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ABSTRACT 24 

While rare pathogenic CNVs are associated with both neuronal and non-neuronal phenotypes, 25 

functional studies evaluating these regions have focused on the molecular basis of neuronal 26 

defects. We report a systematic functional analysis of non-neuronal phenotypes for 59 homologs 27 

of genes within ten CNVs and 20 neurodevelopmental genes in Drosophila. Using wing-specific 28 

knockdown of 136 RNA interference lines, we identify phenotypes in 72/79 homologs including 29 

six lines with lethality and 21 lines with severe phenotypes. We find no correlation between 30 

severity of these phenotypes and neuronal defects due to eye-specific knockdown. We observe 31 

disruptions in cell proliferation and apoptosis for 23/27 homologs, and altered Wnt, Hedgehog 32 

and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and 33 

KIF11/Klp61F, validated with differences in human tissue-specific expression and network 34 

connectivity. Our findings suggest that multiple genes within each CNV differentially affect both 35 

global and tissue-specific developmental processes, contributing to non-neuronal phenotypes of 36 

CNV disorders. 37 

 38 

  39 
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INTRODUCTION 40 

Rare copy-number variants (CNVs), or deletions and duplications in the genome, are associated 41 

with neurodevelopmental disorders such as autism, intellectual disability (ID), and 42 

schizophrenia1,2. While dosage alteration of CNV regions contribute predominantly to defects in 43 

nervous system development, several CNV disorders also lead to early developmental features 44 

involving other organ systems3,4, including cardiac defects5,6, kidney malformations7, 45 

craniofacial features3, and skeletal abnormalities8. In fact, an overall survey of ten rare disease-46 

associated CNVs among individuals within the DECIPHER database9 showed a wide range of 47 

non-neuronal phenotypes across multiple organ systems for each CNV disorder (Fig. 1). For 48 

example, the 1q21.1 deletion causes variable expression of multiple neuronal and non-neuronal 49 

phenotypes, including developmental delay, autism, and schizophrenia as well as craniofacial 50 

features, cataracts, cardiac defects, and skeletal abnormalities10–12. Additionally, while the 51 

7q11.23 deletion associated with Williams-Beuren syndrome (WBS) causes neuropsychiatric and 52 

behavioral features, other non-neuronal phenotypes, including supravalvular aortic stenosis, 53 

auditory defects, hypertension, diabetes mellitus, and musculoskeletal and connective tissue 54 

anomalies, are also observed among the deletion carriers13. In fact, individual genes within the 55 

WBS region are associated with specific features of the deletion, such as ELN and supravalvular 56 

aortic stenosis14, STX1A and impaired glucose tolerance15, LIMK1 and impaired visuospatial 57 

abilities16, and GTF2IRD1 and craniofacial abnormalities17. Furthermore, TBX1 was identified to 58 

cause the pharyngeal arch cardiac defects associated with the 22q11.2 deletion (DiGeorge 59 

syndrome)18, while HNF1B within the 17q12 deletion region was identified as the causative gene 60 

for kidney defects associated with the deletion19,20. However, candidate genes for a majority of 61 

non-neuronal phenotypes have not been identified for several rare CNV disorders, in particular 62 
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for CNVs associated with variably-expressive phenotypes such as the 1q21.1 deletion and the 63 

16p11.2 deletion21,22. Additionally, affected individuals who carry disruptive mutations in 64 

neurodevelopmental genes from recent sequencing studies have also been documented to 65 

manifest non-neuronal phenotypes. For example, individuals with loss-of-function mutations in 66 

the autism-associated gene CHD8 present with gastrointestinal problems, tall stature, and 67 

craniofacial features in addition to neuropsychiatric features23, while mutations in the 68 

microcephaly-associated gene KIF11 also lead to congenital lymphedema and retinopathy24. 69 

Despite the importance of identifying genes within CNVs that contribute towards non-70 

neuronal phenotypes, functional studies of CNV genes have primarily focused on detailed 71 

assessments of neuronal phenotypes in model systems. For example, mouse models generated for 72 

the 16p11.2 deletion exhibited post-natal lethality, reduced brain size and neural progenitor cell 73 

count, motor and habituation defects, synaptic defects, and behavioral defects25–27. Similarly, 74 

mouse models for the 3q29 deletion showed decreased weight and brain size, increased 75 

locomotor activity and startle response, and decreased spatial learning and memory28,29. 76 

However, fewer studies have focused on detailed evaluation of non-neuronal phenotypes in 77 

functional models of CNV disorders. For example, Arbogast and colleagues evaluated obesity 78 

and metabolic changes in 16p11.2 deletion mice, which showed reduced weight and impaired 79 

adipogenesis30. While Haller and colleagues showed that mice with knockdown of MAZ, a gene 80 

within the 16p11.2 deletion region, contribute to the genitourinary defects observed in 81 

individuals with the deletion31, mouse studies on other homologs of 16p11.2 genes, including 82 

TAOK2, KCTD13, and MAPK3, have only focused on assessing neuronal defects32–36. 83 

Furthermore, Dickinson and colleagues reported a high-throughput analysis of essential genes in 84 

mice and identified both neuronal and non-neuronal phenotypes for individual gene knockouts, 85 
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including more than 400 genes that lead to lethality37. While these efforts aided in implicating 86 

novel genes with human disease, our understanding of how genes associated with 87 

neurodevelopmental disorders contribute towards non-neuronal phenotypes is still limited. 88 

Therefore, a large-scale analysis of non-neuronal phenotypes is necessary to identify specific 89 

candidate genes within CNV regions and associated biological mechanisms that contribute 90 

towards these phenotypes.  91 

 Drosophila melanogaster is an excellent model system to evaluate homologs of 92 

neurodevelopmental genes, as many developmental processes and signaling pathways are 93 

conserved between humans and flies38. In fact, over 75% of human disease genes have homologs 94 

in Drosophila, including many genes involved in cellular signaling processes39,40. We recently 95 

examined the contributions of individual Drosophila homologs of 28 genes within the 16p11.2 96 

and 3q29 deletion regions towards specific neurodevelopmental phenotypes, including rough eye 97 

phenotypes and defects in climbing ability, axon targeting, neuromuscular junction, and dendritic 98 

arborization41,42. While these findings implicated multiple genes within each CNV region 99 

towards neuronal phenotypes, the conserved role of these genes towards non-neuronal 100 

phenotypes is not well understood. The Drosophila wing is an effective model system to 101 

evaluate such developmental phenotypes, as key components of conserved signaling pathways, 102 

such as Notch, epidermal growth factor receptor (EGFR), Hegdehog, and Wnt pathways, were 103 

identified using fly wing models43–49. For example, Wu and colleagues showed that 104 

overexpression of the Drosophila homolog for UBE3A, associated with Angelman syndrome, 105 

leads to abnormal wing and eye morphology defects50. Furthermore, Drosophila mutant screens 106 

for developmental phenotypes, including wing defects, were used to identify conserved genes for 107 

several human genetic diseases, including Charcot-Marie-Tooth disease and syndromic 108 
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microcephaly51. Kochinke and colleagues also recently performed a large-scale screening of ID-109 

associated genes, and found an enrichment of wing trichome density and missing vein 110 

phenotypes in ID genes compared to control gene sets52. Hence, the fly wing provides a model 111 

system that is ideal for evaluating the contributions of individual homologs of CNV genes 112 

towards cellular and developmental phenotypes.  113 

In this study, we tested the non-neuronal phenotypes of 79 fly homologs of human genes 114 

within ten pathogenic CNV regions and genes associated with neurodevelopmental disorders. 115 

We observed a wide range of robust qualitative and quantitative adult wing phenotypes among 116 

the 136 RNA interference (RNAi) lines tested in our study, including size defects, ectopic and 117 

missing veins, severe wrinkling, and lethality. Further analysis of cellular phenotypes revealed 118 

disruptions in conserved developmental processes in the larval imaginal wing disc, including 119 

altered levels of cell proliferation and apoptosis as well as altered expression patterns in the Wnt, 120 

Hedgehog, and Notch signaling pathways. However, we found no correlation in the severity of 121 

phenotypes observed with wing and eye-specific knockdown. Our findings were further 122 

supported by differences in expression patterns and network connectivity of human CNV genes 123 

across different tissues. Our analysis emphasizes the importance of multiple genes within each 124 

CNV region towards both global and tissue-specific developmental processes, potentially 125 

accounting for the non-neuronal phenotypes associated with pathogenic CNVs.  126 

  127 
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RESULTS 128 

Wing-specific knockdown of fly homologs of CNV genes show non-neuronal phenotypes 129 

Using an RNAi based analysis driven by the bxMS1096-GAL4 wing-specific driver, we tested a 130 

total of 136 RNAi lines for 59 homologs of genes within pathogenic CNV regions (chromosomal 131 

locations 1q21.1, 3q29, 7q11.23, 15q11.2, 15q13.3, 16p11.2, distal 16p11.2, 16p12.1, 16p13.11, 132 

and 17q12)  and 20 homologs of genes associated with neurodevelopmental disorders (Supp. 133 

Data 1). Fly homologs of these genes were identified using the DIOPT orthology prediction 134 

tool53. We list both the human gene name and the fly gene name for each tested gene as HUMAN 135 

GENE/Fly gene (i.e. KCTD13/CG10465) as well as the human CNV region for context at first 136 

instance. We scored 20-25 adult wings for five distinct wing phenotypes in each non-lethal 137 

RNAi line, including wrinkled wing, discoloration, ectopic veins, missing veins, and bristle 138 

planar polarity phenotypes (Fig. 2A; Supp. Data 2). We first categorized each wing phenotype 139 

based on their severity and performed k-means clustering analysis to categorize each RNAi line 140 

by their overall phenotype severity (Fig. 2B-C). We observed four clusters of RNAi lines: 75 141 

lines with no observable qualitative phenotypes (55.2%), 24 lines with mild phenotypes (17.7%), 142 

10 lines with moderate phenotypes (7.4%), 21 lines with severe phenotypes (15.4%), and 6 lines 143 

with lethal phenotypes (4.4%), including ACACA/ACC within 17q12, DLG1/dlg1 within 3q29, 144 

and STX1A/Syx1A within 7q11.23 (Fig. 2B-D; Supp. Data 2). We observed severe wrinkled 145 

wing phenotypes for 13/79 fly homologs, including PPP4C/Pp4-19C within 16p11.2, 146 

ATXN2L/Atx2 within distal 16p11.2, AATF/Aatf within 17q12, and MFI2/Tsf2 within 3q29 (Fig. 147 

3A-B, Supp. Data 3). Interestingly, seven out of ten CNV regions contained at least one 148 

homolog that showed lethality or severe wing phenotypes, and five CNV regions (3q29, 16p11.2, 149 

distal 16p11.2, 16p12.1, and 17q12) had multiple homologs showing lethality or severe wing 150 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


8 
 

phenotypes (Fig. 3A, Supp. Data 3). For example, RNAi lines for both UQCRC2/UQCR-C2 and 151 

POLR3E/Sin within 16p12.1 showed lethality. Within the 3q29 region, NCBP2/Cbp20 and 152 

MFI2/Tsf2 showed severe phenotypes while DLG1/dlg1 showed lethality. In contrast, 12/20 153 

known neurodevelopmental genes showed no observable wing phenotypes, suggesting that these 154 

genes could be responsible for neuronal-specific phenotypes (Fig. 3B, Supp. Data 3). We note 155 

that 18/79 fly homologs showed discordant phenotypes between two or more RNAi lines for the 156 

same gene, which could be due to differences in expression of the RNAi construct among these 157 

lines (Supp. Data 3).  158 

Certain qualitative phenotypes exhibited higher frequency in males compared to females. 159 

For example, discoloration (87 lines in males compared to 56 lines in females; p=1.315×10-4, 160 

two-tailed Fisher’s exact test) and missing vein phenotypes (92 lines in males compared to 29 161 

lines in females; p=2.848×10-16, two-tailed Fisher’s exact test) at any degree of severity were 162 

more commonly observed in males than females (Supp. Data 2). In particular, 25/92 lines in 163 

males (compared to 1/29 in females) showed a total loss of the anterior crossvein (ACV) (Supp. 164 

Data 2). We further identified 17 RNAi lines that were lethal in males with wing-specific 165 

knockdown of fly homologs. While higher frequencies of wing phenotypes in males could be 166 

due to a sex-specific bias of developmental phenotypes, the increased severity we observed in 167 

males is most likely due to a stronger RNAi knockdown caused by an X-linked dosage 168 

compensation, as the bxMS1096-GAL4 driver is inserted on the fly X chromosome54,55. 169 

Next, we measured the total adult wing area and the lengths of six veins (longitudinal L2, 170 

L3, L4, L5, ACV, and posterior crossvein or PCV) in the adult wing for each of the tested RNAi 171 

lines that did not show lethality (or severe wrinkled phenotypes for vein length measurements) 172 

(Fig. 4A). Overall, we identified significant wing measurement changes for 89 RNAi lines 173 
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compared to controls, which included lines that did not have an observable qualitative wing 174 

phenotype (Fig. 2D). A summary of L3 vein lengths is presented in Fig. 4B, and the 175 

measurements for the remaining five veins are presented in Supp. Figure 1 and Supp. Data. 2. 176 

We found that 33/61 of the homologs (54%) showed significant changes in L3 vein length, 177 

including 20 homologs with longer vein lengths and 13 homologs with shorter vein lengths 178 

(Supp. Data 3). Additionally, 41/74 of the fly homologs (55%) showed changes in wing area 179 

(Supp. Data 3), including 36 homologs which showed smaller wing areas and five homologs 180 

showed larger wing areas compared to controls (Supp. Data 3). For example, both homologs of 181 

genes within 1q21.1 region, BCL9/lgs and FMO5/Fmo-2, showed decreased wing area and vein 182 

length, potentially mirroring the reduced body length phenotype observed in mouse models of 183 

the deletion56 (Fig. 4B-C). In addition, PAK2/Pak within 3q29, TBX1/org-1 within 22q11.2, 184 

autism-associated CHD8/kis, and microcephaly-associated ASPM/asp also showed smaller wing 185 

areas and vein lengths (Fig. 4B-C). In contrast, TRPM1/Trpm within 15q13.3 and the cell 186 

proliferation gene PTEN/Pten57 both showed larger wing areas and vein lengths (Fig. 4B-C). 187 

Furthermore, we identified eight homologs that showed no qualitative wing phenotypes but had 188 

significant changes in wing areas and vein lengths (Supp. Data 3), including CCDC101/Sgf29 in 189 

distal 16p11.2, FMO5/Fmo-2, TRPM1/Trpm, DHRS11/CG9150 in 17q12, and NSUN5/Nsun5 in 190 

7q11.23 (Fig. 4B-C; Supp. Data 3). These results indicate that homologs of certain CNV genes 191 

may influence variations in size without causing adverse wing phenotypes, and may be 192 

specifically implicated towards cellular growth mechanisms.  193 

 194 

 195 

 196 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


10 
 

Homologs of CNV genes show global and tissue-specific effects during development 197 

We previously showed that many of the same fly homologs of CNV genes that showed wing 198 

defects in the current study also contributed towards neuronal phenotypes in the fly eye41,42, 199 

suggesting a role for these genes in global development. We therefore performed ubiquitous and 200 

eye-specific knockdown of fly homologs to assess tissue-specific effects in comparison to the 201 

wing phenotypes. First, we used the da-GAL4 driver at 25°C to drive ubiquitous knockdown of 202 

RNAi lines for 31 homologs of CNV genes, including 19 that were previously published41,42, and 203 

observed complete or partial lethality at larval and pupal stages with knockdown of 10/31 204 

homologs (32.3%) (Fig. 5A). Lethal phenotypes have also been documented for 43/130 205 

knockout mouse models of individual CNV genes as well as for the entire deletion (Supp. Data 206 

4). For example, mouse models heterozygous for the 16p11.2 deletion showed partial neonatal 207 

lethality, while knockout mouse models of four individual genes within the 16p11.2 region, 208 

including Ppp4C-/- and Kif22-/-, showed embryonic lethality25,58,59. In our study, the DLG1/dlg1 209 

line that showed lethality with wing-specific knockdown also exhibited larval lethality with 210 

ubiquitous knockdown, indicating its role in global development (Fig. 5A). In addition, six 211 

homologs that showed severe wing phenotypes also showed larval or pupal lethality with 212 

ubiquitous knockdown, including ALDOA/Ald and PPP4C/Pp4-19C within 16p11.2 and 213 

ATXN2L/Atx2 and TUFM/mEFTu1 within distal 16p11.2 (Fig. 5A). The remaining homologs 214 

that showed lethality with ubiquitous knockdown showed at least a mild qualitative or 215 

quantitative wing phenotype. 216 

 We next compared the phenotypes observed with wing-specific knockdown of fly 217 

homologs to their corresponding eye-specific knockdowns to evaluate neuronal versus non-218 

neuronal effects. To quantitatively assess the phenotypic severity of cellular defects with eye-219 
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specific knockdown of fly homologs, we developed a tool called Flynotyper60 that determines the 220 

degree of disorganization among the ommatidia in the adult eye. We analyzed phenotypic scores 221 

obtained from Flynotyper for 66 RNAi lines of 45 fly homologs, including from previously-222 

published datasets41,42,60. We found that 37/45 homologs (82.2%) exhibited both eye and wing-223 

specific defects (Fig. 5B, Supp. Fig. 2, Supp. Data 5). Two homologs with significant eye 224 

phenotypes did not show any wing phenotypes, including SPNS1/spin within distal 16p11.2 and 225 

microcephaly-associated SLC25A19/Tpc161, while five homologs only showed wing-specific 226 

phenotypes, including CDIPT/Pis and YPEL3/CG15309 within 16p11.2, FBXO45/Fsn and 227 

OSTalpha/CG6836 within 3q29, and UQCRC2/UQCR-C2 (Fig. 5B, Supp. Fig. 2). In particular, 228 

UQCRC2/UQCR-C2 showed lethality with wing-specific knockdown, suggesting potential 229 

tissue-specific effects of this gene in non-neuronal cells (Fig. 5B). While most homologs 230 

contributed towards both eye and wing-specific phenotypes, we observed a wide range of 231 

severity in eye phenotypes that did not correlate with the severity of quantitative or qualitative 232 

wing phenotypes (Fig. 5C). For example, TUFM/mEFTu1 showed a severe wing phenotype but 233 

only a mild increase in eye phenotypic score, while SH2B1/Lnk, also within the distal 16p11.2 234 

region, showed severe rough eye phenotypes but only a mild increase in wing size (Fig. 5D). 235 

Similarly, BCL9/lgs also showed opposing tissue-specific effects with mild qualitative wing 236 

phenotype and severe eye phenotype, suggesting that the role of these homologs towards 237 

development differs across tissue types. 238 

 239 

CNV genes show variable expression across different tissues in flies and humans 240 

To assess how expression levels of CNV genes vary across different tissues, we first examined 241 

the expression patterns of fly homologs in larval and adult tissues using the FlyAtlas Anatomical 242 
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Microarray dataset62. We found that 76/77 homologs with available data were expressed in at 243 

least one larval and adult tissue (Supp. Fig. 3, Supp. Data 6). In general, we did not observe a 244 

correlation between wing phenotype severity and expression patterns of homologs in larval or 245 

adult tissues (Fig. 6A). For example, 58/77 homologs (75.3%) showed ubiquitous larval 246 

expression, including both fly homologs that showed no qualitative wing phenotypes, such as 247 

KCTD13/CG10465 within 16p11.2 and FBXO45/Fsn, and those with severe wing phenotypes, 248 

such as PPP4C/Pp4-19C and NCBP2/Cbp20 (Fig. 6A, Supp. Fig. 3). Furthermore, 30/39 249 

homologs (76.9%) that showed eye phenotypes also had ubiquitous larval expression, providing 250 

further support to the observation that genes causing neuronal phenotypes may also contribute to 251 

developmental phenotypes in other tissues (Supp. Data 5). Of note, 9/77 homologs (11.7%) did 252 

not have any expression in the larval central nervous system, including FMO5/Fmo-2, 253 

BDH1/CG8888 within 3q29, and TBX6/Doc2 within 16p11.2 (Fig. 6A, Supp. Fig. 3). However, 254 

we observed wing phenotypes for 8/9 of these homologs, suggesting that they may contribute to 255 

tissue-specific phenotypes outside of the nervous system. Except for the epilepsy-associated 256 

SCN1A/para63, which was exclusively expressed in both the larval central nervous system (CNS) 257 

and adult brain tissues, other tested neurodevelopmental genes were also expressed in non-258 

neuronal tissues (Fig. 6A).  259 

We further used the GTEx Consortium dataset64 to examine tissue-specific expression of 260 

150 human CNV and known neurodevelopmental genes across six tissues including brain, heart, 261 

kidney, lung, liver, and muscle. We found 121 genes that were expressed in at least one adult 262 

tissue, including 49 genes (32.7%) that showed ubiquitous expression across all six tissues 263 

(Supp. Data 6). Of the 112 genes expressed in non-neuronal tissues, 34 did not have any 264 

neuronal expression, including TBX1, FMO5 and GJA5 within 1q21.1, and ATP2A1 within distal 265 
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16p11.2 (Fig. 6B, Supp. Data 6). FMO5 and TBX1 also showed non-neuronal expression in 266 

Drosophila tissues, suggesting that their tissue-specific expression is highly conserved (Fig. 6A). 267 

Other genes showing ubiquitous expression also had preferentially high expression for specific 268 

non-neuronal tissues, including ALDOA and UQCRC2 for muscle and heart for (Fig. 6B). In 269 

contrast, we found nine genes that were expressed only in the adult brain, including FAM57B 270 

and DOC2A within 16p11.2, as well as SCN1A, which showed similar CNS-only expression in 271 

Drosophila tissues (Fig. 6B, Supp. Data 6). 272 

 273 

Knockdown of fly homologs of CNV genes lead to disruption of basic cellular processes 274 

The disruption of basic cellular processes in neuronal cells, such as cell proliferation and 275 

apoptosis, have been implicated in neurodevelopmental disorders65–67. We previously identified 276 

defects in cell proliferation among photoreceptors neurons in larval eye discs with knockdown of 277 

16p11.2 homologs, as well as increased apoptosis with knockdown of a subset of 3q29 278 

homologs41,42. Here, we explored how these basic cellular processes are altered in non-neuronal 279 

cells, specifically in the developing wing disc. We targeted 27 fly homologs that showed a range 280 

of adult wing phenotypes for changes in cell proliferation and apoptosis, using anti-phospho-281 

Histone H3 Ser10 (pH3) and anti-Drosophila caspase-1 (dcp1), respectively, in the third instar 282 

larval wing discs. We identified 23/27 homologs that showed significant increases in apoptotic 283 

cells compared to controls, including seven homologs, such as PPP4C/Pp4-19C, ATXN2L/Atx2, 284 

and AATF/Aatf , which showed dcp1 staining across the entire larval wing pouch (Fig. 7A-B, 285 

Supp. Figs. 4-5, Supp. Data 7). In addition, 16/27 genes showed decreased levels of 286 

proliferation, including eight homologs which also showed apoptosis defects, such as 287 

CYFIP1/Sra-1 within 15q11.2, SH2B1/Lnk, and the microcephaly gene KIF11/Klp61F (Fig. 7A 288 
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and 7C, Supp. Figs. 4-5, Supp. Data 7). All six of the tested homologs with severe adult wing 289 

phenotypes showed both increased apoptosis and decreased proliferation (Supp. Data 7). 290 

Similarly, 3/4 homologs of genes showing lethality with wing-specific knockdown also showed 291 

defects in apoptosis or proliferation, with the exception of ACACA/ACC (Supp. Figure 4, Supp. 292 

Data 7). As bxMS1096-GAL4 is located on the X-chromosome, we expected to see more severe 293 

defects in males compared with females with knockdown of homologs due to the X-linked 294 

dosage compensation54,55. However, knockdown of 3/11 tested homologs with sex-specific 295 

differences in adult wing phenotypes, including BCL9/lgs, CYFIP1/Sra-1, and 296 

DNAJC30/CG11035 within 7q11.23, showed significantly decreased levels of cell proliferation 297 

in females but no change for males compared to their respective controls, suggesting a sex-298 

specific effect of these genes for cell proliferation (Supp. Fig. 5, Supp. Data 7). Overall, our 299 

results suggest that cell proliferation and apoptosis play an important role towards development 300 

in both neuronal and non-neuronal tissues. 301 

 302 

Homologs of candidate CNV genes disrupt conserved signaling pathways  303 

Several conserved signaling pathways that are active in a spatial and temporal manner in the 304 

larval wing disc, such as Wnt, Hedgehog, BMP, and Notch signaling, regulate the anterior-305 

posterior (A/P) and dorsal-ventral (D/V) boundaries to determine accurate morphology and vein 306 

patterning in the adult wing48,49,68–70. For example, Wnt and Notch signaling pathways both act 307 

along the D/V boundary to determine cell fate71,72, while Hedgehog signaling is dependent upon 308 

expression of both engrailed in the posterior compartment and patched along the A/P border73,74. 309 

Furthermore, O’Roak and colleagues showed that genes identified from de novo mutations in 310 

patients with autism are linked to β-catenin/Wnt pathway75. In addition, familial loss-of-function 311 
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mutations in the human hedgehog signaling pathway gene PTCH1 are implicated in basal cell 312 

nevus syndrome, leading to basal cell carcinoma76,77. 313 

Based on adult wing phenotypes and disruptions to cellular processes, we next tested 314 

whether knockdown of 14 fly homologs disrupt conserved signaling pathways in the third instar 315 

larval wing disc (Supp. Data 7). In particular, we evaluated the role of Wnt, Hedgehog, and 316 

Notch signaling pathways by testing the expression patterns of four key proteins within these 317 

pathways, including wingless (Wnt), patched (Hedgehog), engrailed (Hedgehog), and delta 318 

(Notch). We found that 9/14 homologs, including 8/10 homologs showing severe wing 319 

phenotypes or lethality, exhibited disruptions in at least one signaling pathway. For example, five 320 

homologs with severe or lethal phenotypes showed disruptions of all four signaling pathways, 321 

including AATF/Aatf, NCBP2/Cbp20, POLR3E/Sin, PPP4C/Pp4-19C, and KIF11/Klp61F (Fig. 322 

8, Supp. Data 7). Our observations are in concordance with previous findings by Swarup and 323 

colleagues, who showed that PPP4C/Pp4-19C is a candidate regulator of Wnt and Notch 324 

signaling pathways in Drosophila larval wing discs78. Furthermore, two genes from the 3q29 325 

region, DLG1/dlg1 and MFI2/Tsf2, showed altered expression patterns for delta and patched but 326 

not for engrailed, indicating that they selectively interact with the Hedgehog as well as Notch 327 

signaling pathway (Supp. Fig. 6). In fact, Six and colleagues showed that Dlg1 directly binds to 328 

the PDZ-binding domain of Delta179. In contrast, ACACA/ACC and UQCRC2/UQCR-C2 showed 329 

no changes in expression patterns for any of the four signaling proteins tested, suggesting that the 330 

observed lethality could be due to other cellular mechanisms (Supp. Fig. 6). We conclude that a 331 

subset of homologs disrupt the expression of key proteins in signaling pathways, potentially 332 

accounting for the developmental phenotypes observed in the adult wings. 333 

 334 
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Connectivity patterns of candidate genes vary across human tissue-specific networks 335 

We examined patterns of connectivity for the nine candidate genes which showed disruptions of 336 

signaling pathways within the context of human brain, heart, and kidney-specific gene 337 

interaction networks80. These tissue-specific networks were constructed using Bayesian 338 

classifier-generated probabilities for pairwise genetic interactions based on co-expression data80. 339 

We calculated the lengths of the shortest paths between each candidate gene and 267 Wnt, 340 

Notch, and Hedgehog pathway genes in each network as a proxy for connectivity (Supp. Data 341 

8). In all three networks, each of the candidate genes were connected to a majority of the tested 342 

signaling pathway genes, suggesting that our results have translational relevance towards human 343 

developmental pathways (Fig. 9A, Supp. Fig. 7). Interestingly, we observed a higher 344 

connectivity (i.e. shorter path distances) between candidate genes and Wnt and Hedgehog 345 

pathway genes in the brain-specific network compared to the heart and kidney-specific networks 346 

(Fig. 9B). We further identified enrichments for genes involved in specific biological processes 347 

among the connector genes that were located in the shortest paths within neuronal and non-348 

neuronal tissue-specific networks (Fig. 9C, Supp. Data 8). For example, axon-dendrite 349 

transport, dopaminergic signaling, and signal transduction functions were enriched among 350 

connector genes only for the brain-specific network, while organelle organization and protein 351 

ubiquitination were enriched among connector genes only for kidney and heart networks (Fig. 352 

9C). However, several core biological processes, such as cell cycle, protein metabolism, 353 

transcriptional regulation, and RNA processing/splicing, were enriched among connector genes 354 

within all three tissue-specific networks (Fig. 9C). Our analysis highlights that human CNV 355 

genes potentially interact with developmental signaling pathways in an ubiquitous manner, but 356 

may affect different biological processes in neuronal and non-neuronal tissues.  357 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


17 
 

DISCUSSION  358 

We used the Drosophila wing as a model to identify key CNV genes involved in non-neuronal 359 

phenotypes associated with CNV disorders. We tested fly homologs of 79 genes and identified 360 

multiple homologs within each CNV region that exhibited strong phenotypes indicative of 361 

developmental disruptions. Several themes have emerged from our study highlighting the 362 

importance of fly homologs of CNV genes towards both global and tissue-specific phenotypes 363 

associated with human CNV disorders. 364 

First, we found that homologs of CNV genes contribute towards developmental 365 

phenotypes through ubiquitous roles in neuronal and non-neuronal tissues. Although we did not 366 

study models for the entire CNV, nearly all individual fly homologs of CNV genes contribute to 367 

wing-specific developmental phenotypes. It is likely that these genes may also contribute to 368 

additional phenotypes in other tissues that we did not assess. In fact, a subset of these genes also 369 

showed early lethality with ubiquitous knockdown in addition to severe or lethal wing-specific 370 

phenotypes. However, we found no correlation between the severity of the eye and wing 371 

phenotypes, suggesting tissue-specific effects of these homologs towards developmental 372 

phenotypes. In contrast, fly homologs of known neurodevelopmental genes generally showed 373 

milder wing phenotypes compared with eye phenotypes, indicating a more neuronal role for 374 

these genes. While our study only examined a subset of CNV genes with Drosophila homologs, 375 

phenotypic data from knockout mouse models also support a global developmental role for 376 

individual CNV genes. In fact, 44/130 knockout models of CNV genes within the Mouse 377 

Genome Informatics (MGI) database81 exhibited non-neuronal phenotypes, including 20 378 

homologs of CNV genes that showed both neuronal and non-neuronal phenotypes (Supp. Data 379 

4). For example, knockout mouse models of Dlg1-/- show defects in dendritic growth and 380 
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branching in the developing nervous system, in addition to craniofacial features and multiple 381 

kidney and urinary tract defects82–85. Furthermore, Chapman and colleagues showed that 382 

knockout of Tbx6-/- caused defects in mesodermal and neuronal differentiation early in 383 

development, leading to abnormal vascular, tail bud, and neural tube morphology86. These 384 

observations further support our findings that most fly homologs of CNV genes have a global 385 

role in development that could account for the observed non-neuronal phenotypes.  386 

 Second, based on tissue-specific phenotypes, we identified fly homologs of CNV genes 387 

that are key regulators of conserved cellular processes important for development.  For example, 388 

9/10 homologs with severe or lethal adult wing phenotypes also exhibited defects in cell 389 

proliferation and apoptosis during development. In fact, we found concordance between cellular 390 

processes affected by wing and eye-specific knockdown of homologs of genes within 16p11.2 391 

and 3q29 regions, including decreased proliferation for MAPK3/rl and increased apoptosis for 392 

NCBP2/Cbp20 and DLG1/dlg141,42. While eye-specific knockdown of BDH1/CG8888 showed 393 

decreased cell proliferation in larval eye discs42, we found increased cell proliferation with wing-394 

specific knockdown, suggesting a tissue-specific effect for this gene. Notably, at least one fly 395 

homolog per CNV region showed defects in cell proliferation or apoptosis, suggesting that these 396 

conserved cellular processes may be relevant to CNV pathogenicity. For example, ATXN2L/Atx2, 397 

SH2B1/Lnk, and CCDC101/Sgf29 each showed decreased proliferation and increased apoptosis, 398 

suggesting an underlying common conserved cellular mechanism for the distal 16p11.2 deletion. 399 

Furthermore, a subset of these genes also disrupted multiple signaling pathways, indicating a 400 

potential role for these genes as key regulators of developmental processes. We specifically 401 

identified five genes whose knockdown caused disruptions of Wnt, Notch, and hedgehog 402 

signaling pathways. Each of these genes have important roles in cell cycle regulation, apoptosis, 403 
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transcription, or RNA processing, based on Gene Ontology annotations87,88. In fact, we found 404 

that the RNA transport protein NCBP2/Cbp2089, which we recently identified as a key modifier 405 

gene for the 3q29 deletion42, interfaced with all three signaling pathways. Furthermore, AATF 406 

disrupts apoptosis and promotes cell cycle progression through displacement of HDAC190–92, 407 

while PPP4C promotes spindle organization at the centromeres during mitosis93. While we only 408 

evaluated the role of these genes towards development in a single fly tissue, our additional 409 

analysis of human gene interaction networks showed strong connectivity between the CNV 410 

genes and signaling pathways in multiple neuronal and non-neuronal human tissues. In fact, cell 411 

cycle genes were enriched among the connector genes in all three tissue-specific networks, 412 

further emphasizing the role of cell cycle processes towards developmental phenotypes. Notably, 413 

we also observed certain biological processes enriched among connector genes that were specific 414 

to neuronal or non-neuronal tissues, indicating that haploinsufficiency of genes within CNV 415 

regions may disrupt different biological processes in a tissue-specific manner.  416 

Overall, we show that fly homologs of most CNV genes contribute towards global 417 

developmental phenotypes, although exactly how they contribute toward such phenotypes varies 418 

between neuronal and non-neuronal tissues. Previous functional studies for CNV disorders have 419 

focused primarily on identifying candidate genes for the observed neuronal phenotypes. In this 420 

study, we identified several homologs of CNV genes that are responsible for non-neuronal 421 

phenotypes, as well as novel associations between these genes and conserved biological 422 

processes and pathways. We therefore propose that multiple genes within each CNV disrupt 423 

global and tissue-specific processes during development and contribute to the wide range of non-424 

neuronal phenotypes associated with CNV disorders (Fig. 10). This multigenic model for non-425 

neuronal phenotypes in CNV disorders is in line with our previous model for neuronal 426 
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phenotypes of these disorders, as opposed to models where individual causative genes are 427 

responsible for specific phenotypes41,42,94. Our study further exemplifies the utility of evaluating 428 

non-neuronal phenotypes in addition to neuronal phenotypes in models of individual genes and 429 

CNV regions associated with developmental disorders, including future studies in mammalian or 430 

cellular model systems. Further studies exploring how CNV genes interact with each other and 431 

with other developmental pathways could more fully explain the conserved mechanisms 432 

underlying global developmental defects and identify potential therapeutic targets for these 433 

disorders.  434 
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METHODS 435 

Fly stocks and genetics 436 

We tested 59 Drosophila homologs for 130 human genes that span across 10 pathogenic CNV 437 

regions associated with neurodevelopmental disorders (1q21.1, 3q29, 7q11.23, 15q11.2, 15q13.3, 438 

16p11.2, distal 16p11.2, 16p12.1, 16p13.11, and 17q12)22 (Supp. Data 1). In addition, we 439 

evaluated fly homologs of 20 human genes known to be in involved in neurodevelopmental 440 

disorders60,95 (Supp. Data 1). These include genes involved in beta-catenin signaling pathway (5 441 

genes), core genes implicated in neurodevelopmental disorders (8 genes), and genes associated 442 

with microcephaly (7 genes)96. We used the DRSC Integrative Ortholog Prediction Tool 443 

(DIOPT, v.7.1) to identify the fly homologs for each human gene53  (Supp. Data 1).  444 

To knockdown individual genes in specific tissues, we used RNA interference (RNAi) 445 

and the UAS-GAL4 system (Fig. 2A), a well-established tool that allows for tissue-specific 446 

expression of a gene of interest97. RNAi lines were obtained from Vienna Drosophila Resource 447 

Center (VDRC) that include both GD and KK lines. We tested a total of 136 lines in our final 448 

data analysis (Supp. Data 9), after eliminating KK lines with additional insertion that drives the 449 

overexpression of the Tiptop (tio) transcription factor98,99. A complete list of stock numbers and 450 

full genotypes for all RNAi lines used in this study is presented in Supp. Data 9. We used the 451 

bxMS1096-GAL4/FM7c;;UAS-Dicer2/TM6B driver for wing-specific knockdown and w1118;GMR-452 

GAL4;UAS-Dicer2 driver (Claire Thomas, Penn State University) for eye-specific knockdown of 453 

RNAi lines. Ubiquitous knockdown experiments were performed using the w;da-GAL4;+ driver 454 

(Scott Selleck, Penn State University). For all experiments, we used appropriate GD (w1118, 455 

VDRC# 60000) or KK (y,w1118; P{attP,y+,w3`}, VDRC# 60100) lines as controls to compare 456 

against lines with knockdown of individual homologs. All fly lines were reared on standard yeast 457 
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Drosophila medium at room temperature. All crosses were set and maintained at 25°C, except 458 

for the eye knockdown experiments which were maintained at 30°C.  459 

 460 

Phenotypic analysis of adult wing images 461 

Adult progeny were isolated from crosses between RNAi lines and bxMS1096-GAL4 driver shortly 462 

after eclosion, and kept at 25°C until day 2-5 (Fig. 2A). At that point, the progeny were frozen at 463 

-80°C, and were then moved to -20°C prior to imaging and storage. Approximately 20-25 464 

progeny, both male and female, were collected for each RNAi line tested. The adult wings were 465 

plucked from frozen flies and mounted on a glass slide. The slides were covered with a coverslip 466 

and sealed using clear nail polish. Adult wing images were captured using a Zeiss Discovery 467 

V20 stereoscope (Zeiss, Thornwood, NY, USA), with a ProgRes Speed XT Core 3 camera and 468 

CapturePro v.2.8.8 software (Jenoptik AG, Jena, Germany) at 40X magnification. 469 

For each non-lethal RNAi line, we scored the adult wing images for five qualitative 470 

phenotypes, including wrinkled wing, discoloration, missing veins, ectopic veins, and bristle 471 

planar polarity defects, on a scale of 1 (no phenotype) to 5 (lethal) (Fig. 3C). Lines showing 472 

severely wrinkled wings or lethality were scored as 4 (severe) or 5 (lethal) for all five 473 

phenotypes. We calculated the frequency of each phenotypic score (i.e. mild bristle polarity, 474 

moderate discoloration) across all of the wing images for each line (Fig. 3A-B), and then 475 

performed k-means clustering of these values to generate five clusters for overall wing 476 

phenotypes (Fig. 2C). For quantitative analysis of wing phenotypes, we used the Fiji ImageJ 477 

software100 to calculate the wing area using the Measure Area tool, and calculated the lengths of 478 

longitudinal veins L2, L3, L4, and L5 as well as the anterior and posterior crossveins (ACV and 479 

PCV), by tracing individual veins using the Segmented Line tool (Fig. 4A, Supp. Data 2). We 480 
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determined discordant homologs when RNAi lines for the same homologs showed inconsistent 481 

wing phenotypes. For each homolog with multiple RNAi lines, we checked discordance among 482 

RNAi lines for no phenotype versus any qualitative or quantitative phenotypes, followed by 483 

discordance for small or large wing measurement phenotypes (Supp. Data 3). 484 

 485 

Phenotypic analysis of adult eye images 486 

We crossed RNAi lines with GMR-GAL4 to achieve eye-specific knockdown of homologs of 487 

CNV and known neurodevelopmental genes. Adult 2-3-day old female progenies from the 488 

crosses were collected, immobilized by freezing at -80°C, and then moved to -20°C prior to 489 

imaging and storage. Flies were mounted on Blu-tac (Bostik Inc, Wauwatosa, WI, USA) and 490 

imaged using an Olympus BX53 compound microscope with LMPLan N 20X air objective using 491 

a DP73 c-mount camera at 0.5X magnification (Olympus Corporation, Tokyo, Japan). CellSens 492 

Dimension software (Olympus Corporation, Tokyo, Japan) was used to capture the eye images, 493 

which were then stacked using the Zerene Stacker software (Zerene Systems LLC, Richland, 494 

WA, USA). All eye images presented in this study are maximum projections of 20 consecutive 495 

optical z-sections, at a z-step size of 12.1μm. Finally. we used our computational method called 496 

Flynotyper (https://flynotyper.sourceforge.net) to quantify the degree of rough eye phenotypes 497 

present due to knockdown of homologs of CNV or neurodevelopmental genes60. Flynotyper 498 

scores for homologs of 16p11.2 and 3q29, as well as select core neurodevelopmental genes, were 499 

derived from our previous studies41,42,60. 500 

 501 

 502 

 503 
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Immunohistochemistry 504 

Wing imaginal discs from third instar larvae were dissected in 1X PBS. The tissues were fixed 505 

using 4% paraformaldehyde and blocked using 1% bovine serum albumin (BSA). The wing discs 506 

were incubated with primary antibodies using appropriate dilutions overnight at 4°C. We used 507 

the following primary antibodies: mouse monoclonal anti-pHistone3 (S10) (1:100 dilutions, Cell 508 

Signaling 9706L), rabbit polyclonal anti-cleaved Drosophila Dcp1 (Asp216) (1:100 dilutions, 509 

Cell Signaling 9578S), mouse monoclonal anti-Wingless (1:200 dilutions, DSHB, 4D4), mouse 510 

monoclonal anti-Patched (1:50 dilutions, DSHB, Drosophila Ptc/APA1), mouse monoclonal 511 

anti-Engrailed (1:50 dilutions, DSHB, 4D9), and mouse monoclonal anti-Delta (1:50 dilutions, 512 

DSHB, C594.9B). Following incubation with primary antibodies, the wing discs were washed 513 

and incubated with secondary antibodies at 1:200 dilution for two hours at room temperature. 514 

We used the following secondary antibodies: Alexa Fluor 647 dye goat anti-mouse (A21235, 515 

Molecular Probes by Invitrogen/Life Technologies), Alexa Fluor 568 dye goat anti-rabbit 516 

(A11036, Molecular Probes by Invitrogen/Life Technologies), and Alexa Fluor 568 dye goat 517 

anti-mouse (A11031, Molecular Probes by Invitrogen/Life Technologies).  All washes and 518 

antibody dilutions were made using 0.3% PBS with Triton-X.  519 

Third instar larvae wing imaginal discs were mounted in Prolong Gold antifade reagent 520 

with DAPI (Thermo Fisher Scientific, P36930) for imaging using an Olympus Fluoview FV1000 521 

laser scanning confocal microscope (Olympus America, Lake Success, NY). Images were 522 

acquired using FV10-ASW 2.1 software (Olympus, Waltham, MA, USA). Composite z-stack 523 

images were analyzed using the Fiji ImageJ software100. To calculate the number of pH3 positive 524 

cells within the wing pouch area of the wing discs, we used the AnalyzeParticles function in 525 

ImageJ, while manual counting was used to quantify Dcp1 positive cells. We note that cell 526 
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proliferation and apoptosis staining for NCBP2/Cbp20, DLG1/dlg1, BDH1/CG8888, and 527 

FBXO45/Fsn were previously published42. 528 

 529 

Statistical analysis 530 

Significance for the wing area and vein length measurements, cell counts for proliferation and 531 

apoptosis, and Flynotyper scores were compared to appropriate GD or KK controls using one-532 

tailed or two-tailed Mann-Whitney tests. P-values for each set of experiments were corrected for 533 

multiple testing using Benjamini-Hochberg correction. All statistical and clustering analysis was 534 

performed using R v.3.6.1 (R Center for Statistical Computing, Vienna, Austria). Details for the 535 

statistical tests performed for each dataset are provided in Supp. Data 10. 536 

 537 

Expression data analysis 538 

We obtained tissue-specific expression data for fly homologs of CNV genes from the FlyAtlas 539 

Anatomical Microarray dataset62. Raw FPKM (fragments per kilobase of transcript per million 540 

reads) expression values for each tissue were categorized as follows: <10, no expression; 10-100, 541 

low expression; 100-500, moderate expression; 500-1000, high expression; and >1000, very high 542 

expression (Supp. Data 6). The median expression among midgut, hindgut, Malpighian tube, 543 

and (for adult only) crop tissues was used to represent the overall gut expression. We similarly 544 

obtained human tissue-specific expression data for CNV genes from the GTEx Consortium v.1.2 545 

RNA-Seq datasets64. Median TPM (transcripts per million reads) expression values for each 546 

tissue were categorized as follows: <3, no expression; 3-10, low expression; 10-25, moderate 547 

expression; 25-100, high expression; and >100, very high expression (Supp. Data 6). The 548 

median expression among all brain and heart sub-tissues was used to represent brain and heart 549 
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expression, while the median expression among all colon, esophagus, small intestine, and 550 

stomach sub-tissues was used to represent digestive tract expression. Preferential gene 551 

expression for a particular tissue within the GTEx dataset was determined if the expression 552 

values for that tissue were greater than the third quartile of all tissue expression values for that 553 

gene, plus 1.5 times the interquartile range. Venn diagrams were generated using the Venny 554 

webtool (http://bioinfogp.cnb.csic.es/tools/venny) (Supp. Fig. 3). 555 

 556 

Network analysis 557 

We obtained human tissue-specific gene interaction networks for brain, heart, and kidney tissues 558 

from the GIANT network database80 within HumanBase (https://hb.flatironinstitute.org). These 559 

networks were built by training a Bayesian classifier based on tissue-specific gene co-expression 560 

datasets, which then assigned a posterior probability for interactions between each pair of genes 561 

within the genome for a particular tissue. We downloaded the “Top edge” version of each tissue-562 

specific network, and extracted all gene pairs with posterior probabilities >0.2 to create sub-563 

networks containing the top ~0.5% tissue-specific interactions. Next, we identified the shortest 564 

paths in each sub-network between human CNV genes whose fly homologs disrupted signaling 565 

pathways in the larval wing disc and human genes within each disrupted pathway, using the 566 

inverse of the posterior probability as weights for each edge in the network. Gene sets from the 567 

human Notch (KEGG:map04330), Wnt (KEGG:map04310) and Hedgehog pathways 568 

(KEGG:map04340) were curated from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 569 

pathway database101. Using the NetworkX Python package102, we calculated the shortest distance 570 

between each CNV gene and pathway gene, and identified connecting genes that were within 571 

each of the shortest paths for the three tissue-specific networks. We further tested for enrichment 572 
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of Gene Ontology (GO) terms (PantherDB GO-Slim) among the connector genes using the 573 

PantherDB Gene List Analysis tool103. Lists of the shortest paths and connector genes in each 574 

tissue-specific network, as well as enriched GO terms for sets of connector genes, are provided 575 

in Supp. Data 8. Gene networks were visualized using Cytoscape v.3.7.2104 using an edge-576 

weighted spring embedded layout. 577 

 578 

Mouse and human phenotypic data analysis 579 

Phenotypic data for mouse models of CNV gene homologs, categorized using top-level 580 

Mammalian Phenotype Ontology terms, were obtained from the Mouse Genome Informatics 581 

(MGI) database81 (Supp. Data 4). Phenotypic data for human carriers of pathogenic CNVs were 582 

obtained from the DECIPHER public database9. Clinical phenotypes for each CNV carrier were 583 

categorized by top-level Human Phenotype Ontology terms105 using the Orange3 Bioinformatics 584 

software library (https://orange-bioinformatics.readthedocs.io), and the frequency of individuals 585 

carrying each top-level phenotype term was calculated for each of the ten tested pathogenic 586 

CNVs. 587 

  588 
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FIGURE LEGENDS  855 

Figure 1. Phenotypic expression of CNV carriers across tissues. Heatmap with frequencies of 856 

non-neuronal developmental phenotypes observed in 1,225 human carriers of 10 pathogenic 857 

CNV deletions, curated from the DECIPHER database, is shown. CNV carriers show a variety of 858 

phenotypes that manifest across different tissues, including eye, limbs, muscle, and skeleton.  859 

 860 

Figure 2. Targeted analysis to identify global developmental phenotypes with knockdown 861 

of homologs of CNV genes. (A) Strategy for identifying non-neuronal phenotypes and 862 

underlying cellular mechanisms for homologs of CNV and known neurodevelopmental genes 863 

using the fly wing as a model system. We evaluated 59 Drosophila homologs of genes within 10 864 

CNV regions and 20 known neurodevelopmental genes (79 total homologs). Using the UAS-865 

GAL4 system with wing-specific bxMS1096 driver, we knocked down 136 individual RNAi lines 866 

for the CNV and neurodevelopmental homologs, and evaluated qualitative and quantitative 867 

phenotypes. We next clustered RNAi lines based on severity of qualitative phenotypes, and 868 

compared adult wing phenotypes to phenotypes observed with ubiquitous and eye-specific 869 

knockdown of homologs. Furthermore, we evaluated underlying cellular mechanisms for the 870 

observed wing-specific phenotypes, and examined the connectivity patterns of candidate 871 

homologs for developmental phenotypes in multiple human tissue-specific networks. (B) 872 

Representative brightfield images of adult wing phenotype severity observed with knockdown of 873 

homologs of CNV genes, based on clustering analysis, are shown. (C) Heatmap with k-means 874 

clustering of qualitative phenotypes in adult female wings across 136 RNAi lines is shown. The 875 

color of each cell represents the frequency of individual fly wings (n=20-25 adult wings) for 876 

each RNAi line (x-axis) that show a specific severity (no phenotype, mild, moderate, severe, 877 
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lethal) for the five qualitative phenotypes assessed (y-axis; wrinkled wings, ectopic veins, 878 

missing veins, discoloration, bristle planar polarity), as detailed in Supp. Data 2. Based on these 879 

data, we identified clusters for no phenotype (n=75 lines), mild (n=24 lines), moderate (n=10 880 

lines), severe (n=21 lines), and lethal (n=6 lines). (D) Summary table of qualitative and 881 

quantitative adult wing phenotypes for all tested RNAi lines of homologs of CNV and 882 

neurodevelopmental genes. Quantitative phenotype totals do not include lethal RNAi lines for 883 

both area and vein length. In addition, L3 vein length totals do not include severe RNAi lines. 884 

 885 

Figure 3. Qualitative adult wing phenotypes of Drosophila homologs of CNV and 886 

neurodevelopmental genes. Heatmaps representing the five qualitative adult wing phenotypes 887 

for all 136 RNAi lines, with (A) all 59 tested homologs for 10 CNV regions and (B) 20 888 

homologs for neurodevelopmental genes (β-catenin, core neurodevelopmental genes, and 889 

microcephaly genes), are shown. The color of each cell represents the frequency of each of the 890 

five qualitative phenotypes by severity (wrinkled wings, WR; ectopic veins, EV; missing veins, 891 

MV; discoloration, DC; bristle planar polarity, BP), ranging from no phenotype to lethal. (C) 892 

Representative brightfield images of adult fly wings (scale bar = 500µm) with wing-specific 893 

knockdown of homologs of CNV and neurodevelopmental genes showing the five assessed 894 

qualitative phenotypes, including discoloration, wrinkled wings, bristle polarity, ectopic veins, 895 

and missing veins are shown. The panels in the bxMS1096-GAL4 control and C6836KK112485 images 896 

highlight bristle planar polarity phenotypes for the representative images. Black arrowheads 897 

highlight ectopic veins and white arrowheads highlight missing veins. Genotypes for the images 898 

are: w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;UAS-RphGD7330 RNAi/+;UAS-899 

Dicer2/+, w1118/bxMS1096-GAL4;UAS-CG15528KK107736 RNAi/+; UAS-Dicer2/+, w1118/bxMS1096-900 
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GAL4;UAS-CG6836KK112485 RNAi/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;+;UAS-901 

CG14182GD2738 RNAi/UAS-Dicer2, and w1118/bxMS1096-GAL4;UAS-kisKK100890 RNAi/+; UAS-902 

Dicer2/+. 903 

 904 

Figure 4. Quantitative adult wing phenotypes of Drosophila homologs of CNV and 905 

neurodevelopmental genes. (A) Representative brightfield images of adult fly wings (scale bar 906 

= 500µm) with wing-specific knockdown of homologs of CNV and neurodevelopmental genes 907 

with size defects are shown. The bxMS1096-GAL4 control image highlights the six veins, including 908 

longitudinal veins L2, L3, L4, and L5 as well as the anterior and posterior crossveins (ACV and 909 

PCV), that were measured for quantitative analysis. The dotted line in the control image 910 

represents the total wing area calculated for each RNAi line. Genotypes for the images are: 911 

w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;UAS-Fmo-2KK109203 RNAi/+; UAS-912 

Dicer2/+, and w1118/bxMS1096-GAL4;+;UAS-TrpmGD4541 RNAi/UAS-Dicer2. (B) Boxplot of L3 913 

vein lengths for knockdown of select homologs in adult fly wings (n = 9-91, *p < 0.05, two-914 

tailed Mann–Whitney test with Benjamini-Hochberg correction). Vein measurements for all 915 

other longitudinal veins and crossveins (ACV and PCV) for these lines are represented in Supp 916 

Fig. 2. (C) Boxplot of wing areas for knockdown of select homologs in adult fly wings (n = 9-917 

91, *p < 0.05, two-tailed Mann–Whitney test with Benjamini-Hochberg correction). All boxplots 918 

indicate median (center line), 25th and 75th percentiles (bounds of box), and minimum and 919 

maximum (whiskers), with red dotted lines representing the control median. 920 

 921 

Figure 5. Comparison of wing-specific, eye-specific, and ubiquitous knockdown of 922 

homologs of CNV and known neurodevelopmental genes. (A) Heatmap with the penetrance 923 
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of phenotypes with ubiquitous knockdown (da–GAL4) of select homologs of CNV genes, 924 

compared to their adult wing-specific (bxMS1096–GAL4) phenotypic severity is shown. (B) 925 

Boxplots of Flynotyper-derived phenotypic scores for adult eyes with eye-specific knockdown 926 

(GMR-GAL4) of select homologs of CNV and neurodevelopmental genes, normalized as fold-927 

change (FC) to control values (n = 7–40, *p < 0.05, one-tailed Mann–Whitney test with 928 

Benjamini-Hochberg correction). The boxplots are arranged by severity of adult wing 929 

phenotypes observed for each RNAi line, while the Flynotyper phenotypic scores are categorized 930 

into four severity categories: no change (0–1.1 FC), mild (1.1–1.5 FC), moderate (1.5–2.0 FC), 931 

and severe (>2.0 FC). (C) Boxplot showing the average eye phenotypic scores for 66 RNAi lines 932 

of select homologs of CNV and neurodevelopmental genes, normalized as fold-change (FC) to 933 

control values, by wing phenotypic category (n=4–30 RNAi lines per group). We did not observe 934 

any significant changes in eye phenotype severity across the five wing phenotypic categories 935 

(Kruskal-Wallis rank sum test, p=0.567, df = 5, χ2 = 3.881). Examples of average eye phenotypic 936 

scores for RNAi lines with no phenotype (paraGD3392_1), mild (rlKK115768), and lethal (dlg1GD4689) 937 

wing phenotype severity are highlighted in the graph. All boxplots indicate median (center line), 938 

25th and 75th percentiles (bounds of box), and minimum and maximum (whiskers), with red 939 

dotted lines representing the control median. (D) Representative brightfield adult eye (scale 940 

bar = 100 µm) and adult wing (scale bar = 500µm) images with tissue-specific knockdown of 941 

homologs of CNV genes are shown. Genotypes for the eye images are: w1118;GMR-GAL4/+; 942 

UAS-Dicer2/+, w1118;GMR-GAL4/UAS-LnkKK105731 RNAi; UAS-Dicer2/+, w1118;GMR-943 

GAL4/UAS-mEFTu1GD16961 RNAi; UAS-Dicer2/+. Genotypes for the wing images are: 944 

w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, w1118/bxMS1096-GAL4; UAS-LnkKK105731 RNAi/+; UAS-945 

Dicer2/+, and w1118/bxMS1096-GAL4; UAS-mEFTu1GD16961 RNAi/+; UAS-Dicer2/+. 946 
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Figure 6. Expression patterns of Drosophila homologs and human CNV and 947 

neurodevelopmental genes across multiple tissues. (A) Heatmap with expression of fly 948 

homologs of select CNV and neurodevelopmental genes in multiple Drosophila larval and adult 949 

tissues, derived from the FlyAtlas Anatomical Microarray dataset, compared with adult wing 950 

phenotype severity, is shown. Expression values are grouped into no expression (<10 fragments 951 

per kilobase of transcript per million reads, or FPKM), low (10–100 FPKM), moderate (100–500 952 

FPKM), high (500–1000 FPKM), and very high (>1000 FPKM) expression categories. (B) 953 

Heatmap with expression of select human CNV and neurodevelopmental genes in multiple adult 954 

tissues, derived from the Genotype-Tissue Expression (GTEx) dataset v.1.2, is shown. 955 

Expression values are grouped into no expression (<3 transcripts per million reads, or TPM), low 956 

(3–10 TPM), moderate (10–25 TPM), high (25–100 TPM), and very high (>100 TPM) 957 

expression categories. X symbols denote preferential expression in a particular tissue (see 958 

Methods). Expression data for all CNV and neurodevelopmental genes are provided in Supp. 959 

Data 6. 960 

 961 

Figure 7. Drosophila homologs of CNV and neurodevelopmental genes show altered levels 962 

of apoptosis and proliferation. (A) Larval imaginal wing discs (scale bar = 50 µm) stained with 963 

nuclear marker DAPI, apoptosis marker dcp1, and cell proliferation marker pH3 illustrate altered 964 

levels of apoptosis and cell proliferation due to wing-specific knockdown of select fly homologs 965 

of CNV genes. We quantified the number of stained cells within the wing pouch of the wing disc 966 

(white box), which becomes the adult wing. Additional representative images of select homologs 967 

are presented in Supp Fig. 5. Genotypes for the wing images are: w1118/bxMS1096-GAL4;+; UAS-968 

Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-AatfGD7229 RNAi/UAS-Dicer2, w1118/bxMS1096-GAL4;UAS-969 
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Pp4-19CGD9561/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-Atx2GD11562 RNAi/UAS-Dicer2, 970 

and w1118/bxMS1096-GAL4;+; UAS-SinGD7027 RNAi/UAS-Dicer2. (B) Box plot of dcp1-positive 971 

cells in larval wing discs with knockdown of select fly homologs of CNV and 972 

neurodevelopmental genes, normalized to controls (n = 7–18, *p < 0.05, two-tailed Mann–973 

Whitney test with Benjamini-Hochberg correction). We note that several RNAi lines showed 974 

severe dcp1 staining across the entire wing disc and could not be quantified. The number of dcp1 975 

positive cells were calculated manually. (C) Box plot of pH3-positive cells in the larval wing 976 

discs with knockdown of select fly homologs of CNV and neurodevelopmental genes, 977 

normalized to controls (n = 6–18, *p < 0.05, two-tailed Mann–Whitney test with Benjamini-978 

Hochberg correction). The number of pH3 positive cells were calculated using the 979 

AnalyzeParticles function in ImageJ. All boxplots indicate median (center line), 25th and 75th 980 

percentiles (bounds of box), and minimum and maximum (whiskers), with red dotted lines 981 

representing the control median.  982 

 983 

Figure 8. Candidate Drosophila homologs of genes within CNV regions interact with 984 

conserved signaling pathways. Larval imaginal wing discs (scale bar = 50 µm) stained with (A) 985 

wingless, (B) patched, (C) engrailed, and (D) delta illustrate disrupted expression patterns for 986 

proteins located within the Wnt (wingless), Hedgehog (patched and engrailed), and Notch (delta) 987 

signaling pathways due to wing-specific knockdown of select fly homologs of CNV and 988 

neurodevelopmental genes. Dotted yellow boxes represent expected expression patterns for 989 

signaling proteins in bxMS1096-GAL4 control images. White arrowheads and dotted white boxes 990 

highlight disruptions in expression patterns of signaling proteins with knockdown of CNV or 991 

neurodevelopmental genes. Additional representative images of select homologs are presented in 992 
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Supp Fig. 7. Genotypes for the wing images are: w1118/bxMS1096-GAL4;+; UAS-Dicer2/+, 993 

w1118/bxMS1096-GAL4;UAS-Pp4-19CGD9561/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;UAS-994 

Cbp20KK109448/+; UAS-Dicer2/+, w1118/bxMS1096-GAL4;+; UAS-SinGD7027 RNAi/UAS-Dicer2, 995 

w1118/bxMS1096-GAL4;+; UAS-AatfGD7229 RNAi/UAS-Dicer2, and w1118/bxMS1096-GAL4;UAS-996 

Klp61FGD14149/+; UAS-Dicer2/+. 997 

 998 

Figure 9. Connectivity of human CNV genes with conserved signaling pathway genes in 999 

human tissue-specific networks. (A) Representative diagrams of eight human CNV and 1000 

neurodevelopmental genes whose fly homologs disrupt the Notch signaling pathway and 57 1001 

human Notch signaling genes within kidney, heart, and brain-specific gene interaction networks 1002 

are shown. Yellow nodes represent CNV and neurodevelopmental genes, pink nodes represent 1003 

Notch signaling pathway genes, and green nodes represent connector genes within the shortest 1004 

paths between CNV and Notch pathway genes. (B) Violin plots showing the average 1005 

connectivity (i.e. inverse of shortest path lengths) of CNV genes to genes in Hedgehog, Notch, 1006 

and Wnt signaling pathways across the tested tissue-specific networks (n=322–810 pairwise 1007 

interactions, *p < 0.05, two-tailed Welch’s t-test with Benjamini-Hochberg correction). (C) 1008 

Table showing enriched clusters of Gene Ontology (GO) Biological Process terms for connector 1009 

genes observed for each signaling pathway in the three tested tissue-specific networks, 1010 

categorized by enrichments in ubiquitous, neuronal, and non-neuronal tissues (p<0.05, Fisher’s 1011 

Exact test with Benjamini-Hochberg correction). 1012 

 1013 

Figure 10. A multigenic model for neuronal and non-neuronal phenotypes associated with 1014 

pathogenic CNVs. Schematic of a multigenic model for neuronal and non-neuronal phenotypes 1015 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855338doi: bioRxiv preprint 

https://doi.org/10.1101/855338
http://creativecommons.org/licenses/by/4.0/


43 
 

associated with pathogenic CNVs. While a subset of genes within CNV regions contribute 1016 

towards tissue-specific phenotypes, a majority of genes contribute towards both neuronal and 1017 

non-neuronal phenotypes through disruption of developmental signaling pathways and global 1018 

biological processes. 1019 
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