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Abstract 47 
 48 
Background 49 
Viruses are central to microbial community structure in all environments. The ability to generate 50 
large metagenomic assemblies of mixed microbial and viral sequences provides the opportunity to 51 
tease apart complex microbiome dynamics, but these analyses are currently limited by the tools 52 
available for analyses of viral genomes and assessing their metabolic impacts on microbiomes.  53 
 54 
Design 55 
Here we present VIBRANT, the first method to utilize a hybrid machine learning and protein 56 
similarity approach that is not reliant on sequence features for automated recovery and annotation 57 
of viruses, determination of genome quality and completeness, and characterization of virome 58 
function from metagenomic assemblies. VIBRANT uses neural networks of protein signatures and 59 
a novel v-score metric that circumvents traditional boundaries to maximize identification of lytic 60 
viral genomes and integrated proviruses, including highly diverse viruses. VIBRANT highlights 61 
viral auxiliary metabolic genes and metabolic pathways, thereby serving as a user-friendly 62 
platform for evaluating virome function. VIBRANT was trained and validated on reference virus 63 
datasets as well as microbiome and virome data.  64 
 65 
Results 66 
VIBRANT showed superior performance in recovering higher quality viruses and concurrently 67 
reduced the false identification of non-viral genome fragments in comparison to other virus 68 
identification programs, specifically VirSorter and VirFinder. When applied to 120,834 69 
metagenomically derived viral sequences representing several human and natural environments, 70 
VIBRANT recovered an average of 94.5% of the viruses, whereas VirFinder and VirSorter 71 
achieved less powerful performance, averaging 48.1% and 56.0%, respectively. Similarly, 72 
VIBRANT identified more total viral sequence and proteins when applied to real metagenomes. 73 
When compared to PHASTER and Prophage Hunter for the ability to extract integrated provirus 74 
regions from host scaffolds, VIBRANT performed comparably and even identified proviruses that 75 
the other programs did not. To demonstrate applications of VIBRANT, we studied viromes 76 
associated with Crohn’s Disease to show that specific viral groups, namely Enterobacteriales-like 77 
viruses, as well as putative dysbiosis associated viral proteins are more abundant compared to 78 
healthy individuals, providing a possible viral link to maintenance of diseased states. 79 
 80 
Conclusions 81 
The ability to accurately recover viruses and explore viral impacts on microbial community 82 
metabolism will greatly advance our understanding of microbiomes, host-microbe interactions and 83 
ecosystem dynamics. 84 
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Background 91 
 92 
 Viruses that infect bacteria and archaea are incredibly abundant, and outnumber their hosts 93 
in most environments (1–3). Viruses are commonly considered non-living entities and are obligate 94 
intracellular pathogenic genetic elements capable of reprogramming host cellular metabolic states 95 
during infection. They are also highly active and cause the lysis of 20-40% of microorganisms in 96 
diverse environments every day (4, 5). Due to their abundance and widespread activity, viruses are 97 
vital to microbial communities as they drive cycling of essential nutrients such as carbon, nitrogen, 98 
phosphorus and sulfur (6–10). In human systems, viruses have been implicated in contributing to 99 
dysbiosis that can lead to various diseases, such as inflammatory bowel diseases, or even have a 100 
symbiotic role with the immune system (11–13). 101 
 It is estimated that viral diversity exceeds that of living organisms, and therefore harbors 102 
enormous potential for diverse genomic content, arrangement and encoded functions (14). 103 
Accordingly, there is substantial interest in “mining” viral sequences for novel anti-microbial drug 104 
candidates, enzymes for biotechnological applications, and for bioremediation efforts (15–19). 105 
Moreover, viruses have a unique capability to rapidly evolve genes via high mutation rates and act 106 
as intermediate carriers to transfer these genes to their hosts and subsequently to the surrounding 107 
communities (20–22).  108 
 Our understanding of the diversity of viruses continues to expand with the discovery of 109 
novel viral lineages within the last decade. One of the most striking examples is the 110 
characterization of crAssphage, an extraordinarily abundant virus infecting Bacteroides species 111 
within the human gut that went unnoticed for years due to its lack of homology with known viral 112 
sequences (23). Moreover, the discovery of megaphages, the largest known bacterial viruses 113 
infecting the human gut bacteria Prevotella, has pushed the boundaries on the coding capacity of 114 
viruses (24, 25). In the oceans, a newly discovered lineage of Vibrio-infecting non-tailed viruses, 115 
generally considered unconventional since most known bacterial viruses are tailed, fueled the 116 
notion that current viral recovery methods are skewing our understanding of viruses in the 117 
environment (26). Taken together, this highlights that estimates of viral diversity are biased 118 
towards tailed dsDNA viruses and are likely underrepresenting other families of viruses including 119 
those with ssDNA and RNA genomes (27, 28).  120 
 Recently it has been appreciated that viruses may directly link biogeochemical cycling of 121 
nutrients by specifically driving metabolic processes. For example, during infection viruses can 122 
acquire 40-90% of their required nutrients from the surrounding environment by taking over and 123 
subsequently directing host metabolism (29–31). To manipulate host metabolic frameworks some 124 
viruses have selectively “stolen” metabolic genes from their host. These host derived genes, 125 
collectively termed auxiliary metabolic genes (AMGs), are actively expressed during infection to 126 
provide viruses with fitness advantages (32–35). Viruses encoding AMGs have been found to be 127 
widespread in human and natural environments and implicated in manipulating several important 128 
nutrient cycles including carbon, nitrogen, phosphorus and sulfur (36–40). Identifying these genes 129 
and understanding the processes underpinning their function is pivotal for developing 130 
comprehensive models of the impacts of microbiomes and nutrient cycling. 131 
 Due to the difficulty of collecting virus-only samples as well as the need to integrate viruses 132 
into models of ecosystem function, it has become of great interest to determine which sequences 133 
within microbial communities are derived from viruses. Within the cellular fraction of a sample 134 
there can remain a large number of viruses for a variety of reasons. First, these viruses can exist as 135 
active intracellular infections, which may be the case for as many as 30% of all bacteria at any 136 
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given time (41). Second, there may be particle-attached viruses resulting from viruses’ inherently 137 
“sticky” nature (42). Lastly, many viruses exist as “proviruses”, or viral genomes either integrated 138 
into that of their host or existing within the host as an episomal sequence. As such, it is crucial for 139 
the accurate evaluation of microbial community characteristics, structure and functions to be able 140 
to separate these viral sequences. 141 
 Multiple tools exist for the identification of viral sequences from mixed metagenomic 142 
assemblies. For several years VirSorter (43), which succeeded tools such as VIROME (44) and 143 
Metavir (45), has been the most widely used for its ability to accurately identify viral metagenomic 144 
fragments (scaffolds) from large metagenomic assemblies. VirSorter predominantly relies on 145 
database searches of predicted proteins, using both reference homology as well as probabilistic 146 
similarity, to compile metrics of enrichment of virus-like proteins and simultaneous depletion of 147 
other proteins. To do this it uses a virus-specific curated database as well as Pfam (46) for non-148 
virus annotations, though it does not fully differentiate viral from non-viral Pfam annotations. It 149 
also incorporates signatures of viral genomes, such as encoding short genes or having low levels 150 
of strand switching between genes. VirSorter is also unique in its ability to use these annotation 151 
and sequence metrics to identify and extract integrated provirus regions from host scaffolds. After 152 
prediction of viral sequences, VirSorter labels viral scaffolds with one of three confidence levels: 153 
categories 1, 2 or 3. Categories 1 and 2 are generally considered accurate, but category 3 154 
predictions are more likely to contain false identifications. While VirSorter is quite accurate, it 155 
likely underrepresents the diversity and abundance of viruses within metagenomic assemblies.  156 
 More recent tools have been developed to compete with the performance of VirSorter in 157 
order to expand our appreciation and understanding of viruses. VirFinder (47) was the first tool to 158 
implement machine learning and be completely independent of reference databases for predicting 159 
viral sequences which was a platform later implemented in PPR-Meta (48). VirFinder was built 160 
with the consideration that viruses tend to display distinctive patterns of 8-nucleotide frequencies 161 
(otherwise known as 8-mers), which was proposed despite the knowledge that viruses can share 162 
remarkably similar nucleotide patterns with their host (49). These 8-mer patterns were used to 163 
build a random forest machine learning model to quickly classify sequences as short as 500 bp 164 
without the need for gene prediction. VirFinder generates model-derived scores as well as 165 
probabilities of prediction accuracy, though it is up to the user to define the cutoffs which can 166 
ultimately lead to uncertainties in rates of false identification of viral sequences. VirFinder was 167 
shown to greatly improve the ability to recover viral sequences compared to VirSorter, but it also 168 
demonstrates substantial host and source environment biases in predicting diverse viruses. For 169 
example, VirFinder was able to recover viruses infecting Proteobacteria more readily than those 170 
infecting Firmicutes due to reference database-associated biases while training the machine 171 
learning model. Additional biases were also identified between different source environments, 172 
seen through the under-recovery of viruses from certain environments compared to others (50).  173 
 Additional recent tools have been developed that utilize slightly different methods for 174 
identifying viral scaffolds. MARVEL (51), for example, leverages annotation, sequence signatures 175 
(e.g., strand switching and gene density) and machine learning to identify viruses from 176 
metagenomic bins. MARVEL differs from VirSorter in that it only utilizes a single virus-specific 177 
database for annotation and also differs from VirFinder in that it does not use global nucleotide 178 
frequency patterns. However, MARVEL provides no consideration for integrated proviruses and 179 
is only suitable for identifying bacterial viruses from the order Caudovirales which substantially 180 
limits its ability to discover novel viruses. Another recently developed tool, VirMiner (52), is 181 
unique in that it functions to use metagenomic reads and associated assembly data to identify 182 
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viruses and performs best for high abundance (i.e., high coverage when assembled) viruses. 183 
VirMiner is a web-based server that utilizes a hybrid approach of employing both homology-based 184 
searches to a virus-specific database as well as machine learning. VirMiner was found to have 185 
improved ability to recover viral scaffolds compared to both VirSorter and VirFinder but was 186 
concurrently much less accurate. Poor accuracy would lead to a skewed interpretation of virome 187 
function if the identified virome consisted of many non-viral sequences. This distinction is 188 
important because VirMiner employs functional characterization as well as determination of virus-189 
host relationships.  190 
 Thus far, VirSorter remains the most efficient tool for identifying integrated proviruses 191 
within metagenomic assemblies. Other tools, predominantly PHASTER (53) and Prophage Hunter 192 
(54), are specialized in identifying integrated proviruses from whole genomes rather than scaffolds 193 
generated by metagenomic assemblies. Similar to VirSorter, these two provirus predictors rely on 194 
reference homology and viral sequence signatures with sliding windows to identify regions of a 195 
host genome that belong to a virus. Although they are useful for whole genomes, they lack the 196 
capability of identifying scaffolds belonging to lytic (i.e., non-integrated) viruses and perform 197 
slower for large datasets. In addition, both PHASTER and Prophage Hunter are exclusively 198 
available as web-based servers and offer no stand-alone command line tools.  199 
 Here we developed VIBRANT (Virus Identification By iteRative ANnoTation), a tool for 200 
automated recovery, annotation, and curation of both free and integrated viruses from 201 
metagenomic assemblies and genome sequences. VIBRANT is capable of identifying diverse 202 
dsDNA, ssDNA and RNA viruses infecting both bacteria and archaea, and to our knowledge has 203 
no evident environmental biases. VIBRANT uses neural networks of protein annotation signatures 204 
from non-reference-based similarity searches with Hidden Markov Models (HMMs) as well as a 205 
unique ‘v-score’ metric to maximize identification of diverse and novel viruses. After identifying 206 
viral scaffolds VIBRANT implements curation steps to validate predictions. VIBRANT 207 
additionally characterizes virome function by highlighting AMGs and assesses the metabolic 208 
pathways present in viral communities. All viral genomes, proteins, annotations and metabolic 209 
profiles are compiled into formats for user-friendly downstream analyses and visualization. When 210 
applied to reference viruses, non-reference virus datasets and various assembled metagenomes, 211 
VIBRANT outperformed both VirFinder and VirSorter in the ability to maximize virus recovery 212 
and minimize false discovery. When compared to PHASTER and Prophage Hunter for the ability 213 
to extract integrated provirus regions from host scaffolds, VIBRANT performed comparably and 214 
even identified proviruses that the other programs did not. VIBRANT was also used to identify 215 
differences in metabolic capabilities between viruses originating from various environments. 216 
When applied to three separate cohorts of individuals with Crohn’s Disease, VIBRANT was able 217 
to identify both differentially abundant viral groups compared to healthy controls as well as virally 218 
encoded genes putatively influencing a diseased state. VIBRANT is freely available for download 219 
at https://github.com/AnantharamanLab/VIBRANT. VIBRANT is also available as a user-220 
friendly, web-based application through the CyVerse Discovery Environment at 221 
https://de.cyverse.org/de/?type=apps&app-id=c2864d3c-fd03-11e9-9cf4-008cfa5ae621&system-222 
id=de (55). 223 
 224 
 225 
 226 
 227 
 228 
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Results 229 
 230 
 VIBRANT was built to extract and analyze 231 
bacterial and archaeal viruses from assembled 232 
metagenomic and genome sequences, as well as 233 
provide a platform for characterizing metabolic 234 
proteins and functions in a comprehensive manner. 235 
The concept behind VIBRANT’s mechanism of 236 
virus identification stems from the understanding 237 
that arduous manual inspection of annotated 238 
genomic sequences produces the most dependable 239 
results. As such, the primary metrics used to inform 240 
validated curation standards and to train 241 
VIBRANT’s machine learning based neural 242 
network to identify viral sequences reflects human-243 
guided intuition, though in a high-throughput 244 
automated fashion.  245 
 246 
Determination of v-score 247 
 We developed a unique ‘v-score’ metric as 248 
an approach for providing quantitative information 249 
to VIBRANT’s algorithm in order to assess the 250 
qualitative nature of annotation information. A v-251 
score is a value assigned to each possible protein 252 
annotation that scores its association to viral 253 
genomes. V-score differs from the previously used 254 
“virus quotient” metric (56, 57) in that it does not 255 
take into account the annotation’s relatedness to 256 
bacteria or archaea. Not including significant 257 
similarity to non-viral genomes in the calculation of 258 
v-scores has important implications for this 259 
metric’s utility. Foremost is that annotations shared 260 
between viruses and their hosts, such as 261 
ribonucleotide reductases, will be assigned a v-262 
score reflecting its association to viruses, not 263 
necessarily virus-specificity. Many genes are 264 
commonly associated with viruses and host 265 
organisms, but when encoded on viral genomes can 266 
be central to virus replication efficiency (e.g., 267 
ribonucleotide reductases (58)). Therefore, a metric 268 
representing virus-association rather than virus-269 
specificity would be more appropriate in 270 
identifying if an unknown scaffold is viral or not. 271 
Secondly, this approach takes into account 272 
widespread horizontal gene transfer of host genes 273 
by viruses as well as the presence of AMGs.  274 

Figure 1. Representation of VIBRANT’s method 
for virus identification and virome functional 
characterization. (A) Workflow of virome 
analysis. Protein HMMs for analysis from KEGG, 
Pfam and VOG databases were used to construct 
signatures of viral and non-viral annotation metrics. 
(B) Visual representation (PCA plot) of the metrics 
used by the neural network to identify viruses, 
depicting viral, plasmid and bacterial/archaeal 
genomic sequences.  
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 275 
VIBRANT workflow 276 
 VIBRANT utilizes several annotation metrics in order to guide removal of non-viral 277 
sequences before curation of reliable viral scaffolds. The annotation metrics used are derived from 278 
HMM-based probabilistic searches of protein families from the Kyoto Encyclopedia of Genes and 279 
Genomes (KEGG) KoFam (59, 60), Pfam (46) and Virus Orthologous Group (VOG) (vogdb.org) 280 
databases. VIBRANT is not reliant on reference-based similarity and therefore accounts for the 281 
large diversity of viruses on Earth and their respective proteins. Consequently, widespread 282 
horizontal gene transfer, rapid mutation and the vast amount of novel sequences do not hinder 283 
VIBRANT’s ability to identify known and novel viruses. VIBRANT relies minimally on non-284 
annotation features, such as rates of open reading frame strand switching, because these features 285 
were not as well conserved in genomic scaffolds in contrast to whole genomes. 286 
 VIBRANT’s workflow consists of four main steps (Figure 1A). Briefly, proteins (predicted 287 
or user input) are used by VIBRANT to first eliminate non-viral sequences by assessing non-viral 288 
annotation signatures derived from KEGG and Pfam HMM annotations. At this step potential host 289 
scaffolds are fragmented using sliding windows of KEGG v-scores in order to extract integrated 290 
provirus sequences. Following the elimination of most non-viral scaffolds and rough excision of 291 
provirus regions, proteins are annotated by VOG HMMs. Before analysis by the neural network 292 
machine learning model, any extracted putative provirus is trimmed to exclude any remaining non-293 
viral sequences. Annotations from KEGG, Pfam and VOG are used to compile 27 metrics that are 294 
utilized by the neural network to predict viral sequences. These 27 metrics were found to be 295 
adequate for the separation of viral and non-viral scaffolds (Figure 1B). After prediction by the 296 
neural network a set of curation steps are implemented to filter the results in order to improve 297 
accuracy as well as recovery of viruses. Once viruses are identified VIBRANT automates the 298 
analysis of virome function by highlighting AMGs and assigning them to KEGG metabolic 299 
pathways. The genome quality (i.e., proxy of completeness) of identified viral scaffolds is 300 
estimated using a subset of the annotation metrics and viral sequences are used to identify circular 301 
templates (i.e., likely complete circular viruses). These quality analyses were determined to best 302 
reflect established completeness metrics for both bacteria and viruses (61, 62). Finally, VIBRANT 303 
compiles all results into a user-friendly format for visualization and downstream analysis. For a 304 
detailed description of VIBRANT’s workflow see Methods. 305 
  306 
Comparison of VIBRANT to other programs 307 
 VirSorter and VirFinder, two commonly used programs for identifying bacterial and 308 
archaeal viruses from metagenomes, were selected to compare against VIBRANT for the ability 309 
to accurately identify viruses. We evaluated all three programs’ performance on the same viral, 310 
bacterial and archaeal genomic, and plasmid datasets. Given that both VirSorter and VirFinder 311 
produce various confidence ranges of virus identification, we selected certain parameters for each 312 
program for comparison. For VirSorter, the parameters selected were [1] category 1 and 2 313 
predictions, and [2] categories 1, 2 and 3 (i.e., all) predictions. For VirFinder, the intervals were 314 
[1] scores greater than or equal to 0.90 (approximately equivalent to a p-value of 0.013), and [2] 315 
scores greater than or equal to 0.75 (approximately equivalent to a p-value of 0.037). Hereafter, 316 
we provide two statistics for each VirSorter and VirFinder run that reflect results according to the 317 
two set confidence intervals, respectively.  318 
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  VIBRANT yields a single output of confident predictions and therefore does not provide 319 
multiple output options. Since VIBRANT is only partially reliant on its neural network machine 320 
learning model for making predictions, all comparisons are focused on VIBRANT’s full workflow 321 
performance. VIBRANT does not consider scaffolds shorter than 1000 bp or those that encode 322 
less than four predicted open reading frames in order to maintain a low false positive rate (FPR) 323 
and have sufficient annotation information for identifying viruses. Therefore, in comparison of 324 
performance metrics only scaffolds meeting VIBRANT’s minimum requirements were analyzed. 325 
Inclusion of fragments encoding less than four open reading frames in analyses, which are 326 
frequently generated by metagenomic assemblies, are discussed below. We used the following 327 
calculations to compare performance: recall, precision, accuracy, specificity and F1 score (Figure 328 
2).  329 
 First, we evaluated the true positive rate (TPR, or recall) of viral genomic fragments as 330 
well as whole viral genomes. Viral genomes were acquired from the National Center for 331 
Biotechnology Information (NCBI) RefSeq and GenBank databases and split into various non-332 
redundant fragments between 3 and 15 kb to simulate genomic scaffolds (Supplementary Table 333 
1). VIBRANT correctly identified 98.38% of the 29,926 viral fragments, which was substantially 334 
greater than either VirSorter (40.00% and 50.67%) and VirFinder (76.23% and 89.02%).  335 
 Similar to TPR, we calculated FPR (or specificity) using two different datasets: genomic 336 
fragments of bacteria and archaea (hereafter genomic), and bacterial plasmids (plasmid). Plasmids 337 
were evaluated separately because they often encode for genes similar to those on viral genomes, 338 
such as those for genome replication and mobilization. Genomic and plasmid sequences were 339 

Figure 2. Performance comparison of VIBRANT, VirFinder and VirSorter on artificial scaffolds 3kb-15kb. 
Performance was evaluated using datasets of reference viruses, bacterial plasmids, and bacterial/archaeal 
genomes. For VirFinder and VirSorter two different confidence cutoffs were used (VirFinder: score of at least 
0.90, and score of at least 0.75. VirSorter: categories 1 and 2 predictions, and categories 1, 2 and 3 predictions). 
All three programs were compared using the following statistical metrics: F1 score, recall, precision, accuracy 
and specificity. To ensure equal comparison all scaffolds tested encoded at least four open reading frames.  
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acquired from NCBI RefSeq and GenBank databases and split into various non-redundant 340 
fragments between 3 and 15 kb (Supplementary Table 1). Before analysis, putative proviruses 341 
were depleted from the datasets (see Methods). With the exception of VirSorter set at categories 1 342 
and 2 for the plasmid dataset, VIBRANT had the highest specificity for both genomic (99.92%) 343 
and plasmid fragments (99.04%). VirSorter had similar specificity for both genomic (99.84% and 344 
99.33%) and plasmid (99.33% and 98.10%) datasets, but only VirFinder set to a score cutoff of 345 
0.90 was fully comparable (genomic: 99.10%, plasmid: 98.40%). At a score cutoff of 0.75, 346 
VirFinder was slightly less specific (genomic: 97.19%, plasmid: 94.92%). Although VirFinder (set 347 
to a score cutoff of 0.90) and VIBRANT had a similar overall specificity, VirFinder identified 11.8 348 
times more bacterial/archaeal scaffolds as viruses (false discoveries) compared to VIBRANT 349 
(2,311 and 196, respectively). 350 
 We used the results from TPR of viral fragments and FPR of non-viral genomic or plasmid 351 
fragments to calculate precision, accuracy and F1 score. VIBRANT outperformed VirFinder and 352 
VirSorter at either score criteria in both precision (99.01%) and accuracy (99.74%). F1 is a metric 353 
(maximum value of 1) accounting for both TPR and FPR, and therefore acts as a comprehensive 354 
evaluation of overall performance. Our calculation of F1 indicates that VIBRANT (0.99) is able 355 
to better identify viruses while subsequently reducing false identifications compared to VirSorter 356 
(0.57 and 0.65) or VirFinder (0.83 and 0.83).  357 
 358 
Identification of viruses in diverse environments 359 
 We next tested VIBRANT’s ability to successfully identify viruses from a diversity of 360 
environments. Using 120,834 viruses from the Integrated Microbial Genomes and Viruses 361 
(IMG/VR v2.0) database (63, 64), in which the source environment of viruses is categorized, we 362 
identified that VIBRANT is more robust in identifying viruses from all tested environments 363 
compared to VirFinder and VirSorter (Figure 3A). Excluding air, in which there were only 62 364 
representative viruses, VIBRANT averaged 94.5% recall, substantially greater than VirFinder 365 
(29.2% and 48.1%) and VirSorter (54.4% and 56.0%). These results suggest that in comparison to 366 
other software, VIBRANT has no evident database or environmental biases and is fully capable of 367 
identifying viruses from a broad range of source environments. We also used a dataset of 13,203 368 
viruses from the Human Gut Virome database (65) for additional comparison. The vast majority 369 
of viruses (~96%) in this dataset were assumed to infect bacteria. Although recall was diminished 370 
compared to IMG/VR datasets, VIBRANT (78.7%) nevertheless outperformed both VirFinder 371 
(31.7% and 62.8%) and VirSorter (41.9% and 46.5%) on this dataset.  372 
 Many viruses from the IMG/VR dataset that were identified by VIBRANT were not 373 
identified by either VirFinder or VirSorter, indicating that VIBRANT has the propensity for 374 
discovery of novel viruses (Figure 3B). For most environments, the majority of viruses identified 375 
by VirFinder were already identified by either VIBRANT or VirSorter. The differences in the 376 
overlap of identified viruses was not too distinctive in environments for which many reference 377 
viruses are available, such as marine. For more understudied environments, such as plants or 378 
wastewater, VIBRANT displayed near-complete overlap with VirFinder and VirSorter predictions 379 
in conjunction with identifying over 40% more viruses.  380 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855387doi: bioRxiv preprint 

https://doi.org/10.1101/855387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

   381 

Figure 3. Effect of source environment on predictive abilities of VIBRANT, VirFinder and VirSorter. Viral 
scaffolds from IMG/VR and HGV database were used to test if VIBRANT displays biases associated with specific 
environments. (A) The recall (or recovery) of viral scaffolds from 14 environment groups was compared between 
VIBRANT and two confidence cutoffs for both VirFinder and VirSorter. Marine environments were classified 
into two groups: marine A (coastal, gulf, inlet, intertidal, neritic, oceanic, pelagic and strait) and marine B 
(hydrothermal vent, volcanic and oil). (B) Comparison of the overlap in the scaffolds identified as viruses by all 
three programs. Unique scaffolds identified by each program are in green (VIBRANT), orange (VirSorter) and 
light blue (VirFinder). The size of the circles represents the relative size of the group.  
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Identification of viruses in mixed metagenomes 382 
 Metagenomes assembled using short read technology contain many scaffolds that do not 383 
meet VIBRANT’s minimum length requirements and therefore are not considered during analysis. 384 
Despite this, VIBRANT’s predictions contain more annotation information and greater total viral 385 
sequence length than tools built to identify short sequences, such as scaffolds with less than four 386 
open reading frames. VIBRANT, VirFinder (score cutoff of 0.90) and VirSorter (categories 1 and 387 
2) were used to identify viruses from human gut, freshwater lake and thermophilic compost 388 
metagenome sequences (Table 1). In addition, alternate program settings—VIBRANT “virome” 389 
mode, VirFinder score cutoff of 0.75 and VirSorter “virome decontamination” mode—were used 390 
to identify viruses from an estuary virome dataset. Each metagenomic assembly was limited to 391 
sequences of at least 1000bp but no minimum open reading frame limit was set. For these 392 
metagenomes, 31% to 40% of the scaffolds were of sufficient length (at least four open reading 393 
frames) to be analyzed by VIBRANT; for the estuary virome 62% were of sufficient length. In 394 
comparison, 100% of scaffolds from each dataset were long enough to be analyzed by VirFinder. 395 
The ability of VirFinder to make a prediction with each scaffold is considered the major strength 396 
of the tool.   397 
 For all six assemblies VirFinder averaged approximately 1.2 times more virus 398 
identifications than VIBRANT, though for both thermophilic compost and the estuary virome 399 
VIBRANT identified a greater number. Despite VirFinder averaging more total virus 400 
identifications, VIBRANT averaged just over 2.1 times more total viral sequence length and 2.4 401 
times more total viral proteins. This is the result of VIBRANT having the capability to identify 402 
more viruses of higher quality and longer sequence length. For example, among all six datasets 403 

Metagenome
sequences 
total (>1kb)

sequence
s 4+ ORFs Metric VIBRANT

VirFinder 
(score>0.90)

VIBRANT vs. 
VirFinder

VirSorter 
(cat. 1 & 2)

VIBRANT vs. 
VirSorter

total putative viruses 505 604 0.84 284 1.78
total virus length (bp) 5,159,390 1,696,118 3.04 3,982,292 1.30

total virus proteins 7,534 2,134 3.53 5,484 1.37
total putative viruses 744 1,329 0.56 450 1.65
total virus length (bp) 5,415,994 3,500,838 1.55 4,182,862 1.29

total virus proteins 8,108 4,644 1.75 5,945 1.36
total putative viruses 548 672 0.82 309 1.77
total virus length (bp) 5,468,452 2,411,049 2.27 4,512,571 1.21

total virus proteins 7,998 3,230 2.48 6,127 1.31
total putative viruses 1,057 878 1.20 383 2.76
total virus length (bp) 6,577,000 2,238,129 2.94 3,290,654 2.00

total virus proteins 9,908 2,806 3.53 4,400 2.25
total putative viruses 5,600 7,567 0.74 1,503 3.73
total virus length (bp) 34,861,470 25,357,664 1.37 15,436,797 2.26

total virus proteins 55,976 37,537 1.49 21,280 2.63
total putative viruses 3,135 2,294 1.37 1,121 2.80
total virus length (bp) 10,241,625 6,478,804 1.58 5,163,674 1.98

total virus proteins 20,475 12,035 1.70 9,645 2.12
* VIBRANT, VirFinder and VirSorter ran with alternate settings

68,815 21,620

* estuary 
virome

5,247 3,277

freshwater 
lake (bog)

human gut: 
adenoma

34,883 11,360

human gut: 
healthy

42,739 17,079

human gut: 
carcinoma

53,946 18,669

79,862 26,832

thermophilic 
compost

Table 1. Virus recovery of VIBRANT, VirFinder and VirSorter from mixed metagenomes and a virome. 
Mixed community assembled metagenomes from the human gut, thermophilic compost and a freshwater lake, 
as well as an estuary virome, were used to compare virus prediction ability between the three programs. For each 
assembly the scaffolds were limited to a minimum length of 1000bp. Only a subset of each dataset contained 
scaffolds encoding at least four open reading frames. VIBRANT, VirFinder (score minimum of 0.90) and 
VirSorter (categories 1 and 2) were compared by total viral predictions, total combined length of predicted 
viruses, and total combined proteins of predicted viruses.  
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VIBRANT identified 1,309 total viruses at least 10 kb in length in comparison to VirFinder’s 479. 404 
VIBRANT was also able to outperform VirSorter in all metrics, averaging 2.4 times more virus 405 
identifications, nearly 1.7 times more total viral sequence length, and 1.8 times more encoded viral 406 
proteins.  407 

Figure 4. Prediction of integrated proviruses by VIBRANT, and comparison to PHASTER and Prophage 
Hunter. (A) Schematic representing the method used by VIBRANT to identify and extract provirus regions from 
host scaffolds using annotations. Briefly, v-scores are used to cut scaffolds at host-specific sites and fragments are 
trimmed to the nearest viral annotation. (B) Comparison of proviral predictions within four complete bacterial 
genomes between VIBRANT, PHASTER and Prophage Hunter. For PHASTER, putative proviruses are colored 
according to “incomplete” (red), “questionable” (blue) and “intact” (green) predictions. Prophage Hunter is colored 
according to “active” (green) and “ambiguous” (blue) predictions. (C) Manual validation of the Bacteroides 
vulgatus provirus prediction made by VIBRANT. The presence of viral hallmark protein, integrase and genome 
replication proteins strongly suggests this is an accurate prediction.  
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 VIBRANT’s method of predicting viral scaffolds provides a unique opportunity in 408 
comparison to similar tools in that it yields scaffolds of higher quality which are more amenable 409 
for analyzing protein function in viromes. It is an important distinction that the total number of 410 
viruses identified may not be correlated with the total viral sequence identified or the total number 411 
of encoded proteins. Even if VIBRANT identified fewer total viral sequences compared to other 412 
tools in certain circumstances, more data of higher quality was generated as viral sequences of 413 
longer length were identified as compared to many short fragments. This provides an important 414 
distinction that the metric of total viral predictions is not necessarily an accurate representation for 415 
the quality or quantity of the data generated.  416 
 417 
Integrated provirus prediction 418 
 In many environments, integrated proviruses can account for a substantial portion of the 419 
active viral community (66). Despite this, few tools exist that are capable of identifying both lytic 420 
viruses from metagenomic scaffolds as well as proviruses that are integrated into host genomes. 421 
To account for this important group of viruses, VIBRANT identifies provirus regions within 422 
metagenomic scaffolds or whole genomes. VIBRANT is unique from most provirus prediction 423 
tools in that it does not rely on sequence motifs, such as integration sites, and therefore is especially 424 
useful for partial metagenomic scaffolds in which neither the provirus nor host region is complete. 425 
In addition, this functionality of VIBRANT provides the ability to trim non-viral (i.e., host 426 
genome) ends from viral scaffolds. This results in a more correct interpretation of genes that are 427 
encoded by the virus and not those that are misidentified as being within the viral genome region. 428 
Briefly, VIBRANT identifies proviruses by first identifying and isolating scaffolds and genomes 429 
at regions spanning several annotations with low v-scores. These regions were found to be almost 430 
exclusive to host genomes. After cutting the original sequence at these regions, a refinement step 431 
trims the putative provirus fragment to the first instance of a virus-like annotation to remove 432 
leftover host sequence (Figure 4A). The final scaffold fragment is then analyzed by the neural 433 
network similar to non-excised scaffolds.  434 
 To assess VIBRANT’s ability to accurately extract provirus regions we compared its 435 
performance to PHASTER and Prophage Hunter, two programs explicitly built for this task. We 436 
compared the performance of these programs with VIBRANT on four bacterial genomes. 437 
VIBRANT and PHASTER predicted an equal number of proviruses, 17, while Prophage Hunter 438 
identified less, 13 (Figure 4B). Only one putative provirus prediction (Lactococcus lactis putative 439 
provirus 6) was shared between PHASTER and Prophage Hunter but not VIBRANT. However, 440 
VIBRANT was able to identify two putative provirus regions (Desulfovibrio vulgaris putative 441 
provirus 7 and Bacteroides vulgatus putative provirus 1) that neither PHASTER nor Prophage 442 
Hunter identified. Manual inspection of the putative Bacteroides vulgatus provirus identified a 443 
number of bona fide virus hallmark and virus-like proteins suggesting that it is an accurate 444 
prediction (Figure 4C). Our results suggest VIBRANT has the ability to accurately identify 445 
proviruses and, in some cases, can outperform other tools in this task.  446 
 447 
Evaluating quality of viral scaffolds and genomes 448 
 Determination of quality, in relation to completeness, of a viral scaffold has been 449 
notoriously difficult due to the absence of universally conserved viral genes. To date the most 450 
reliable metric of completeness for metagenomically assembled viruses is to identify circular 451 
sequences (i.e., complete circular genomes). Therefore, the remaining alternatives rely on 452 
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estimation based on encoded proteins that function in central viral processes: replication of 453 
genomes and assembly of new viral particles.  454 
 VIBRANT estimates the quality of predicted viral scaffolds, a relative proxy for 455 
completeness, and indicates scaffolds that are circular. To do this, VIBRANT uses annotation 456 
metrics of nucleotide replication and viral hallmark proteins. Hallmark proteins are those typically 457 
specific to viruses and those that are required for productive infection, such as structural (e.g., 458 
capsid, tail, baseplate), terminase or viral holin/lysin proteins. Nucleotide replication proteins are 459 

Figure 5. Estimation of genome quality of identified viral scaffolds. (A) Explanation of interpretation of 
quality categories: complete circular, high quality draft, medium quality draft and low quality draft. Quality 
generally represents total proteins, viral annotations, viral hallmark protein and nucleotide replication proteins, 
which are common metrics used for manual verification of viral genomes. (B) Application of quality metrics to 
2466 NCBI RefSeq Caudovirales viruses with decreasing genome completeness from 100% to 10% 
completeness, respective of total sequence length. All 2466 viruses are represented within each completeness 
group. (C) Examples of viral scaffolds representing low, medium and high quality draft categories.  
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a variety of proteins associated with either replication or metabolism, such as nucleases, 460 
polymerases and DNA/RNA binding proteins. Genomic scaffolds are categorized as low, medium 461 
or high quality draft as determined by VOG annotations (Figure 5A, Supplementary Table 2). High 462 
quality draft represents scaffolds that are likely to contain the majority of a virus’s complete 463 
genome and will contain annotations that are likely to aid in analysis of the virus, such as 464 
phylogenetic relationships and true positive verification. Medium draft quality represents the 465 
majority of a complete viral genome but is more likely to be a smaller portion in comparison to 466 
high quality. These scaffolds may contain annotations useful for analysis but are under less strict 467 
requirements compared to high quality. Finally, low draft quality constitutes scaffolds that were 468 
not found to be of high or medium quality. Many metagenomic scaffolds will likely be low quality 469 
genome fragments, but this quality category may still contain the higher quality genomes of some 470 
highly divergent viruses.  471 
 We benchmarked VIBRANT’s viral genome quality estimation using a total of 2466 472 
Caudovirales genomes from NCBI RefSeq database. Genomes were evaluated either as complete 473 
sequences or by removing 10% of the sequence at a time stepwise between 100% and 10% 474 
completeness (Figure 5B). The results of VIBRANT’s quality analysis displayed a linear trend in 475 
indicating more complete genomes as high quality and less complete genomes as lower quality. 476 
The transition from categorizing genomes as high quality to medium quality ranged from 60% and 477 
70% completeness. Although we acknowledge that VIBRANT’s metrics are not perfect, we 478 
demonstrate the first benchmarked approach to quantify and characterize genome quality 479 
associated with completeness of viral scaffolds. Manual inspection and visual verification of viral 480 
genomes that were characterized into each of these genome quality categories showed that quality 481 
estimations matched annotations (Figure 5C). 482 
 483 
Identifying function in virome: metabolic analysis 484 
 Viruses are a dynamic and key facet in the metabolic networks of microbial communities 485 
and can reprogram the landscape of host metabolism during infection. This can often be achieved 486 
by modulating host metabolic networks through expression of AMGs encoded on viral genomes. 487 
Identifying these AMGs and their associated role in the function of communities is imperative for 488 
understanding complex microbiome dynamics, or in some cases can be used to predict virus-host 489 
relationships. VIBRANT is optimized for the evaluation of function in viromes by identifying and 490 
classifying the metabolic capabilities of the viral community. To do this, VIBRANT identifies 491 
AMGs and assigns them into specific metabolic pathways and broader categories as designated by 492 
KEGG annotations. 493 
 To highlight the utility of this feature we compared the metabolic function of viruses 494 
derived from several diverse environments: freshwater, marine, soil, human-associated and city 495 
(Supplementary Figure 1). We found natural environments (freshwater, marine and soil) to display 496 
a different pattern of metabolic capabilities compared to human environments (human-associated 497 
and city). Viruses originating from natural environments tend to largely encode AMGs for amino 498 
acid and cofactor/vitamin metabolism with a more secondary focus on carbohydrate and glycan 499 
metabolism. On the other hand, AMGs from city and human environments are dominated by amino 500 
acid metabolism, and to some extent cofactor/vitamin and sulfur relay metabolism. In addition to 501 
this broad distinction, all five environments appear slightly different from each other. Despite 502 
freshwater and marine environments appearing similar in the ratio of AMGs by metabolic 503 
category, the overlap in specific AMGs is less extensive. The dissimilarity between natural and 504 
human environments is likewise corroborated by the relatively low overlap in individual AMGs.   505 
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 A useful observation provided by 506 
VIBRANT’s metabolic analysis is that there 507 
appears to be globally conserved AMGs (i.e., 508 
present within at least 10 of the 13 509 
environments tested). These 14 genes—dcm, 510 
cysH, folE, phnP, ubiG, ubiE, waaF, moeB, 511 
ahbD, cobS, mec, queE, queD, queC—likely 512 
perform functions that are central to viral 513 
replication regardless of host or environment. 514 
Notably, folE, queD, queE and queC constitute 515 
the entire 7-cyano-7-deazaguanine (preQ0) 516 
biosynthesis pathway, but the remainder of 517 
queuosine biosynthesis are entirely absent with 518 
the exception of queF. Certain AMGs are 519 
unique in that they are the only common 520 
representatives of a pathway amongst all 521 
AMGs identified, such as phnP for 522 
methylphosphonate degradation. These AMGs 523 
may indicate an evolutionary advantage for 524 
manipulating a specific step of a pathway, such 525 
as overcoming a reaction bottleneck, as 526 
opposed to modulating an entire pathway as 527 
seen with preQ0 biosynthesis. However, it 528 
should be noted that this list of 14 globally 529 
conserved AMGs may not be entirely inclusive 530 
of the core set of AMGs in a given 531 
environment.  532 
 VIBRANT was evaluated for its ability 533 
to provide new insights into virome function 534 
by highlighting AMGs from mixed 535 
metagenomes. Using only data from 536 
VIBRANT’s direct outputs, we compared the 537 
viral metabolic profiles of 6 hydrothermal vent 538 
and 15 human gut metagenomes (Figure 6). As anticipated, based on IMG/VR environment 539 
comparisons, the metabolic capabilities between the two environments were different even though 540 
the number of unique AMGs was relatively equal (138 for hydrothermal vents and 151 for human 541 
gut). The pattern displayed by metabolic categories for each metagenome was similar to that 542 
displayed by marine and human viromes. For hydrothermal vents the dominant AMGs were part 543 
of carbohydrate, amino acid and cofactor/vitamin metabolism, whereas human gut AMGs were 544 
mostly components of amino acid and, to some extent, cofactor/vitamin metabolism. Although the 545 
observed AMGs and metabolic pathways were overall different, about a third (50 total AMGs) of 546 
all AMGs from each environment were shared; between these metagenomes alone all 14 globally 547 
conserved AMGs were present. 548 
 Observations of individual AMGs provided insights into how viruses interact within 549 
different environments. For example, tryptophan 7-halogenase (prnA) was identified in high 550 
abundance (45 total AMGs) within hydrothermal vent metagenomes but was absent from the 551 

Figure 6. Comparison of AMG metabolic categories 
between hydrothermal vents and human gut. The 
Venn diagram depicts the unique and shared non-
redundant AMGs between 6 hydrothermal vent and 15 
human gut metagenomes. The graphs depict the 
differential abundance of KEGG metabolic categories of 
respective AMGs for hydrothermal vents (top) and 
human gut (bottom). 
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human gut. Verification using GOV2 (Global Ocean Viromes 2.0) (67) and Human Gut Virome 552 
databases supported our finding that prnA appears to be constrained to aquatic environments, 553 
which is further supported by the gene’s presence on several marine cyanophages. PrnA catalyzes 554 
the initial reaction for the formation of pyrrolnitrin, a strong antifungal antibiotic. Identification of 555 
this AMG only within aquatic environments suggests a directed role in aquatic virus lifestyles. 556 
Similarly, cysteine desulfhydrase (iscS) was abundant (14 total AMGs) within the human gut 557 
metagenomes but not hydrothermal vents. 558 
 559 
Application of VIBRANT: Identification of viruses from individuals with Crohn’s Disease 560 
 We applied VIBRANT to identify viruses of at least 5kb in length from 102 human gut 561 
metagenomes (discovery dataset): 49 from individuals with Crohn’s Disease and 53 from healthy 562 
individuals (68, 69). VIBRANT identified 14,121 viruses out of 511,977 total scaffolds. These 563 
viral scaffolds were dereplicated to 8,822 non-redundant viral genomes using a cutoff of 95% 564 
nucleotide identity over at least 70% of the scaffold. We next used read coverage of each virus 565 
from all 102 metagenomes to calculate relative differential abundance across Crohn’s Disease and 566 
healthy individuals. In total, we found 721 viruses to be more abundant in the gut microbiomes 567 
associated with Crohn’s Disease (Crohn’s-associated) and 950 to be more abundant in healthy 568 
individuals (healthy-associated).  569 
 Using these viruses identified by VIBRANT we sought to identify taxonomic or host-570 
association relationships to differentiate the virome of individuals with Crohn’s Disease. We used 571 
vConTACT2 to cluster the 721 Crohn’s- or 950 healthy-associated viruses with reference genomes 572 
using protein similarity. The majority of viruses (95.5%) were not clustered with any reference 573 
genome at approximately the genus level suggesting VIBRANT may have identified a large pool 574 
of novel or unique viral genomes. Although fewer total viruses were associated with Crohn’s 575 
Disease, significantly more were clustered to at least one representative at the genus level (72 for 576 
Crohn’s and 4 for healthy). Interestingly, no differentially abundant viruses from healthy 577 
individuals clustered with Enterobacterales-infecting reference viruses (enteroviruses), yet the 578 
majority (60/76) of Crohn’s-associated viruses were clustered with known enteroviruses, such as 579 
Lambda- and Shigella-related viruses. The remaining 16 viruses mainly clustered with 580 
Caudovirales infecting Lactococcus, Clostridium, Riemerella, Klebsiella and Salmonella species, 581 
though Microviridae and a likely complete crAssphage were also identified. A significant 582 
proportion of all Crohn’s-associated viruses (250/721), and the majority of genus-level clustered 583 
viruses (42/76), were found to be integrated sequences within a microbial genomic scaffold but 584 
were able to be identified due to VIBRANT’s ability to excise proviruses.  585 
 We also generated a protein sharing network containing all 721 Crohn’s and 950 healthy-586 
associated viruses, which corresponded to taxonomic and host relatedness (Figure 7A). This 587 
protein network identified two different clustering patterns: [1] overlapping Crohn’s and healthy-588 
associated viral populations clustered with Firmicutes-like viruses which may be indicative of a 589 
stable gut virome; [2] Crohn’s-associated viruses clustered with Enterobacterales-like and 590 
Fusobacterium-like viruses which may be indicative of a state of dysbiosis. The presence of a 591 
greater diversity and abundance of Enterobacterales and Fusobacteria has previously been linked 592 
to Crohn’s Disease (70, 71), and therefore the presence of viruses infecting these bacteria may 593 
provide similar information.  594 
 VIBRANT provides annotation information for all of the identified viruses which can be 595 
used to infer functional characteristics in conjunction with host association. Comparison of 596 
Crohn’s-associated Lambda-like virus genomic content and arrangement suggested a possible role 597 
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of virally encoded host-persistence and virulence genes that are absent in the healthy-associated 598 
virome (Figure 7B). Among all Crohn’s-associated viruses, 17 total genes (bor, dicB, dicC, hokC, 599 
kilR, pagC, ydaS, ydaT, yfdN, yfdP, yfdQ, yfdR, yfdS, yfdT, ymfL, ymfM and tonB) that have the 600 
potential to impact host survival or virulence were identified. Importantly, no healthy-associated 601 
viruses encoded such genes (Table 2). The presence of these putative dysbiosis-associated genes 602 

Figure 7. Viral metabolic comparison between Crohn’s Disease and healthy individuals gut metagenomes. 
(A) Partial view of vConTACT2 protein network clustering of viruses identified by VIBRANT and reference 
viruses. Small clusters and clusters with no VIBRANT representatives are not shown. Each dot represents one 
genome and is colored according to host or dataset association. Relevant viral groups are indicated by dotted 
circles (circles enclose estimated boundaries). (B) tBLASTx similarity comparison between [1] Escherichia 
phage Lambda and [2] three Crohn’s-associated viruses identified by VIBRANT. Putative virulence genes are 
indicated: pagC, tonB, hokC and dicB.  
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(DAGs) may contribute to the manifestation and/or persistence of disease, similar to what has been 603 
proposed for the bacterial microbiome (72–74). For example, pagC encodes an outer membrane 604 
virulence factor associated with enhanced survival of the host bacterium within the gut (75). The 605 
identification of dicB encoded on a putative Escherichia virus is unique in that it may represent a 606 
‘cryptic’ provirus that protects the host from lytic viral infection, thus likely to enhance the ability 607 
of the host to survive within the gut (76). Finally, hokC may indicate mechanisms of virally 608 
encoded virulence (77).  609 
 To characterize the distribution and association of DAGs with Crohn’s Disease, we 610 
calculated differential abundance for two DAG-encoding viruses across all metagenome samples. 611 
The first virus encoded pagC and yfdN, and the second encoded dicB, dicC and hokC. Comparison 612 
of Crohn’s Disease to healthy metagenomes indicates these viruses are present within the gut 613 
metagenomes of multiple individuals but more abundant in association with Crohn’s Disease 614 
(Figure 8A). This suggests an association of disease with not only putative DAGs, but also specific, 615 
and potentially persistent, viral groups that encode them. In order to correlate increased abundance 616 
with biological activity we calculated the index of replication (iRep) for each of the two viruses 617 
(78). Briefly, iRep is a function of differential read coverage which is able to provide an estimate 618 
of active genome replication. Seven metagenomes containing the greatest abundance for each virus 619 
were selected for iRep analysis and indicated that each virus was likely active at the time of 620 
collection (Figure 8B).   621 
 To validate these aforementioned findings, we applied VIBRANT to two additional 622 
metagenomic datasets from cohorts of individuals with Crohn’s disease and healthy individuals 623 
(validation dataset): 43 from individuals with Crohn’s Disease and 21 from healthy individuals 624 

0

25

50

75

100

125

150

175

200

R
ea
d
co
ve
ra
ge

(n
or
m
al
ize
d)

Crohn's
Disease

Crohn's
DiseaseHealthy

virus #1
(pagC, yfdN ) (dicB, dicC, hokC )

virus #2

Healthy

*

*

5

10

15

20

25

1

virus #1
(pagC, yfdN)

In
de
x
of
R
ep
lic
at
io
n
(iR

ep
)

(dicB, dicC, hokC)
virus #2

A B

Figure 8. Differential abundance and activity of two viruses associated with Crohn’s Disease. (A) Normalized 
read coverage of two Crohn’s-associated viruses that encode putative DAGs between Crohn’s Disease and healthy 
gut metagenomes. Asterisks represent significant differential abundance (p<0.05). (B) iRep analysis for the same 
two viruses as (A), representative of seven metagenomes per virus. The dotted line indicates an iRep value of one, 
or low to no activity.  
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(79, 80). VIBRANT identified 3,759 redundant viral genomes from Crohn’s-associated 625 
metagenomes and 1,444 from healthy-associated metagenomes. Determination of protein 626 
networks and visualization similarly identified clustering of Crohn’s-associated viruses with 627 
reference enteroviruses (Supplementary Figure 2). Likewise, we were able to identify 15 out of 628 
the 17 putative DAGs to be present in higher abundance in the Crohn’s Disease microbiome. This 629 
validates our findings of the presence of unique viruses and proteins associated with Crohn’s 630 
Disease, and suggests Enterobacterales-like viruses and putative DAGs may act as markers of 631 
Crohn’s Disease. Overall, our results suggest that VIBRANT provides a platform for 632 
characterizing these relationships. 633 
 634 

 635 
Discussion 636 
 637 
 Viruses that infect bacteria and archaea are key components in the structure, dynamics, and 638 
interactions of microbial communities. Tools that are capable of efficient recovery of these viral 639 
genomes from mixed metagenomic samples are likely to be fundamental to the growing 640 
applications of metagenomic sequencing and analyses. Importantly, such tools would need to 641 
reduce bias associated with specific viral groups (e.g., Caudovirales) and highly represented 642 
environments (e.g., marine). Moreover, viruses that exist as integrated proviruses within host 643 
genomes should not be ignored as they can represent a substantial fraction of infections in certain 644 
conditions and also persistent infections within a community.  645 
 Here we have presented VIBRANT, a novel method for the automated recovery of both 646 
free and integrated viral genomes from metagenomes that hybridizes neural network machine 647 
learning and protein signatures. VIBRANT utilizes metrics of non-reference based protein 648 
similarity annotation from KEGG, Pfam and VOG databases in conjunction with a novel ‘v-score’ 649 

Table 2. Identification of putative DAGs encoded by Crohn’s-associated viruses. The differential 
abundance between Crohn’s Disease and healthy metagenomes of 17 putative DAGs. Abundance of each gene 
represents non-redundant annotations from Crohn’s-associated and healthy-associated viruses.  
 

ID Gene Name Crohn's 
Disease Healthy

PF06291.11 bor Bor protein 8 0
K22304 dicB cell division inhibition protein 8 0
K22302 dicC transcriptional repressor of cell division inhibition gene dicB 18 0
K18919 hokC protein HokC/D 16 0

VOG11478 kilR Killing protein 15 0
K07804 pagC putatice virulence related protein 13 0

PF15943.5 ydaS Putative antitoxin of bacterial toxin-antitoxin system 22 0
PF06254.11 ydaT Putative bacterial toxin 18 0
VOG04806 yfdN Uncharacterized protein 19 0
VOG01357 yfdP Uncharacterized protein 11 0
VOG11472 yfdQ Uncharacterized protein 11 0
VOG01639 yfdR Uncharacterized protein 17 0
VOG01103 yfdS Uncharacterized protein 18 0
VOG16442 yfdT Uncharacterized protein 8 0
VOG00672 ymfL Uncharacterized protein 25 0
VOG21507 ymfM Uncharacterized protein 9 0

K03832 tonB periplasmic protein 3 0

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855387doi: bioRxiv preprint 

https://doi.org/10.1101/855387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

metric to recover viruses with little to no biases. VIBRANT was built with the consideration of 650 
the human guided intuition used to manually inspect metagenomic scaffolds for viral genomes and 651 
packages these ideas into an automated software. This platform originates from the notion that 652 
proteins generally considered as non-viral, such as ribosomal proteins (81), may be decidedly 653 
common amongst viruses and should be considered accordingly when viewing annotations. V-654 
scores are meant to provide a quantitative metric for the level of virus-association for each 655 
annotation used by VIBRANT, especially for Pfam and KEGG HMMs. That is, v-scores provide 656 
a means for both highlighting common or hallmark viral proteins as well as differentiating viral 657 
from non-viral annotations. In addition, v-scores give a quantifiable value to viral hallmark genes 658 
instead of categorizing them in a binary fashion.  659 
 VIBRANT was not only built for the recovery of viral genomes, but also to act as a platform 660 
for investigating the function of a virome. VIBRANT supports the analysis of virome function by 661 
assembling useful annotation data and categorizing the metabolic pathways of viral AMGs. Using 662 
annotation signatures, VIBRANT furthermore is capable of estimating genome quality and 663 
distinguishing between lytic and lysogenic viruses. To our knowledge, VIBRANT is the first 664 
software that integrates virus identification, annotation and estimation of genome completeness 665 
into a stand-alone program.  666 
 Benchmarking and validation of VIBRANT indicated improved performance compared to 667 
VirSorter and VirFinder, two commonly used programs for identifying viruses from metagenomes. 668 
This included a substantial increase in the relationship between true virus identifications (recall, 669 
true positive rate) and false non-virus identifications (specificity, false positive rate). That is, 670 
VIBRANT recovered more viruses with no discernable expense to false identifications. The result 671 
was that VIBRANT was able to recover an average of 2.4 and 1.7 more viral sequence from real 672 
metagenomes than VirFinder and VirSorter, respectively. When tested on metagenome-assembled 673 
viral genomes from IMG/VR representing diverse environments VIBRANT was found to have no 674 
perceivable environment bias towards identifying viruses. In comparison to provirus prediction 675 
tools, specifically PHASTER and Prophage Hunter, VIBRANT was shown to be proficient in 676 
identifying viral regions within bacterial genomes. This included the identification of a putative 677 
Bacteroides provirus that the other two programs were unable to identify. The importance of 678 
integrated provirus prediction was underscored in the analysis of Crohn’s Disease metagenomes 679 
since it was found that a significant proportion of disease related viruses were temperate viruses 680 
existing as host-integrated genomes. 681 
 VIBRANT’s method allows for the distinction between scaffold size and coding capacity 682 
in designating the minimum length of virus identifications. Traditionally, a cutoff of 5000 bp has 683 
been used to filter for scaffolds of a sufficient length for analysis. This is under the presumption 684 
that a longer sequence will be likely to encode more proteins. For example, this cutoff has been 685 
adopted by IMG/VR. However, we suggest a total protein cutoff of four open reading frames rather 686 
than sequence length cutoff to be more suitable for comprehensive characterization of the viral 687 
community. VIBRANT’s method works as a strict function of total encoded proteins and is 688 
completely agnostic to sequence length for analysis. Therefore, the boundary of minimum encoded 689 
proteins will support a more guided cutoff for quality control of virus identifications. For example, 690 
increasing the minimum sequence length to 5000 bp will have no effect on accuracy or ability to 691 
recall viruses since VIBRANT will only be considerate of the minimum total proteins, which is 692 
set to four. The result will be the loss of all 1000 bp to 4999 bp viruses that still encode at least 693 
four proteins. To visualize this distinction, we applied VIBRANT with various length cutoffs to 694 
the previously used estuary virome (see Table 1). Input sequences were stepwise limited from 695 
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1000 bp to 10000 bp (1000 bp steps) or four open reading frames to 13 open reading frames (one 696 
open reading frame steps) in length. Limiting to open reading frames indicated a reduced drop-off 697 
in total virus identifications and total viral sequence compared to a minimum sequence length limit 698 
(Supplementary Figure 3).  699 
 The output data generated by VIBRANT—protein/gene annotation information, 700 
protein/gene sequences, HMM scores and e-values, viral sequences in FASTA and GenBank 701 
format, indication of AMGs, genome quality, etc.—provides a platform for easily replicated 702 
pipeline analyses. Application of VIBRANT to characterize the function of Crohn’s-associated 703 
viruses emphasizes this utility. VIBRANT was not only able to identify a substantial number of 704 
viral genomes, but also provided meaningful information regarding putative DAGs, viral 705 
sequences for differential abundance calculation and genome alignment, viral proteins for 706 
clustering, and AMGs for metabolic comparisons.  707 
  708 
  709 
Conclusions 710 
 711 
 Our construction of the VIBRANT platform expands the current potential for virus 712 
identification and characterization from metagenomic and genomic sequences. When compared to 713 
two widely used software programs, VirFinder and VirSorter, we show that VIBRANT improves 714 
total viral sequence and protein recovery from diverse human and natural environments. As 715 
sequencing technologies improve and metagenomic datasets contain longer sequences VIBRANT 716 
will continue to outcompete programs built for short scaffolds (e.g., 500-3000 bp) by identifying 717 
more higher quality genomes. Our workflow, through the annotation of viral genomes, aids in the 718 
capacity to discover how viruses of bacteria and archaea may shape an environment, such as 719 
driving specific metabolism during infection or dysbiosis in the human gut. Furthermore, 720 
VIBRANT is the first virus identification software to incorporate annotation information into the 721 
curation of predictions, estimation of genome quality and infection mechanism (i.e., lytic vs 722 
lysogenic). We anticipate that the incorporation of VIBRANT into microbiome analyses will 723 
provide easy interpretation of viral data, enabled by VIBRANT’s comprehensive functional 724 
analysis platform and visualization of information. 725 
 726 
 727 
Methods 728 
 729 
Dataset for generation and comparison of metrics  730 
 To generate training and testing datasets sequences representing bacteria, archaea, 731 
plasmids and viruses were downloaded from NCBI databases (accessed July 2019) 732 
(Supplementary Table 3). For bacteria/archaea, 181 genomes from diverse phylogenetic groups 733 
were randomly chosen. Likewise, a total of 1,452 bacterial plasmids were chosen. For viruses, 734 
NCBI taxids associated with viruses that infect bacteria or archaea were used to download 735 
reference virus genomes, which were then limited to only sequences above 3kb. Sequences not 736 
associated with genomes, such as partial genomic regions, were manually removed. This resulted 737 
in 15,238 total viral genomes. All sequences were split into non-overlapping fragments between 738 
3kb and 15kb to simulate metagenome assembled scaffolds (hereafter called fragments). 739 
 Integrated viruses are common in both bacteria and archaea. To address this for generating 740 
a dataset devoid of viruses, PHASTER (accessed July 2019) was used to predict putative integrated 741 
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viruses in the 181 bacteria/archaea genomes. Using BLASTn (82), any fragments that had 742 
significant similarity (at least 95% identity, at least 3kb coverage and e-value < 1e-10) to the 743 
PHASTER predictions were removed as contaminant virus sequence. The new bacteria/archaea 744 
dataset was considered depleted of prophages, but not entirely devoid of contamination. Next, the 745 
datasets for bacteria/archaea and plasmids were annotated with KEGG, Pfam and VOG 746 
(hmmsearch (v3.1), e-value < 1e-5) (83) to further remove contaminant virus sequence. Plasmids 747 
were included because it was noted that the dataset appeared to contain virus sequences, possibly 748 
due to misclassification of episomal proviruses as plasmids. Using manual inspection of the 749 
KEGG, Pfam and VOG annotations any sequence that clearly belonged to a virus was removed. 750 
The final datasets consisted of 400,291 fragments for bacteria/archaea, 14,739 for plasmids, and 751 
111,963 for viruses.  752 
 753 
V-score generation 754 
 Reference and database viral proteins were used to generate v-scores. To be consistent 755 
between all 15,238 viruses acquired from NCBI, proteins were predicted for all genomes using 756 
Prodigal (-p meta, v2.6.3) (84). All VOG proteins were added to this dataset, which resulted in a 757 
total of 633,194 proteins. Redundancy was removed from the generated viral protein dataset using 758 
cdhit (v4.6) (85) with a identify cutoff of 95%, which resulted in a total of 240,728 viral proteins 759 
(Supplementary Table 4). This was the final dataset used to generate v-scores. All KEGG HMM 760 
profiles to be used by VIBRANT (method described below) were used to annotate the viral 761 
proteins. A v-score for each KEGG HMM profile was determined by the number of significant (e-762 
value < 1e-5) hits by hmmsearch, divided by 100, and a maximum value was set at 10 after 763 
division. The same v-score generation was done for Pfam and VOG databases. Any HMM profile 764 
with no significant hits to the virus dataset was given a v-score of zero. For KEGG and Pfam 765 
databases, any annotation that was given a v-score above zero and contained the keyword “phage” 766 
was given a minimum v-score of 1. To highlight viral hallmark genes, any annotation within all 767 
three databases with the keyword portal, terminase, spike, capsid, sheath, tail, coat, virion, lysin, 768 
holin, base plate, lysozyme, head or structural was given a minimum v-score of 1. Non-phage 769 
annotations (e.g., phage shock protein, reovirus core-spike protein) were not considered. The 770 
resulting v-scores are a metric of virus association (i.e., do not take into account virus specificity, 771 
or association with non-viruses) and are manually tuned to put greater weight on viral hallmark 772 
genes (Supplementary Table 5). Raw HMM table outputs can be found in Supplementary Tables 773 
6, 7 and 8 for KEGG, Pfam and VOG, respectively. 774 
 775 
Databases used by VIBRANT 776 
 VIBRANT uses HMM profiles from three different databases: KEGG, Pfam and VOG 777 
(Supplementary Table 9). For Pfam all HMM profiles were used. To increase speed, KEGG and 778 
VOG HMM databases were reduced in size to contain only profiles likely to annotate the viruses 779 
of interest. For KEGG this was done by only retaining profiles considered to be relevant to 780 
“prokaryotes” as determined by KEGG. For VOG this was done by only retaining profiles that had 781 
at least one significant hit to an NCBI-acquired viral protein database using BLASTp. That is, any 782 
VOG HMM profile given a v-score of zero was removed. The resulting databases consisted of 783 
10,033 HMM profiles for KEGG, 17,929 for Pfam, and 19,182 for VOG.  784 
 Two additional databases consisting of redundant Pfam HMM profiles were also generated. 785 
The first database consisted of virus annotations which were determined by a text search of 786 
“bacteriophage” to the Pfam database. Only HMM profiles with v-scores above zero were 787 
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considered and those common to bacteria/archaea (e.g., glutaredoxin) were manually removed. 788 
This resulted in 894 virus specific HMMs. The second database consisted of common plasmid 789 
annotations. Proteins were predicted for the plasmid dataset using Prodigal (-p meta) and all Pfam 790 
HMMs with a v-score of zero were used to annotate the plasmid proteins (e-value < 1e-5). Any 791 
annotation with at least 50 hits was retained as a common plasmid HMM profile, which resulted 792 
in 202 common plasmid HMMs.  793 
 794 
Non-neural network steps and assembly of annotation metrics 795 
 VIBRANT utilizes several manually curated cutoffs in order to remove the bulk of non-796 
virus input scaffolds before the neural network classifier is implemented. These steps will result 797 
in the assembly of 27 annotation metrics that are used by the neural network classifier for virus 798 
identification, which is followed by additional manually set cutoffs to curate the results.  799 
 First, open reading frames predicted by Prodigal (-p meta) or user input proteins are used 800 
to calculate the fraction of strand switching per scaffold (strand switches divided by total genes). 801 
Scaffolds are then classified as having either a low (5%), medium (5-35%) or high (>35%) level 802 
of strand switching. Scaffolds with a high level are annotated with the 894 virus-specific Pfam 803 
HMMs and only retained if there is at least one significant hit (score > 50). Throughout, scaffolds 804 
that are not retained are eliminated from further analysis. Scaffolds with a medium-level, and those 805 
with a high-level that passed the previous cutoff, are annotated with the 202 common plasmid 806 
Pfam HMMs and only retained if there are three or less significant hits (score > 50). Scaffolds with 807 
a low level are combined with those from high/medium that passed the previous cutoff(s).  808 
 Scaffolds are then annotated with the 10,033 KEGG-derived HMMs. Putative integrated 809 
provirus regions are extracted at this step by using sliding windows of either four or nine proteins 810 
at a time (step size = 1 protein). Within these windows scaffolds are fragmented according to v-811 
scores and total KEGG annotations. Within the 4-protein window, scaffolds can be cut if [1] there 812 
are 0-1 unannotated proteins, 3-4 proteins with a v-score of 0-0.02 and a combined v-score of less 813 
than 0.06, or [2] three consecutive proteins with a v-score of 0 (considered as a 3-protein window). 814 
Scaffolds will also be cut using a 9-protein window if nine consecutive proteins are annotated. 815 
Finally, if the final two proteins on a scaffold each have a v-score of 0, the scaffold will be cut. 816 
Only scaffold fragments that contain at least 8 proteins are retained. Following provirus excision, 817 
several manual cutoffs are used to remove obvious non-viral scaffolds. Briefly, this is done by 818 
removing scaffolds with a high density of KEGG annotations (e.g., over 70% if less than 15 819 
proteins or over 50% if greater than 15 proteins) or a high number of annotations with a v-score 820 
of 0 (e.g., over 15). V-scores are also used such that a scaffold that may be removed for having a 821 
high density of KEGG annotations will be retained if the v-score meets a specific threshold (e.g., 822 
average of 0.2). 823 
 Scaffolds that are retained are annotated by the 17,929 Pfam HMMs. In a similar manner 824 
to KEGG, scaffolds meeting set cutoffs for density and v-scores of Pfam HMMs are either retained 825 
or removed. For example, scaffolds with less than 15 total or density under 60% Pfam annotations 826 
are retained; a scaffold will be retained if it has greater than 60% Pfam annotations as well as an 827 
average v-score of at least 0.15. For both KEGG and Pfam cutoffs full details of every cutoff see 828 
Supplementary Table 10.  829 
 Following the aforementioned cutoff steps approximately 75-85% of non-viral scaffolds 830 
are removed. At this point scaffolds are annotated by the 19,182 VOG HMMs. Using VOG 831 
annotations and v-scores from KEGG and Pfam, putative proviruses that were cut during KEGG 832 
annotation are now trimmed to remove ends that may still contain host proteins. To do this, any 833 
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scaffold previously cut is trimmed, at both ends, to either the first instance of a VOG annotation 834 
or the first v-score of at least 0.1.  835 
 Annotations from all three databases are used to assemble 27 metrics for the neural network 836 
classifier. Briefly the metrics are as follows: [1] total proteins, [2] total KEGG annotations, [3] 837 
sum of KEGG v-scores, [4] total Pfam annotations, [5] sum of Pfam v-scores, [6] total VOG 838 
annotations, [7] sum of VOG v-scores, [8] total KEGG integration related annotations (e.g., 839 
integrase), [9] total KEGG annotations with a v-score of zero, [10] total KEGG integration related 840 
annotations (e.g., integrase), [11] total Pfam annotations with a v-score of zero, [12] total VOG 841 
redoxin (e.g., glutaredoxin) related annotations, [13] total VOG non-integrase integration related 842 
annotations, [14] total VOG integrase annotations, [15] total VOG ribonucleotide reductase related 843 
annotations, [16] total VOG nucleotide replication (e.g., DNA polymerase) related annotations, 844 
[17] total KEGG nuclease (e.g., restriction endonuclease) related annotations, [18] total KEGG 845 
toxin/anti-toxin related annotations, [19] total VOG hallmark protein (e.g., capsid) annotations, 846 
[20] total proteins annotated by KEGG, Pfam and VOG, [21] total proteins annotated by Pfam and 847 
VOG only, [22] total proteins annotated by Pfam and KEGG only, [23] total proteins annotated by 848 
KEGG and VOG only, [24] total proteins annotated by KEGG only, [25] total proteins annotated 849 
by Pfam only, [26] total proteins annotated by VOG only, and [27] total unannotated proteins. 850 
Non-annotation features such as gene density, average gene length and strand switching were not 851 
used because they were found to decrease performance of the neural network classifier despite 852 
being differentiating features between bacteria/archaea and viruses; viruses tend to have shorter 853 
genes, less intergenic space and strand switch less frequently. This decreased performance is likely 854 
due to several reasons, such as errors associated with protein prediction (e.g., missed open reading 855 
frame leading to a large “intergenic” gap) or that scaffolds, due to being fragmented genomes in 856 
most cases, behave differently than the genome as a whole. For example, genomic regions 857 
encoding for large structural proteins will have a higher average gene size or a small window of 858 
virus proteins may have a greater average strand switching level compared to the whole genome.  859 
 860 
Training and testing VIBRANT 861 
 The bacteria/archaea genomic, plasmid and virus datasets described above were used to 862 
train and test the machine learning model. Scikit Learn libraries were used to assess various 863 
machine learning strategies to identify the best performing algorithm. Among support vector 864 
machines, neural networks and random forests, we found that neural networks lead to the most 865 
accurate and comprehensive identification of viruses. Therefore, Scikit Learn’s (86) supervised 866 
neural network multi-layer perceptron classifier (hereafter neural network) was used. The portion 867 
of VIBRANT up until the neural network classifier (i.e., KEGG, Pfam and VOG annotation) was 868 
used to compile the 27 annotation metrics for each of the three datasets. To account for differences 869 
in scaffold sizes all metrics were normalized (i.e., divided by) to the total number of proteins 870 
encoded by the scaffold. The first metric, for total proteins, was normalized to log base 10 of itself. 871 
Each metric was weighted equally, though it is worth noting that the removal of several metrics, 872 
mainly metrics 8-18, did not significantly impact the accuracy of model’s prediction. The 873 
normalized results were randomized and non-redundant portions of these results were taken for 874 
training or testing the neural network. It is important to note that the testing set here was not used 875 
as the comprehensive testing set for the entire workflow. In total, 93,913 fragments were used for 876 
training and 9,000 were used for testing the neural network (Supplementary Tables 11 and 12).  877 
 To comprehensively test the performance of VIBRANT in its entirety a new testing dataset 878 
was generated consisting of fragments from the neural network testing set as well as additional 879 
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fragments non-redundant to the previous training dataset. This new testing dataset was comprised 880 
of 256,713 fragments from bacteria/archaea, 29,926 from viruses and 8,968 from plasmids. Each 881 
met the minimum size requirement of VIBRANT: at least four open reading frames. For 882 
comparison to VirFinder (v1.1) and VirSorter (v1.0.3), the latter testing dataset was used. Two 883 
intervals for VirFinder and VirSorter were used for comparison. For VirSorter, the intervals 884 
selected were [1] category 1 and 2 predictions, and [2] categories 1, 2 and 3 (i.e., all) predictions. 885 
VirSorter was ran using the “Virome” database. For VirFinder, the intervals were [1] scores greater 886 
than or equal to 0.90 (approximately equivalent to a p-value of 0.013), and [2] scores greater than 887 
or equal to 0.75 (approximately equivalent to a p-value of 0.037). All equations used can be found 888 
in Supplementary Table 13 and results used for the generation of Figure 1 can be found in 889 
Supplementary Table 14.  890 
  891 
AMG identification 892 
 KEGG annotations were used to classify potential AMGs (Supplementary Table 15). 893 
KEGG annotations falling under the “metabolic pathways” category as well as “sulfur relay 894 
system” were considered. Manual inspection was used to remove non-AMG annotations, such as 895 
nrdAB and thyAX. Other annotations not considered dealt with direct nucleotide to nucleotide 896 
conversions. All AMGs were associated with a KEGG metabolic pathway map.  897 
 898 
Completeness estimation 899 
 Scaffold completeness is determined based on four metrics: circularization of scaffold 900 
sequence, VOG annotations, total VOG nucleotide replication proteins and total VOG viral 901 
hallmark proteins (Supplementary Table 16). In order to be considered a complete genome a 902 
sequence must be identified as likely circular. A kmer-based approach is used to do this. 903 
Specifically, the first 20 nucleotides are compared to 20-mer sliding windows within the last 900bp 904 
of the sequence. If a complete match is identified the sequence is considered a circular template. 905 
Scaffolds can also be considered a low, medium or high quality draft. To benchmark completeness, 906 
NCBI RefSeq viruses identified as Caudovirales, limited to 10 kb in length, were used to estimate 907 
completeness by stepwise removing 10% viral sequence at a time (Supplementary Table 2). Viral 908 
genome diagrams to depict genome quality and completeness, as well as provirus predictions, were 909 
made using Geneious Prime 2019.0.3. 910 
 911 
Additional viral datasets and metagenomes 912 
 IMG/VR v2.0 (accessed July 2019) was downloaded and scaffolds originating from air, 913 
animal, aquatic sediment, city, marine A (coastal, gulf, inlet, intertidal, neritic, oceanic, pelagic 914 
and strait), marine B (hydrothermal vent, volcanic and oil), deep subsurface, freshwater, human, 915 
plants, soil wastewater and wetland environments were selected for analysis. Venn diagram 916 
visualization of virus predictions with this dataset was made using Matplotlib (v3.0.0) (87). 917 
Several published, assembled metagenomes from IMG/VR representing diverse environments 918 
were selected for comparing VIBRANT, Virsorter and VirFinder (IMG taxon IDs: 3300005281, 919 
3300017813 and 3300000439). Fifteen publicly available datasets from the human gut were 920 
assembled for assessing VIBRANT and comparing the three programs (88). Reads can be found 921 
under NCBI BioProject PRJEB7774 (ERR688591, ERR688590, ERR688509, ERR608507, 922 
ERR608506, ERR688584, ERR688587, ERR688519, ERR688512, ERR688508, ERR688634, 923 
ERR688618, ERR688515, ERR688513, ERR688505). Reads were trimmed using Sickle (v1.33) 924 
(89) and assembled using metaSPAdes (v3.12.0 65) (90) (--meta -k 21,33,55,77,99). For 925 
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hydrothermal vents, six publicly available hydrothermal plume samples were derived from 926 
Guaymas Basin (one sample) and Eastern Lau Spreading Center (five samples). Reads can be 927 
found under NCBI BioProject PRJNA314399 (SRR3577362) and PRJNA234377 (SRR1217367, 928 
SRR1217459, SRR1217564, SRR1217566, SRR1217452, SRR1217567, SRR1217465, 929 
SRR1217462, SRR1217460, SRR1217463, SRR1217565). Reads were trimmed using Sickle and 930 
assembled using metaSPAdes (--meta -k 21,33,55,77,99). Details of assembly and processing are 931 
outlined in Zhou et al. (91). For analysis of Crohn’s Disease metagenomes by VIBRANT, publicly 932 
available metagenomes were used; the metagenomes were sequenced by He et al., Ijaz et al. and 933 
Gevers et al., and assembled by Pasolli et al. (Supplementary Tables 17, 18 and 19).  934 
 935 
Analysis of Crohn’s Disease metagenomes 936 
 Metagenomic reads from He et al. were assembled by Pasolli et al. and used for analysis. 937 
VIBRANT (-l 5000) was used to predict viruses from 49 metagenomes originating from 938 
individuals with Crohn’s Disease and 53 from healthy individuals (102 total samples). A total of 939 
14,121 viruses were identified. Viral scaffolds were dereplicated using Mash (92) and Nucmer 940 
(93) to 95% nucleotide identity and 70% scaffold coverage. The longest scaffold was kept as the 941 
representative for a total of 8,822 dereplicated viral scaffolds. A total of 96 read sets were used 942 
(59 Crohn’s Disease and 37 healthy), trimmed using Sickle and aligned to the dereplicated 943 
scaffolds using Bowtie2 (-N 1, v2.3.4.1) (94) and the resulting coverages were normalized to total 944 
reads. The normalized relative coverage of each scaffold for all 96 samples were compared using 945 
DESeq2 (95) (Supplementary Table 20). Scaffolds in significantly different abundance between 946 
Crohn’s Disease and control samples were determined by a p-value cutoff of 0.05. iRep (default 947 
parameters) (78) was used to estimate replication activity of two Crohn’s-associated viruses. 948 
EasyFig (v2.2.2) (96) was used to generate genome alignments of Escherichia phage Lambda 949 
(NCBI accession number NC_001416.1) and three Crohn’s-associated viruses. vConTACT2 950 
(v0.9.8)   was ran using default parameters on the CyVerse Discovery Environment platform. 951 
Putative hosts of Crohn’s-associated and healthy-associated was estimated using proximity of 952 
vConTACT2 protein clustering and BLASTp identity (NCBI non-redundant protein database, 953 
assessed October 2019). Two additional read sets from Gevers et al. (80) and Ijaz et al. (79) were 954 
likewise assembled by Pasolli et al.. VIBRANT (-l 5000 -o 10) was used to predict viruses from 955 
43 metagenomes originating from individuals with Crohn’s Disease and 21 from healthy 956 
individuals (64 total samples). In contrast to the discovery dataset viral genomes were not 957 
dereplicated and differential abundance was not determined. Instead viruses from each group were 958 
directly clustered using vConTACT2. Abundances of DAGs in the validation set were normalized 959 
to total viruses. Protein networks were visualized using Cytoscape (v3.7.2) (98). 960 
 961 
Availability of data and materials 962 
 VIBRANT is implemented in Python and all scripts and associated files are freely available 963 
at https://github.com/AnantharamanLab/VIBRANT/. All data and genomic sequences used for 964 
analyses are publicly available; see Supplementary Tables 3, 17, 18 and 19 for study and accession 965 
names. Full protein networks generated by vConTACT2 for Crohn’s- and healthy-associated 966 
viruses are available in Supplementary Data 1 and 2, respectively. VIBRANT is also freely 967 
available for use as an application through the CyVerse Discovery Environment. To use the 968 
application visit https://de.cyverse.org/de/?type=apps&app-id=c2864d3c-fd03-11e9-9cf4-969 
008cfa5ae621&system-id=de, and for more details see 970 
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https://wiki.cyverse.org/wiki/display/DEapps/VIBRANT-1.0.1. Additional details of relevant data 971 
are available from the corresponding author on request. 972 
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