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Figure 7: A summary of gene ontology enrichment analysis performed on genes subsets extracted from platinum resistance
distinctive latent spaces. Genes were selected if they correlated j j> 0:2 with any of the significant latent variables. (a)
Overlaps for gene subsets collected from three distinct models. (b) A summary of the most enriched gene ontology terms
for each model. All models point towards similar biological processes being involved in platinum resistance - these largely
revolve around DNA repair and cell response to DNA damage. (¢) Overlaps of the three gene subsets with the curated gene
list.

4.4 Response of VAE training to noisy cancer data

The VAE was trained to compress the larger pan-cancer data set (of 5000 genes across 10000 tumours) into a
latent space of 100 dimensions. Gaussian and dropout noise was added separately to the data before encoding.
The decoder was then tasked to reproduce the clean input from the latent encoding of the contaminated input.
The noise fraction is defined as the standard deviation of the added Gaussian noise divided by that of the original
data, or in the case of dropout noise, the proportion of the genes deleted divided by the proportion remaining.
Figure 8 shows the VAE loss (equation (6)) and the reconstruction error (equation (1), averaged over all patients
and genes) after 50 epochs of training. In both plots a lower value implies better training.

The VAE training is almost entirely unaffected by the addition of Gaussian noise up to a noise fraction of
between 2 and dropout noise up to a fraction of 10. This confirms the common knowledge that autoencoders, which
must squeeze only the most essential information through the bottleneck, are in general, excellent at denoising a
signal. It is pleasing to see this applies to cancer gene expression data, which due to the inherent complexity of
making genome microarray measurements, is often noisy and/or lossy.

Beyond a noise fraction of 100, both loss functions plateau. This is where the input is entirely dominated by
noise and so the VAE suffers complete failure - essentially it can do no better than predict a constant mean value
for each gene in the decoding. This corresponds to a reconstruction error of 0.15 (figure 8b), only 50% higher
than the reconstruction error for clean data posing the question “was the reconstruction good to begin with?”.
The answer is, to the human eye, no: an average reconstruction error of 0.1 per gene (for data initially normalised
between 0 and 1) is fairly large. However, unlike for a regular autoencoder, reconstruction of the input is not the
primary function of a VAE and, as demonstrated by Way et al., meaningful biological features can be encoded in
the latent space even if the decoder is then relatively bad at reconstructing the gene expression values afterwards.
The same should hold for the ovarian cancer data used in other parts of this study.
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Figure 8: VAE response to noisy cancer data. (a) The VAE loss function evaluated after 50 epochs. (b) The average
euclidean reconstruction error per gene evaluated after 50 epochs. Noise fraction refers to the proportion of the input data
which can be accounted for by artificially added noise. Shaded regions display approximate error bounds (standard deviation
over 6 runs). Dashed lines denote approximate noise fraction where result begin to deteriorate.

5 Conclusions

We trained a variational autoencoder on a data set of ovarian cancer transcriptomes and showed that, in many
cases, one or more of the latent variables learnt an encoding which represents platinum resistance. From here it was
possible to perform enrichment analysis on genes correlating highly with the distinguishing latent variables and
identify biological processes closely linked to platinum chemotherapy resistance. We showed that t-SNE could be
an effective tool at visualising the encoding of platinum resistance within the latent space however, in the majority
of models, the signal was not strong enough statistically confirm this result. Finally, we showed that the VAE
is highly robust to cancer data contaminated with large amounts of Gaussian and dropout noise, an important
feature if this method is to be properly validated on larger ovarian cancer data sets or applied to problems in
non-medical fields.

In the majority of attempts no clearly significant encoding of platinum resistance was found in the latent space
identifying the two main limitation of this study: firstly, it appears that at a genetic level platinum resistance does
not impart a strong enough signal on the transcriptome for the VAE to learn an encoding every time. Secondly,
the data set is small and so our results varied a lot run-to-run. With a larger (say, 10x larger) data set we would
expect more consistent and reproducible results from which we could draw firmer conclusions. Nonetheless, we
believe these result show promising, if not quite conclusive, signs that VAEs could be a robust way to investigate
poorly understood features in cancer from an entirely unsupervised and data science oriented viewpoint. However,
due to the practical issues of data set size, it is currently only fair to say that this requires more careful validation
and evaluation.

Crucially this is an exercise in data science applied to the field of cancer research, not the other way round.
The entirely unsupervised nature of this research means it could almost immediately be adapted to other fields, for
example physics, where there is a desire to extract novel insight from complex, high-dimensional and potentially
very noisy data.

6 Reproducibility

All data and code (in the form of an easy to use Jupyter notebook) has been made available on Github at the
following address: https://github.com/TomGeorgel1234/oVAErian-Cancer.
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where equality is achieved iff Q = P. Let’s evaluate the KL divergence between the distribution we will sample z
from, q4(z|x), and the true posterior p(z|x)

D 1[0 (2%)||p(2]x)] = Epmg, (21x) 108 44 (2]x) — log p(z[x)] (13)
= IEz~q¢(z|x) log Q¢(Z|X) - log (M)](J(Zx))p(Z))} (14)
= Epgy (2)x) [108 94 (z[x) — log pe(x|z) — log p(z)] + log p(x) (15)

where in the second line we have used Bayes’ law and in the third we pull log p(x) out from the average since it is
indepent of z. Rearranging give the required result, equation (3)

log p(x) — Di1[q4(2]%)||p(2[x)] = Ezng,, (z/x) [108 po(x|2)] — Dxr[q4(z]%)||p(2)). (16)

B Evaluating the VAE objective function

Evaluating the second term on the right-hand side of equation (3) is easy since the Kullback-Leibler divergence
between two multivariate Gaussians is a known quantity, see [49]

— Dr N (ng(x), 04(x) * 1) || N(0,T)]

l\D\»—~

m
Z 1 + logaf — ,u? — 0]2) (17)
Jj=1

where ajz = U;(X)j, and the same for pu. The first term is not so easy to evaluate. It can be approximated using

Monte Carlo as

Ezngs(zlx) [log po(x|2)] Zlogpg (x|2z;) (18)

where z is sampled from gg4(z|x). It turns out (see Kingma and Welling [29]) that if the batch size is large enough,
then L =1 is a big enough sample size. This means on each forward pass of the variational autoencoder we only
need to sample from the posterior of a given x in the batch once, significantly speeding up the training process.
This Monte Carlo sampling is represented by the four central arrows in figure 2b. Putting these terms together
gives the full objective function, as given in equation (6).
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