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Abstract

Recent studies suggest that the resting brain utilizes metastability such that the large-scale

network can spontaneously yield transition dynamics across a repertoire of oscillatory states.

By analyzing resting-state electroencephalographic signals and the autism-spectrum

quotient acquired from healthy humans, we show experimental evidence of how autistic-like

traits may be associated with the metastable human brain. Observed macroscopic brain

signals exhibited slow and fast oscillations forming phase-amplitude coupling (PAC) with

dynamically changing modulation strengths, resulting in oscillatory states characterized by

different PAC strengths. In individuals with the ability to maintain a strong focus of

attention to detail and less attention switching, these transient PAC dynamics tended to

stay in a state for a longer time, to visit a lower number of states, and to oscillate at a

higher frequency than in individuals with a lower attention span. We further show that

attractors underlying the transient PAC could be multiple tori and consistent across

individuals, with evidence that the dynamic changes in PAC strength can be attributed to

changes in the strength of phase-phase coupling, that is, to dynamic functional connectivity

in an electrophysiological sense. Our findings suggest that the metastable human brain can

organize spontaneous events dynamically and selectively in a hierarchy of macroscopic

oscillations with multiple timescales, and that such dynamic organization might encode a

spectrum of individual traits covering typical and atypical development.

Keywords:

human brain dynamics, metastability, phase-amplitude coupling, autism spectrum
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Significance Statement

Metastability in the brain is thought to be a mechanism involving spontaneous transitions

among oscillatory states of the large-scale network. We show experimental evidence of how

autistic-like traits may be associated with the metastable human brain by analyzing

resting-state electroencephalographic signals and scores for the autism-spectrum quotient

acquired from healthy humans. We found that slow and fast neural oscillations can form

phase-amplitude coupling with dynamically changing modulation strengths, and that these

transient dynamics can depend on the ability to maintain attention to detail and to switch

attention. These results suggest that the metastable human brain can encode a spectrum of

individual traits by realizing the dynamic organization of spontaneous events in a hierarchy

of macroscopic oscillations with multiple timescales.
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Introduction 1

The human brain can spontaneously yield transition dynamics across oscillatory states and 2

organize a variety of events in a hierarchy of oscillations. Such spontaneous dynamics, 3

particularly at rest, have been intensively observed and analyzed over many years, and 4

attempts to model them have been made using dynamical systems theory, to achieve a 5

better prediction of brain activity [1–5]. However, there is a lack of direct evidence that 6

resting-state brain dynamics can originate from the underlying attractors, and little is 7

known about the kind of attractors that may have functional roles in the dynamic 8

organization of spontaneous activity in a way utilizing oscillatory hierarchy. 9

Electroencephalography (EEG) is a promising technique for the high temporal resolution 10

observation of the dynamics of neural activity over large-scale brain networks. The observed 11

macroscopic signals are oscillatory, such that the corresponding power spectrum can exhibit 12

a single representative peak, and can be classified into multiple bands according to its 13

frequency [6, 7]. The peak frequency of neural activity shows either a higher or lower value 14

depending on brain function [6] and cognitive and behavioral performance [7]; for example, 15

alpha-band activity can be enhanced or suppressed by attention, and its peak frequency can 16

vary with age [7]. 17

Observed macroscopic neural oscillations can reflect underlying nonlinear dynamics. 18

Experimental studies have presented evidence that phase-phase coupling (PPC) allows 19

phases detected from oscillations at a particular frequency to be coherent, thereby 20

facilitating the nonlinear brain phenomenon called synchronization [8–10]. Furthermore, the 21

phases have the ability to modulate the amplitude of a faster oscillatory component by 22

forming phase-amplitude coupling (PAC) [11–15]. The PPC has been suggested to play a 23

role in making functional connections among distant brain regions [8], while it is suggested 24

that the PAC mediates computation between local and global networks [12], with both 25

couplings having been observed in function-specific and individual behavior-related 26

oscillations at multiple spatiotemporal scales [9,14]. From a dynamical systems theory point 27

of view, these two kinds of coupled oscillatory dynamics can be interpreted as being 28
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generated from coupled oscillatory attractors composed of the limit cycle [2] or its variant 29

form, i.e., a torus in a high-dimensional phase space [16,17]. These suggestions have 30

inspired phenomenological modeling of the dynamics underlying EEG neural 31

oscillations [18,19], resulting in a variety of coupled nonlinear-oscillator systems that 32

possess an essential property of brain dynamics, namely, the rhythm [20]. 33

Oscillatory dynamics such as those mentioned above can make spontaneous transitions 34

among multiple network states, particularly at rest. EEG signals observed during a resting 35

condition can be labeled as a small number of states called microstates [21–24]. These 36

microstates have been suggested to be associated with cognition and perception [22], as well 37

as individual differences in brain function [24]. In recent years, resting-state EEG signals 38

have been investigated from the point of view of functional connectivity of the large-scale 39

network, which is often characterized by the strength of the PPC [25–27]. Betzel et al. 40

showed that resting-state EEG phases can exhibit dynamic changes in PPC modulation, so 41

that a repertoire of synchronized states of the large-scale network can appear [26]. 42

Moreover, both EEG phases and amplitudes at rest were recently analyzed together [28, 29], 43

because the PAC can also occur spontaneously [13]. These experimental findings imply that 44

resting-state EEG phase dynamics not only exhibit synchronization, but that they also 45

result in amplitude modulation at the same time via both PPC and PAC. Therefore, we 46

developed the following hypotheses for the resting brain: (i) there is a repertoire of 47

synchronous slow oscillations that interact via the PPC (Fig. 1A); (ii) these oscillations 48

interact with fast ones via the PAC (Fig. 1B); (iii) this synchrony-dependent PAC can 49

result in a repertoire of attractors characterized by slow and fast timescales (Fig. 1C); and 50

(iv) transitions across attractors, i.e., dynamic changes in PAC strengths, can occur 51

spontaneously at rest according to transitions among a repertoire of the synchronous slow 52

oscillations, that is, according to the dynamic changes in PPC strengths (Fig. 1D). 53

In this study, we aimed to validate the dynamic PPC-PAC hypotheses described above 54

(Fig. 1), and to show experimental evidence of how the metastable human brain is 55

associated with autistic-like traits. In recent years, metastability in the brain has been 56

proposed as a mechanism for integration and segregation across multiple levels of brain 57
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functions [30]. To elucidate aspects of the dynamics of the metastable human brain in this 58

study, we first developed a method to label observed metastable dynamics as the underlying 59

d-dimensional tori in a data-driven manner, under the assumption that these attractors can 60

generate quasi-periodic oscillations such that slow oscillations can hierarchically modulate 61

fast ones, following the oscillatory hierarchy hypothesis [31] (Materials and Methods). The 62

method was then applied to 63-channel high-density scalp-recorded EEG signals from 130 63

healthy humans in an eyes-closed resting condition (n = 162 in total; 32 subjects 64

participated in the experiment twice). The obtained results were compared with the 65

autism-spectrum quotient (AQ) subscales [32, 33] acquired from 88 of the subjects after the 66

EEG recording, and were validated by a modeled coupled oscillator system driven by 67

spontaneous fluctuations. 68

Results 69

The recorded brain dynamics, consisting of 63-channel scalp EEG signals from the resting 70

human brain, were labeled as oscillatory states characterized by two peak frequencies, i.e., 71

two-dimensional tori (n = 101), particularly as states with the alpha- and delta-band peak 72

frequencies ranging from 8 to 12 Hz and 0.1 to 4 Hz, respectively (n = 95; Fig. 2, and 73

Materials and Methods). The frequency of the fast oscillations was first estimated from the 74

power spectra of the raw EEG signals (Figs. 2A and 2B; Fig. S1), and was used to 75

calculate the corresponding instantaneous amplitudes (Fig. 2C). These amplitudes were still 76

oscillatory around the frequency of the slow oscillations (Fig. 2D), and were thus converted 77

further into corresponding instantaneous amplitudes (Fig. 2E) that did not show clear 78

oscillations (Fig. 2F). A standard k-means clustering method with the Calinski-Harabasz 79

criterion [34] was applied to these signals, and they were labeled as different strengths of 80

the PAC (refer to Fig. 2G). These labeled signals (Fig. 2E) showed significant correlations 81

with the time courses of the modulation index [13], with the significance level of the 82

two-sided tests being corrected for multiple comparisons using the false-discovery rate 83

(FDR) method [35] (FDR p < 0.05, in the scalp sites, accounting for more than 50 84
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electrodes; see Fig. S2). The resulting dynamics obtained via two-time 85

signal-to-instantaneous amplitude conversions were identified as a trajectory among the 86

fixed points (zero-dimensional tori); namely, the original dynamics (Fig. 2A) were 87

interpreted as a trajectory among tori with a dimension of two (Materials and Methods). 88

To more clearly demonstrate the two-dimensional tori as possible attractors for the 89

resting human brain, we projected the obtained labeled signals (Fig. 2E) onto a 90

lower-dimensional space (Fig. 3). We used a method of supervised dimensionality reduction 91

called linear discriminant analysis (LDA) [36], which yields a space such that the projected 92

trajectory can evolve into nearby points within each labeled state; this property is also 93

consistent with the fixed point that can converge a trajectory into one point. The labeled 94

signals were then projected onto a plane in the cases where the number of states was more 95

than two (Figs. 3A and 3G), and were converted into a corresponding bivariate histogram 96

(Figs. 3B and 3H); otherwise, the histogram would be a one-dimensional axis because of 97

limitations of the LDA in this study. More specifically, we generated histograms with 98

respect to each state using the same bin sizes and calculated the maxima of the counts of 99

bins for each state, with these statistics then being regarded as the indices for the system’s 100

instability, which could be inversely proportional to the potential energy of the attractors. 101

We tested whether the representative of the obtained statistics (the minimum in this study) 102

was statistically significant, using the Fourier-transform (FT) surrogate for multivariate 103

time-series data [37] under the null hypothesis H0 where the labeled signals are linearly 104

correlated Gaussian noise. We generated 200 surrogate data sets by shuffling phases of the 105

labeled signals, applied these data to the k-means clustering, and projected the data with 106

the obtained labels onto the same space as the original labeled signals (Materials and 107

Methods). The surrogate data testing rejected H0 for many individual data sets under the 108

condition of d = 2 (FT test, one-sided p < 0.05, n = 101; Figs. 3C and 3I); none of these 109

data sets were rejected under condition d = 1, and many were not rejected for d = 0 (FT 110

test, one-sided p>0.05, n = 162 for d = 1 and p>0.05, n = 99 for d = 0; refer to Figs. D 111

and J; the number of states was estimated with respect to each dimension d). The majority 112

of the other data sets were rejected for d = 3 (FT test, one-sided p < 0.05, n = 53). As a 113
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whole, the surrogate data testing provided experimental evidence that macroscopic brain 114

dynamics of the resting-state large-scale network can make spontaneous transitions across 115

two- or three-dimensional tori. In particular, these attractors were characterized by two 116

peak frequencies in the delta and alpha bands (n = 95), so that the states of the delta-alpha 117

PAC can appear (Figs. 3E and 3K). We represented each state by a vector composed of 118

mean values of the labeled signals (i.e. the delta-band instantaneous amplitudes depicted in 119

Fig. 2E) over time, namely, by a 63-dimensional vector of mean PAC strengths. 120

Delta-alpha PAC states (Figs. 3E and 3K) were categorized into four groups across 121

individuals (n = 95; Fig. 4). First, we converted these states into modified Z-scores [38] to 122

standardize them robustly among individuals, with each data set being subtracted by the 123

median and divided by the median absolute deviation instead of the mean and the SD, 124

respectively, and all the data were subsequently multiplied by 0.6745 [38]. The obtained 125

Z-scores were concatenated across states and individuals, and the resulting dataset was 126

regarded as the data in a 63-dimensional feature space. In this space, we conducted 127

principal component analysis (PCA) and applied a permutation test to 63 PCs by shuffling 128

the dataset 200 times across the channel with respect to each component. The first four 129

PCs significantly explained variance (one-sided, Bonferroni-corrected p < 1.58×10−4, total 130

explained variance 81.6 %; Fig. 4A). Eigenvectors of these four PCs were then mapped as 131

the topographies and categorized according to the regional distribution of the amplitude 132

modulation in the occipital lobe, parietal lobe, and lateral and bilateral distributions in the 133

occipital lobe (Fig. 4B). 134

The dynamics of transitions among the delta-alpha PAC states (Figs. 3F and 3L), as 135

identified in this study, showed correlations with the two AQ subscores of ‘attention to 136

detail’ and ‘attention switching’ (n = 52; Fig. 5). From the transition dynamics, we 137

calculated the intervals between transitions (for which uncertain intervals at both edges 138

were excluded) and obtained the following candidate statistics: the maximum, median, and 139

minimum of the dwell time. These statistics, in addition to the number of states and the 140

alpha- and delta-band peak frequencies estimated above, were regarded as test statistics (x) 141

and were paired with the following five AQ subscores (y): social skills, attention to detail, 142

9/38

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2019. ; https://doi.org/10.1101/855502doi: bioRxiv preprint 

https://doi.org/10.1101/855502
http://creativecommons.org/licenses/by-nc-nd/4.0/


attention switching, communication, and imagination. For these 30 pairwise statistics, we 143

used multiple comparison tests with Pearson’s correlation coefficients. The maximal dwell 144

time showed a significant positive correlation with the attention-to-detail score (r = 0.456, 145

two-sided, Bonferroni-corrected p < 0.0013; Fig. 5A, the effects of remaining variables in x 146

on y were partially adjusted). Next, we conducted a post-hoc test of the multiple 147

correlation coefficient using a linear regression model in which the attention-switching score 148

was regarded as a dependent variable and was regressed against two statistics: the number 149

of states and the alpha-band peak frequency (Fig. 5B), with these being selected because of 150

weak significant correlations with the attention-switching score (r = −0.283, two-sided, 151

uncorrected p < 0.06 for the number of states; and r = 0.321, two-sided, uncorrected 152

p < 0.03 for the alpha-band peak frequency; Figs. 5C and 5D, the effects of the remaining 153

variables in x on y were partially adjusted). The resulting linear combination showed 154

significant correlation with the attention-switching score (F (2, 49) = 4.91, r = 0.409, 155

p < 0.006), and factor loadings of this linear sum on the number of states and the 156

alpha-band peak frequency (i.e. the correlation coefficients) were −0.614 and 0.666, 157

respectively (Fig. 5B). The results indicated that in individuals with the ability to maintain 158

a stronger focus on attention to detail and less attention switching, the delta-alpha PAC 159

dynamics tended to stay in a particular state for a longer time, to visit a lower number of 160

states, and to oscillate at a higher alpha-band peak frequency, thereby providing evidence 161

on how autistic-like traits may be associated with the metastable human brain. 162

We modeled individual delta-alpha PAC dynamics (n = 95) to validate the dynamic 163

PPC-PAC hypothesis (SI Text; Fig. 1). The model consisted of delta-band phases, 164

alpha-band amplitudes, PPC-PAC connectivity, and fluctuations. We made connections 165

among the delta-band phases, from delta-band phases to alpha-band amplitudes and from 166

fluctuations to delta-band phases, such that synchronization, amplitude modulation, and 167

state transition could occur via the PPC and PAC. The PPC connectivity and the level of 168

fluctuations were estimated from the data for each individual (Fig. 6). On the other hand, 169

the PAC connectivity was set to arbitrary values, because in the present model and our 170

hypothesis, state transition can occur according to dynamic changes in PPC strengths (SI 171
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Text; Fig. 1). Note that a part of the present model was composed of only delta-band 172

phases, with the PPC being equivalent to the Kuramoto model subjected to noise (SI 173

Text) [20]. 174

First, we computed the current source density (CSD) [39,40] from raw EEG signals to 175

reduce the volume-conduction effect on the estimation of instantaneous phases, and then 176

estimated the ‘latent’ phase attractors from the CSD signals (Figs. 6A and 6B; as shown 177

later, the simulated delta-alpha PAC dynamics based on the CSD were converted back into 178

EEG dynamics through observation, so that the modeling results would be consistent with 179

the data analysis, see SI Text). Then, we converted the CSD signals into instantaneous 180

phases around the delta-band peak frequency estimated from the data above, and labeled 181

the obtained delta-band phases as multiple states by referring to the individual delta-alpha 182

PAC dynamics (Figs. 3F and 3L). These labeled phases were further converted into the 183

corresponding lags between every pair of phases, with their averages over time being 184

calculated with respect to each labeled state (Fig. 6A). The resulting values were then 185

transformed into phases for each state (Fig. 6B; SI Text), with these being regarded as 186

attractors for the delta-band phase dynamics. In this study, we estimated these phase 187

attractors from 19 CSD signals that corresponded with the standard 10/20 electrode system. 188

Next, we estimated the PPC connectivity underlying the delta-band phases and 189

estimated the level of fluctuations (Figs. 6C and 6D; SI Text). Phase attractors estimated 190

as described above were applied to the Kuramoto model composed only of delta-band 191

phases, and they were converted into PPC connectivity (Fig. 6C; SI Text) [41]. We 192

increased the level of fluctuations to phases in certain step sizes, simulated the 193

corresponding models, and generated single realizations of the transitions for each level. 194

The resulting set of transitions was quantified by the maximum, median, and minimum of 195

the dwell time with respect to each fluctuation level, and from these statistics and those 196

obtained from the data, we calculated the root-mean-square error (RMSE). We repeated 197

this calculation 100 times and chose the fluctuation level minimizing the RMSE (Fig. 6D). 198

Then, we simulated the individual delta-alpha PAC dynamics (n = 95) as modeled above, 199

and validated our dynamic PPC-PAC hypothesis (Fig. 7; SI Text). By calculating the 200
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overlaps [41] every time step (Figs. 7A and 7F; SI Text), we observed from the model that 201

the strengths of the PPC changed dynamically among attractors, and that the alpha-band 202

amplitudes were oscillatory at a frequency in the delta band, as well as the actual EEG 203

data. These oscillatory amplitudes with a unit of CSD were first retranslated into those in 204

the scalar potential, so that the modeling results would be consistent with the data analysis 205

(SI Text), and were then converted into instantaneous amplitudes around a delta-band peak 206

frequency, as estimated from the data above. Then, we labeled the resulting signals as 207

delta-alpha PAC states by referring to the overlaps (Figs. 7A and 7F). The obtained labeled 208

signals were projected onto a lower-dimensional space (Figs. 7B and 7G) and converted into 209

corresponding histograms (Figs. 7C and 7H), which we used to conduct surrogate data 210

testing in the same manner as for the data (Materials and Methods). For all simulated 211

delta-alpha PAC dynamics, the surrogate data testing rejected H0 under the condition of 212

d = 2, but not under d = 1 (FT test, one-sided p < 0.05, n = 95 for d = 2 and p>0.05, 213

n = 95 for d = 1; Figs. 7D, 7I, 7E, and 7J). Overall, we obtained consistent results from 214

both the data and the model, providing evidence for the dynamic PPC-PAC hypothesis. 215

Finally, we attempted to predict the delta-alpha PAC dynamics with a temporally 216

decreasing fluctuation level (Fig. 8). By calculating the overlaps every time step in this 217

simulation, we observed that one of the delta-alpha PAC states was stabilized, so that the 218

transition dynamics qualitatively changed into the dynamics in a steady state (Fig. 8A) as 219

the fluctuation level decreased (Fig. 8B). The appearance of a steady state depended on the 220

initial condition of the system. Moreover, such a qualitative change from multiple states to 221

one state was viewed as a shrinking of the trajectory in the phase space (Fig. 8C). We 222

generated the trajectories of the system under different initial conditions in a space 223

composed of the overlaps. The trajectories were projected onto planes, from which we 224

observed that the spaces filled by the transition dynamics can include the steady states as 225

their subsets (Fig. 8C). 226
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Discussion 227

In this study, we developed a data-driven approach to label observed metastable dynamics 228

as the underlying d-dimensional tori. The method was applied to 63-channel scalp 229

electroencephalographic (EEG) signals recorded from 130 healthy humans in an eyes-closed 230

resting condition (n = 162 in total). The observed signals were labeled as tori with a 231

dimension larger than one, such that PAC could occur hierarchically, in particular with a 232

dimension of two, corresponding with the delta- and alpha-band peak frequencies (n = 95; 233

Fig. 2). Then, the dynamics of the transitions among the delta-alpha PAC states (Fig. 3), 234

which were categorized into four groups across individuals (Fig. 4), showed correlations 235

with the autism-spectrum quotient (AQ) subscales of attention to detail and attention 236

switching (Fig. 5). Finally, we qualitatively reproduced the obtained results in a coupled 237

oscillator system driven by spontaneous fluctuations (Figs. 6 and 7) with some prediction 238

(Fig. 8), to validate the hypothesis that the dynamic changes in PAC strengths can be 239

attributed to changes in the strengths of PPC, that is, to dynamic functional connectivity 240

in an electrophysiological sense (Fig. 1). 241

Many studies show that neural activity exhibits oscillations whose amplitudes change 242

rhythmically over time [6, 12,13,42,43]. A possible mechanism for this amplitude 243

modulation is PAC, in which the phases of slow oscillations interact with the amplitudes of 244

faster oscillations such that local and global computations in the large-scale network can 245

cooperate [12,13]; the PAC can take various forms depending on events such as visual and 246

auditory tasks [42,43]. In the present work, we identified a possible link of the PAC for 247

resting-state EEG dynamics to the torus attractor, which is also characterized by slow and 248

fast timescales (Figs. 1 and 2). Some modeling studies have shown evidence for a 249

torus-related PAC [16,17], such as the study of Sase et al., which analyzed a model 250

composed of excitatory and inhibitory networks with dynamic synapses and revealed that 251

amplitude-modulated dynamics can emerge from a trajectory into the torus or the closed 252

curve, with these being mediated by bifurcation [16]. Hence, it is suggested that attractors 253

in the resting brain can play a functional role in generating cooperative dynamics over the 254
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large-scale network and could be a torus, in which spontaneous events can be effectively 255

processed by the utilization of multiple neural timescales. 256

A two- or three-dimensional torus was identified as a possible attractor underlying the 257

resting-state EEG signals of most individuals (refer to Figs. 1 to 3). This result implies that 258

macroscopic dynamics in the human brain can follow the oscillatory hierarchy hypothesis 259

stating that slower and faster oscillations can interact hierarchically via the PAC [31,44]. 260

Lakatos et al. showed experimental evidence of EEG hierarchical organization: delta-band 261

phases can modulate amplitudes of fast oscillations, which further make a spontaneous PAC 262

connection to another faster oscillatory component [31]. We suggest that the resting human 263

brain could utilize attractors with multiple timescales, so that a variety of events are 264

spontaneously organized in a hierarchy of macroscopic neural oscillations. 265

Not only were the amplitudes of resting-state EEG signals rhythmic, but the strengths of 266

the PAC (as obtained via two-time signal-to-instantaneous amplitude conversions) also 267

exhibited dynamic changes such that transitions among multiple tori could occur (Fig. 3). 268

Previous studies showed that the PAC strength can change dynamically over time, and 269

transiently in response to sensory and cognitive events [12,45–48]. Such dynamic coupling 270

was observed during cognitive behavior in a T-maze task [45], learning [46], attentional 271

allocation [47], and motor preparation [48]. Using a spatial-cuing task, Szczepanski et al. 272

found PAC modulation-dependent attentional behavior in which the modulation strength 273

was negatively correlated with the reaction time on a trial-by-trial basis [47]. Moreover, 274

Kajihara et al. showed evidence that delta-alpha PAC can dynamically occur to mediate 275

the global-to-local computation in motor preparation, such that the delta-band synchrony 276

can make a direct link with the alpha-band amplitudes via the PAC [48]. These results may 277

be supported by the conventional view of the task-dependent PAC [42,43]: Voytek et al. 278

reported that fast oscillations were strongly coupled with a slow oscillatory component via 279

PAC during a visual task, and that this coupling weakened during an auditory task so that 280

PAC with another slow oscillatory component could occur [43]. In recent years, it has been 281

suggested that dynamic PAC plays a role in modulating the dynamics of the large-scale 282

network, doing so more effectively than coupling with static modulation [12]. 283
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To the best of our knowledge, our finding of dynamic PAC, as realized by the transition 284

among the attractors, is the first experimental report of this phenomenon. Crucially, we 285

identified the transitions among delta-alpha PAC states (Fig. 3), which were further 286

categorized into four groups across individuals (n = 95; Fig. 4). Previous studies showed 287

evidence from resting-state functional magnetic resonance imaging (fMRI) signals that 288

large-scale subnetworks with different functional connectivity, termed ‘resting-state 289

networks’, are consistent across individuals [49,50], and that these can consist of the 290

following components: the default model network, the executive control network, the 291

salience network, the dorsal attention network, and networks related to auditory, 292

sensorimotor, and visual functions [50]. In recent years, it has been suggested that such 293

networks are linked to the underlying electrophysiological oscillations [51,52]. With respect 294

to each network, Mantini et al. showed correlations between slow fluctuations in the 295

blood-oxygen-level-dependent (BOLD) signal and EEG power variations of different brain 296

rhythms, including delta and alpha rhythms [51]. Moreover, Britz et al. identified four 297

resting-state networks from BOLD signals combined with the transition dynamics of EEG 298

scalp potentials [52], referred to as EEG microstates [21–24], and a previous study likewise 299

showed four network modules that were highly consistent across subjects [49]. These results 300

inspired attempts to detect the large-scale functional network using only EEG data [53]. 301

Moreover, the regional specificity of PAC has also been reported [43,47], as well as the 302

lateralization of PAC strengths [47]. Thus, macroscopic neural oscillations with multiple 303

timescales in the resting human brain, identified as the delta-alpha PAC states in this study, 304

could be the electrophysiological signatures of resting-state networks. 305

Our main finding is the AQ-related behavioral correlates of delta-alpha PAC dynamics, 306

namely, the correlation with the two AQ subscales of attention to detail and attention 307

switching (Fig. 5). In fact, slower neural oscillations are suggested to be dynamically 308

entrained by rhythmic input from external sensory events [12, 14, 54]. Lakatos et al. showed 309

that delta-band oscillations can selectively entrain to the rhythm of attended visual and 310

auditory stimuli, thereby providing evidence of the neural entrainment to attention by 311

which the brain can encode task-relevant events into preferred delta-band phases [14]. On 312
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the other hand, alpha-band oscillations have been suggested to play an inhibitory role by 313

effectively gating top-down processing [55]. Previous studies show that the alpha-band 314

power can decrease in the hemisphere contralateral to attended visual stimuli, whereas it 315

exhibits an increase in the ipsilateral hemisphere (refer to Fig. 4); this is evidence for 316

attention-induced alpha-band lateralization that can gate the flow of top-down information 317

into task-irrelevant regions [55, 56]. Alpha-band activity can be dominantly observed in the 318

resting brain, in particular in the occipital region [7], and the alpha-band peak frequency 319

can depend on age and cognitive performance [7], which can show inter-individual 320

variability [57]. Moreover, a recent study reported atypical neural timescales for individuals 321

with autism spectrum disorder (ASD) [58], on the basis of the fact that the heterogeneity of 322

timescales in the brain could be a basis for functional hierarchy [59]. Watanabe et al. found 323

shorter neural timescales in sensory/visual regions and a longer timescale in the right 324

caudate for individuals with a higher severity level of ASD [58]. Together, it is suggested 325

that attractors in the resting human brain can generate individual delta-alpha PAC 326

dynamics that can selectively encode spontaneous events by utilizing attention. Individual 327

macroscopic dynamics in the brain, as identified here, and which tend to stay in a state for 328

a longer time, to visit a lower number of states, and to oscillate at a higher alpha-band 329

frequency in individuals with a stronger preference for specific events (Fig. 5), might be a 330

neural signature of the autism spectrum, covering both typical and atypical development. 331

Recently, atypical transition dynamics of the resting large-scale network were identified 332

as ASD symptoms [60]. By applying energy-landscape analysis [61] to the fMRI signals of 333

resting-state networks, Watanabe and Rees showed that neurotypical brain activity can 334

transit between two major states via an intermediate state, and that the number of these 335

transitions can be lower due to the unstabilization of the intermediate state for the 336

individuals with a higher severity level of ASD [60]. Such dynamics-behavior associations 337

were linked to functional segregation. In this study, we generated the energy-like landscape 338

of resting-state EEG dynamics by utilizing dimensionality reduction of tori, so that the 339

underlying oscillatory attractors could transform into the fixed points (Fig. 3), and found a 340

similar dynamics-behavior association between the dwell time of delta-alpha PAC state 341
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transitions and the attention-to-detail AQ subscale (Fig. 5A). Hence, the individual 342

delta-alpha PAC dynamics could be the electrophysiological signature of an atypical balance 343

in functional organization. 344

What kind of mechanisms can underlie the dynamic PAC and enable transitions among 345

attractors? One possible mechanism is the metastability (or called criticality in a similar 346

sense) that is suggested to play a role in maintaining a dynamic balance of integration and 347

segregation of brain functions across multiple spatiotemporal scales [4,30,62]. Such dynamic 348

organization was fruitfully discussed from viewpoints of both models and experimental data 349

by Tognoli and Kelso [30]. By introducing an extended Haken-Kelso-Bunz model [62] and 350

actual neurophysiological and behavioral data [30], they illustrated that phase dynamics in 351

the brain can utilize both tendencies of dwells to be in synchrony and escapes into 352

non-synchronous patterns, and associated this fact with the abilities of the brain 353

(integration and segregation) in the theory of coordination dynamics [30,62]. Similar 354

dynamics were previously observed in the resting-state neural signals of EEG [23,25,26], 355

fMRI [63], and functional multineuron calcium imaging [64] aimed at generating a better 356

mathematical model of individual brains [1–5,16,18–20,65,66]; there is ongoing debate 357

whether spontaneous neural activity originates from a deterministic dynamical system [62] 358

that may yield chaotic itinerancy [67], or our present standpoint, a random dynamical 359

system driven by spontaneous stochastic fluctuations [68–70]. Together, it is suggested that 360

individual delta-alpha PAC dynamics at rest (which could relate to previous studies 361

reporting that delta-alpha PAC can occur in preparation for a task [48] and during decision 362

making [42]) can utilize metastability to organize spontaneous events in a hierarchy of 363

macroscopic oscillations with multiple timescales. 364

Here, on the basis of our dynamic PPC-PAC hypothesis, we posit that the dynamic 365

changes in delta-alpha PAC modulation can be attributed to changes in delta-band PPC; 366

namely, to the dynamic functional connectivity in an electrophysiological sense (Fig. 1). 367

Dynamic functional connectivity is referred to as the functional connectivity of the 368

large-scale network with dynamically changing temporal correlation [71], and has been 369

regularly observed in resting-state fMRI signals with behavioral and cognitive 370
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relevance [63,72]. In a similar sense, resting-state EEG experiments show that the dynamics 371

of the large-scale network can transit among a repertoire of synchronized states [8, 25,26]. 372

We applied this view to the large-scale network of slow oscillations, taking into account its 373

neuromodulatory influences on a faster oscillatory component, and validated the resulting 374

dynamic PPC-PAC hypothesis using an extended version of the Kuramoto model (see Figs. 375

1, 6, and 7). By analyzing a model of local networks with heterogeneity near the onset of 376

synchrony, a relevant modeling study demonstrated that transient synchrony of the 377

large-scale network can organize the routing of information flow [73]. Dynamic and 378

transient delta-alpha PAC, as identified in this study, may originate from the coupling 379

between delta-band phases utilizing transient synchrony. 380

Finally, we observed shrinking of the transient PAC dynamics with a temporally 381

decreasing fluctuation level from the model (Fig. 8). This result could relate to the 382

reduction in trial-to-trial variability of cortical activity that can occur after the stimulus 383

onset, such that the spontaneous and task-evoked brain activity can interplay in a complex 384

manner [74]. Such a phenomenon was previously observed from the spikes of single 385

neurons [75], and was recently demonstrated by a model including local and global cortical 386

networks at multiple spatiotemporal scales [76]. Thus, the present model combined with the 387

resting-state EEG data could have the potential for predicting task-relevant events; for 388

example, identifying a parameter that can facilitate a dynamic balance in the typical and 389

atypical neural activity of the large-scale network, which might be helpful for mitigating the 390

severity level of ASD, so that faster transition dynamics among more states can appear 391

during rest. 392

Taken together, we reported the first experimental evidence that (i) attractors in the 393

resting human brain can be two- or three-dimensional tori; (ii) that their dynamics can be 394

metastable delta-alpha PAC dynamics; and (iii) their functional role is associated with 395

autistic-like traits. We suggest that the metastable human brain can organize spontaneous 396

events dynamically and selectively in a hierarchy of macroscopic oscillations that interact in 397

a cooperative manner, and that such dynamic organization might encode a spectrum of 398

individual traits covering both typical and atypical development. Our findings on the 399
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metastable human brain and its association with autistic-like traits may be further 400

corroborated by the following research: (i) the brain of ASD subjects during rest [60, 77, 78] 401

to verify our present findings from healthy subjects; (ii) the brain during transcranial 402

magnetic stimulation [29,79] and closed-loop control by neurofeedback [56] to manipulate 403

individual traits; and (iii) the brain during a task to understand the relationship between 404

spontaneous and task-evoked dynamics from the viewpoint of the attractors that might 405

underlie the human brain [74]. 406

Materials and Methods 407

Data Acquisition 408

In total, 130 healthy humans participated in the EEG experiment after giving written 409

informed consent. The EEG study was approved by the ethics committee of RIKEN and 410

was conducted in accordance with the code of ethics of the Declaration of Helsinki. 411

Thirty-two subjects participated in the experiment twice. The EEG signals were recorded 412

from an EEG amplifier (BrainAmp MR+, Brain Products GmbH, Gilching, Germany) and 413

a 63-channel EEG cap (Easycap, EASYCAP GmbH, Herrsching, Germany) placed on the 414

scalp in accordance with the international 10/10 system with a left earlobe reference and 415

AFz as a ground electrode. The signals were recorded for 180 s with the subjects in an 416

eyes-closed resting condition. The following experimental configuration was used: sampling 417

frequency 1000 Hz, low-cut frequency 0.016 Hz, and high-cut frequency 250 Hz. The 418

recorded signals were offline re-referenced to the average potentials of the left and right 419

earlobes. After the EEG experiment, 88 subjects were asked to answer the Japanese version 420

of the AQ questionnaire [33], which was originally constructed by Baron-Cohen et al. 421

(2001) [32]. The following five AQ subscales were scored from the obtained answers: social 422

skills, attention to detail, attention switching, communication, and imagination. Our 423

proposed method, named metastable states clustering, was applied to the raw EEG signals. 424

All the analyses were conducted using in-house code custom written in MATLAB 425

(Mathworks, Natick, MA, USA) with the EEGLAB [80], FieldTrip [81], and CSD 426
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Toolboxes [39]. 427

Metastable States Clustering 428

Metastable states clustering is a novel method that can label observed metastable dynamics 429

as the underlying attractors, was developed in a data-driven manner. The method consists 430

of the following three analyses: (i) dimensionality reduction of the tori, (ii) k-means 431

clustering, and (iii) supervised dimensionality reduction of space. Analysis (i) was 432

motivated by the Poincaré section in flow and sections in map [82] with their 433

application [16]. We posited the following two assumptions: (I) the underlying attractors 434

are d-dimensional tori and generate quasi-periodic oscillations with d peak frequencies 435

f1, f2, .., fd that are rationally independent; and (II) these oscillations are 436

amplitude-modulated such that slow oscillations with fi can hierarchically modulate fast 437

ones with fi+1 for i = 1, 2, ..., d− 1, following the oscillatory hierarchy hypothesis [31]. We 438

regarded d-dimensional tori with d = 0 and d = 1 as the attractors of fixed points and limit 439

cycles respectively, and define here the following set: Ωd = {f1, f2, ..., fd}. 440

Let XΩd
(t) be N -dimensional data observed from the dynamics of transitions among K 441

d-dimensional tori in a phase space at time t. In this study, we assumed XΩd
(t) as the 442

resting-state scalp EEG data with dimension N = 63, denoted by 443

XΩd
(t) =

[
X1

Ωd
(t) , X2

Ωd
(t) , ..., XN

Ωd
(t)
]T

for t = 0 to 180 s (:= T ). 444

Analysis (i): Consider the observed dynamics XΩd
(t) to be reduced to XΩ0 (t) 445

(transitions among fixed points) via d-time iterations of a vector-valued function 446

F : RN→RN defined as 447

XΩi−1(t) = F (XΩi(t)) , (1)

where F = [F1, F2, ..., FN ]T. We realized F by recursively converting the signals into 448

instantaneous amplitudes around frequency fi, from i = d to 1, and employed the 449
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complex-valued Morlet wavelet Ψi (t) characterized by fi and a parameter σi as follows [83]: 450

Fj (XΩi(t)) =
∣∣∣(Xj

Ωi
∗Ψi

)
(t)
∣∣∣ , (2)

Ψi (t) =
√
fi exp (i2πfit) exp

(
−t2/2σ2

i

)
, (3)

for j = 1, 2, ..., N . Operators (· ∗ ·) and |·| denote a convolution and conversion from the 451

complex value to its amplitude, respectively. To obtain the results at high temporal 452

resolution, we set σi to a value such that the number of cycles nco of the wavelet Ψi (t) was 453

three, i.e., nco := 6fiσi = 3. We used data XΩi−1 (t) for t = nco/2fi to (T − nco/2fi ) to 454

reduce the edge artifact of the wavelet Ψi (t) with update T − nco/fi → T with respect to 455

each i. On the other hand, we estimated fi from the power spectrum P jΩi
(f) of Xj

Ωi
(t) for 456

j = 1, 2, ..., N . We averaged these spectra over j with respect to each f , obtained a single 457

spectrum, and estimated its peak frequency over the interval 1≤f < 45 for i = d, otherwise 458

in 0.1≤f < fi+1; for i = d only, we first reduced the power-law effect on the spectrum 459

P jΩi
(f) which may follow f−βj with a certain exponent [84] by simply subtracting the linear 460

trend from logP jΩi
(f) vs. log f . 461

Analysis (ii): Consider the dynamics XΩ0 (t) to be labeled as L (t) via k-means 462

clustering GK : RN→{1, 2, ...,K}. In this study, we estimated the number of states K by 463

employing the Calinski-Harabasz index [34] in a condition of K∈{2, 3, ..., 10}. To obtain 464

reproducible results, we initialized the clustering algorithm deterministically using PCA 465

partitioning [85]. Note that we did not apply any kernel function to the present clustering 466

analysis because the dynamics XΩ0 (t) appeared here can be a simpler representation of 467

transitions among attractors in the phase space compared with XΩd
(t). 468

Analysis (iii): Consider the labeled dynamics (XΩ0 (t) , L (t)) to be converted into a 469

lower-dimensional one Y (t) with dimension n < N via projection 470

H : RN × {1, 2, ...,K} → Rn. In this study, we used LDA [36] to obtain Y (t) in a plane for 471

the case of K > 2, otherwise in a one-dimensional axis due to limitation of the LDA. In this 472

space, we generated histograms with respect to each labeled state k ∈ {1, 2, ...,K} using the 473

same bin sizes, and calculated the maxima of the counts of bins Ek for each k. The statistic 474
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E = mink Ek was applied to the FT surrogate data testing for multivariate time series [37] 475

under the null hypothesis H0, where XΩ0 (t) is linearly correlated Gaussian noise. We 476

generated surrogate data X ′Ω0
(t) by shuffling phases of XΩ0 (t), applied k-means clustering 477

GK : X ′Ω0
(t) 7→L′ (t), converted the labeled data

(
X′

Ω0
(t) , L′ (t)

)
to lower-dimensional ones 478

Y ′ (t) via the same projection H as (XΩ0 (t) , L (t)), and calculated the statistic E′ of the 479

surrogate data. We performed a one-sided test to verify whether E was significantly larger 480

than E′ by generating 200 surrogate data sets and setting the significance level to 0.05. 481

In summary, XΩd
(t) was converted into Y (t) via the following composite function: 482

H
(
F d (XΩd

) , GK (XΩd
)
)
. (4)

For the case of d = 0 only, we first applied a band-pass filter to the raw EEG signals in a 483

range between 1 and 45 Hz. It is expected that the proposed method can work efficiently 484

under conditions where the data are recorded for a sufficiently long period with many 485

sensors so that the observed dynamics and the actual dynamics can be one-to-one, and are 486

less influenced by the observational noise arising from the experimental environment. 487
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Figure 1. The dynamic PPC-PAC hypothesis. (A) A repertoire of synchronous slow
oscillations that interact via the PPC; (B) slow oscillations that further interact with fast
ones via the PAC; (C) the resulting possible attractors; and (D) transitions among the
attractors. The dynamic PPC-PAC hypothesis states that for the resting brain, dynamic
changes in PPC strengths (transitions among synchronous states (A)) can cause dynamic
changes in PAC strengths because of PPC-PAC connectivity (B), and thereby yield transitions
among oscillatory states with multiple peak frequencies (C and D). The oscillations of each
state are quasi-periodic and their trajectory in the phase space can realize the transition
to another state by spontaneous fluctuations in the brain; in other words, the underlying
attractors can be tori and show metastability.
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Figure 2. Dynamic changes in the delta-alpha PAC strength. (A) A representative raw
EEG signal at the FC2 electrode, (C) the corresponding instantaneous amplitudes around an
alpha-band peak frequency, and (E) those around a delta-band peak frequency (via two-time
signal-to-instantaneous amplitudes conversions) with (B,D, and F) being corresponding
power spectra. The alpha-band and delta-band peak frequencies were estimated from the
single mean power spectrum of the raw EEG signals (B; Fig. S1) and the alpha-band
instantaneous amplitudes (D), respectively, as depicted by the dotted lines in panels B
and D. (G) The EEG alpha-band signal obtained from the same data (i), and another
representative signal (ii) of faster transition among more states obtained from an individual
with a lower AQ score (a signal at electrode POz). The colors in panels A, C, E, and G
indicate distinct states.
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Figure 3. Transition dynamics among delta-alpha PAC states in a lower-dimensional
space. (A to F) Representative delta-alpha PAC dynamics for an individual with higher
attention-related AQ subscores (refer to Figs. 2A to 2G(i)) and an individual (G to L)
with lower scores (refer to Fig. 2G(ii)). (A, G) The trajectory of labeled signals in a plane,
(B, H) the corresponding bivariate histograms, and (C, I) surrogate data testing under a
condition of d = 2. (D, J) Trajectories under conditions of d = 1 (i) and d = 0 (ii). (E, K)
The resulting delta-alpha PAC states (mean PAC strengths) and (F, L) transitions among
those states. Surrogate data testing was applied to the density of points indicated by the
red circles in panels B and H and the red lines in panels C and I, and the null hypothesis
H0 was rejected for d = 2 (C and I); the surrogate data testing did not reject all individual
datasets for d = 1 and many of them for d = 0 (for comparison purposes, refer to D and J
in which the number of states is the same as d = 2). The delta-alpha PAC dynamics tended
to stay in a state for a longer time and to visit a lower number of states in individuals with
higher subscores for attention to detail and attention switching (compare F with L). The
colors in panels A, F, G, and L indicate distinct states, as depicted in E and K.
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Figure 4. The four groups of consistent delta-alpha PAC states across individuals. (A)
PCs of across-individual states and (B) eigenvectors of the first four PCs. The variance
explained by the first four PCs was significant, and accounted for 81.6 % of total variance.
The dataset used here was a set of the modified Z-scores of mean PAC strengths that were
concatenated across states and individuals.
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Figure 5. Correlations between delta-alpha PAC dynamics and attention-related AQ
subscores. (A) Scatter plot of the attention-to-detail score against maximal dwell time. (B)
Scatter plot of the attention-switching score against the linear sum of the number of states
and the alpha-band peak frequency (i) with corresponding factor loadings (ii). (C, D) Scatter
plots of the attention-switching score against the number of states and the alpha-band peak
frequency, respectively. In each panel, the circles in magenta and green correspond to the
representative individual delta-alpha PAC dynamics, as depicted in Figs. 3A to 3F and Figs.
3G to 3L, respectively. The dotted line in each panel indicates the fitted regression line.
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Figure 6. Estimation of PPC connectivity and the level of fluctuations from delta-band
phase dynamics. (A) Mean phase lags between every pair of delta-band phases with respect
to each delta-alpha PAC state, (B) the corresponding phases, (C) the estimated PPC
connectivity as a complex-valued matrix with its absolute (i) and argument parts (ii), and
(D) the estimated fluctuation level. The phases (B) combined with the Kuramoto model
resulted in PPC connectivity (C), and the Kuramoto model with PPC connectivity was
used for estimation of the fluctuation level (D). The data used in this Figure correspond to
Figs. 2A to 2G(i) and Figs. 3A to 3F.
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Figure 7. Simulation of delta-alpha PAC dynamics by a coupled oscillator system driven by
spontaneous fluctuations. (A to E) The representative simulated delta-alpha PAC dynamics
for an individual with higher attention-related AQ subscores (refer to Figs. 3A to 3F) and (G
to L) those for an individual with lower scores (refer to Figs. 3G to 3L). (A, F) Time courses
of overlaps (i) and the corresponding labels (ii) among delta-alpha PAC states. (B, G) The
trajectory of labeled signals in a plane, (C, H) the corresponding bivariate histograms, and
(D, I) surrogate data testing under condition d = 2. (E, J) The trajectory under condition
d = 1. Surrogate data testing was applied to the density of points indicated by the red
circles in panels C and H and the red lines in panels D and I, and the null hypothesis H0 was
rejected for d = 2 (D and I); it was not rejected for the condition d = 1. The model showed
consistent results with the data analysis, evidence of the dynamic PPC-PAC hypothesis.
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Figure 8. Shrinking of the simulated delta-alpha PAC dynamics with a temporally
decreasing fluctuation level in the phase space: the qualitative change from the transition
dynamics to the dynamics in a steady state. (A) Time courses of the overlaps with their
labeled sequences under different initial conditions in cases where the dynamics can converge
into one of three steady states; (B) the time course of the fluctuation level; and (C) the
trajectories of overlaps in the phase space with their projections. The contour plots on
projections in panel C indicate that the spaces filled by transition dynamics (black lines) can
include the steady states (red, green, and blue lines) as their subsets. The data used in this
Figure correspond to the individual with higher attention-related AQ subscores depicted in
Figures 2A to 2G(i), 3A to 3F, 6 and 7A to 7E.
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