEG	dataset,	we	485	
mean-centered	each	recording	and	performed	line	noise	reduction	using	a	bandstop	486	
filter	from	58-62	Hz	prior	to	decomposition	with	ORCA	and	did	not	perform	artifact	487	
correction.	488	

Each	pre-processed	channel	was	analyzed	with	ORCA	as	a	continuous,	489	
unepoched	recording.	Following	spectral	decomposition	with	ORCA,	the	median	490	
normalized	amplitude	value	was	extracted	from	each	60-second	trial	in	each	491	
detected	frequency	band	(Figure	4A).	These	median	values	for	eyes-open	and	eyes-492	
closed	conditions	were	compared	using	nonparametric	Mann-Whitney	tests.	We	493	
shuffled	the	condition	labels	associated	with	each	value	a	total	of	70	times	494	
(corresponding	to	the	number	of	unique	groupings	of	8	values)	and	recomputed	a	495	
pseudo	test	statistic.	The	true	test	statistic	was	ranked	against	the	distribution	of	70	496	
pseudo	test	statistic	values	to	derive	a	shuffle-corrected	p-value.	We	then	performed	497	
Bonferroni	correction	for	multiple	comparisons	(frequency	bands)	on	each	498	
electrode.	P-values	exceeding	the	95th	percentile	or	below	the	5th	percentile	after	499	
Bonferroni-correction	were	considered	significant.	500	
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To	identify	subjects	with	similar	activity	(Figure	5),	we	first	generated	a	501	
Boolean	matrix	for	each	channel	indicating	whether	activity	was	detected	at	each	502	
frequency	when	using	different	percentile	inclusion	criteria	(Figure	5,	Supplement	503	
1).	This	allowed	us	to	circumvent	the	issue	that	each	channel	may	have	different	504	
numbers	of	frequency	bands	and	that	the	same	frequency	(e.g.	10	Hz)	may	be	505	
included	in	a	different	band	in	different	subjects.		We	calculated	the	Phi	correlation	506	
between	these	Boolean	matrices	in	order	to	determine	similarity	of	detected	activity	507	
between	subjects.	We	then	calculated	the	mean	Phi	coefficient	for	each	subject	to	508	
determine	each	subject’s	average	similarity	on	each	channel.	509	

	510	
Rodent	Dataset	and	analyses	511	

For	results	related	to	rodent	recordings,	we	analyzed	a	subset	of	recordings	512	
from	a	publicly-available	dataset	(Fujisawa	et	al.,	2008;	crcns.org	PFC-2	dataset).	513	
Specifically,	we	analyzed	the	first	5	minutes	of	CA1	recordings	from	session	514	
“ee708/EE.188”	during	which	the	rat	was	performing	a	spatial	working	memory	515	
task.	Prior	to	decomposition	with	ORCA,	signals	were	downsampled	to	312.5	Hz.	516	
Signals	were	broadband	filtered	from	1-100	Hz	and	canonical	bands	were	defined	as	517	
1-4,	4-12,	12-25,	25-55,	and	55-100	Hz	(Colgin,	2016).	We	again	implemented	a	518	
cross-validated	band-identification	procedure	such	that	the	first	2.5	minutes	of	the	519	
signal	were	used	to	generate	bands	for	the	CoD,	SCV,	and	PeakPick	band	520	
identification	methods.	We	did	not	do	artifact	rejection.	521	

We	tested	the	assumption	that	band	boundaries	should	be	placed	far	from	522	
the	signal	of	interest	(de	Cheveigne’	and	Nelken,	2019)	using	the	first	CA1	channel	in	523	
the	rodent	recordings.	This	signal	was	chosen	because	it	was	best	reconstructed	524	
using	two	bands	and	a	single	frequency	boundary	at	17.1	Hz		(Figure	6,	Supplement	525	
1).	To	this	end,	we	generated	a	separate	model	with	a	single	band	boundary	at	each	526	
frequency	and	recalculated	signal	reconstruction	accuracy.		527	
	528	
	529	
	530	
	531	
	532	
	533	
	534	
	535	
	536	
	537	
	538	
	539	
	540	
	541	
	542	
	543	
	544	
	545	
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Supplemental	Figures	547	

	548	
Figure	1	Supplement	1	549	
The	frequency	that	explains	the	most	variance	to	recordings	on	each	electrode	is	550	
plotted	as	a	scalp	topography	for	each	subject.	Note	that	most	subjects	have	551	
different	frequencies	at	different	sites	and	also	that	some	subjects	have	stable	552	
frequencies	across	locations	but	differ	between	themselves	(e.g.	Subject	1	and	16).	553	
These	observations	motivate	the	use	of	spectral	decomposition	methods	that	554	
account	for	frequency	variability	across	individuals	and	electrodes.	555	
	556	

	557	
Figure	2,	Supplement	1	558	

ORCA	schematic	using	channel	1	from	the	rodent	dataset.	See	Figure	2	caption	for	559	
further	details	on	figure	layout.	560	
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	561	
Figure	3,	Supplement	1		562	

Scalp	topographic	maps	showing	the	percentage	of	subjects	for	which	each	method	563	
yielded	the	largest	reconstruction	accuracy.	564	
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	565	
Figure	5,	Supplement	1	566	
A)	Frequency	bands	for	each	subject	defined	over	different	confidence	levels	(y-axis	567	
in	each	subpanel)	for	electrode	O1.	Data	for	each	subject	is	color-coded	according	to	568	
the	band-identification	method	used,	as	in	Figures	2	and	3.	Note	that	many	subjects	569	
have	activity	spanning	the	canonical	frequency	bands	(black	vertical	lines).	Right	570	
panel	shows	the	inter-subject	correlation	coefficients	for	each	sorted	subject.In	both	571	
panels,	subjects	are	sorted	according	to	their	mean	similarity	with	activity	detected	572	
in	other	subjects,	from	least	to	most	similar	(bottom	to	top,	respectively).	B)	Same	573	
layout	as	A	but	for	electrode	O2.	574	
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	577	
	578	
Figure	6,	Supplement	1	579	
Upper	panel:	Explained	variance	of	each	frequency	to	the	recorded	signal	for	rodent	580	
CA1	channel	1.	This	channel	was	best	reconstructed	using	a	single	band	boundary	at	581	
17.1	Hz	(Figure	2,	Supplement	1).	Lower	panel:	Reconstruction	accuracy	as	a	582	
function	of	the	location	of	this	single	band	boundary.	Reconstruction	is	worst	when	583	
the	band	boundary	is	placed	at	~8	Hz,	validating	the	idea	that	(filter)	band	584	
boundaries	should	be	placed	away	from	the	signal	of	interest	when	performing	585	
filtering	and	spectral	decomposition	(de	Cheveigne’	and	Nelken,	2019).	586	
	587	

	588	
Figure	6,	Supplement	2.	Shifting	spectral	estimates	in	time	abolishes	589	
reconstruction	accuracy.	Upper)	Human	data	showing	that	increasing	the	lag	(x-590	
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axis)	between	either	the	amplitude	or	phase	estimates	and	the	input	signal	reduces	591	
reconstruction	accuracy	(y-axis).	A	lag	of	zero	indicates	no	temporal	shuffling	for	592	
which	reconstruction	accuracy	is	>	.95.	Lower)	Same	as	above	but	for	the	first	593	
channel	of	rodent	CA1	data.	594	
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