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Abstract 

To deal with the huge number of novel protein-coding variants identified by genome and exome 
sequencing studies, many computational variant effect predictors (VEPs) have been developed. Such 
predictors are often trained and evaluated using different variant datasets, making a direct comparison 
between VEPs difficult. In this study, we use 31 previously published deep mutational scanning 
(DMS) experiments, which provide quantitative, independent phenotypic measurements for large 
numbers of single amino acid substitutions, in order to benchmark and compare 46 different VEPs. 
We also evaluate the ability of DMS measurements and VEPs to discriminate between pathogenic and 
benign missense variants. We find that DMS experiments tend to be superior to the top-ranking 
predictors, demonstrating the tremendous potential of DMS for identifying novel human disease 
mutations. Among the VEPs, DeepSequence clearly stood out, showing both the strongest correlations 
with DMS data and having the best ability to predict pathogenic mutations, which is especially 
remarkable given that it is an unsupervised method. We further recommend SNAP2, DEOGEN2, 
SNPs&GO and REVEL based upon their performance in these analyses. 

Introduction 

Many genetic disorders can be attributed to sequence changes in protein-coding regions of DNA, yet 
pathogenic mutations account for only a tiny fraction of the overall genetic variation seen in humans. 
A typical pair of unrelated individuals will differ by approximately one nonsynonymous single 
nucleotide variant (SNV) per protein-coding gene (Rauch et al, 2012), while de novo mutations lead 
to roughly one new nonsynonymous SNV per child not observed in either parent (de Ligt et al, 2012; 
Epi4K Consortium et al, 2013; Fitzgerald et al, 2015; Neale et al, 2012). The vast majority of 
mutations identified by sequencing are of unknown phenotypic consequence, i.e. we are unsure if they 
have significant phenotypic effects or are functionally neutral. Thus, the ability to distinguish 
damaging variants from those that are benign is of tremendous importance for the diagnosis and 
treatment of human genetic disease. 

In order to prioritise potentially pathogenic variants, many different computational variant effect 
predictors (VEPs) have been developed. These predictors make use of various protein sequence, 
structural, evolutionary and biophysical features to produce an effect score for the variant. By far the 
most commonly used feature is evolutionary sequence conservation and known variation (Table 1). 
This is the only information used by several methods such as SIFT (Sim et al, 2012) and 
DeepSequence (Riesselman et al, 2018). Other predictors integrate additional features including 
biophysical properties of amino acids, protein functional annotations and epigenetic data (Rentzsch et 
al, 2019). Protein structural information, derived from experimentally determined models, is also used 
by several methods (Adzhubei et al, 2010; Capriotti & Altman, 2011), although there is conflicting 
information regarding whether its inclusion significantly improves predictor performance (Carraro et 
al, 2017). 

While many of these approaches are able to make impressive predictions on test datasets, and are 
widely applied in both clinical and research environments, there remain a number of unresolved 
sources of biases and inaccuracies. For example, when employing a supervised machine-learning 
method, overfitting of the training set can become an issue. Instead of learning general rules, the 
predictor learns the niche peculiarities and noise of its training set (Srivastava et al, 2014). For this 
reason, machine-learning techniques are usually subject to out-of-sample validation, whereby data not 
present in the training set is used to verify that the predictor has learned how to classify the data. 
Furthermore, when benchmarking these predictors with alternative datasets, they should contain as 
few mutations used during training and validation as possible. Biased representation within these data 
sets will skew the reported accuracy of methods trained and benchmarked with them (Schaafsma & 
Vihinen, 2018). 

Grimm et al. describe two types of data circularity that can bias the assessment of predictor accuracy 
(Grimm et al, 2015). Type 1 circularity occurs when the data from the training set is re-used for 
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assessing predictor performance. This can occur due to overlap between commonly used variant 
databases. The result is a better apparent performance than if a more appropriate validation set were 
used. Metapredictors (trained using the outputs of other predictors) amplify this issue, as the methods 
they are built from often use different overlapping training sets. Type 2 circularity results in the 
weighting of predictor output by biases in the training examples. This can come about in VEPs due to 
ascertainment biases in the training set (long-studied proteins will have more annotated mutations 
than recently analysed ones). Another source is the association of certain genes with pathogenicity 
(e.g. many mutations in P53 will be damaging, while other genes may have no pathogenic mutations). 
Tools that use this information to weight their predictions can achieve excellent results on proteins 
with annotated pathogenic or benign mutations, but perform poorly when faced with unannotated 
proteins. 

An alternative to computational predictions is experimental characterisation of mutation phenotypes. 
While this can be extremely time consuming if a separate experiment is required for each mutation, in 
recent years, an assortment of approaches have been developed for the high-throughput 
characterisation of mutation phenotypes. Deep mutational scanning (DMS) experiments combine 
saturation mutagenesis of a protein with a high-throughput functional test and deep sequencing 
(Fowler & Fields, 2014). The result is a framework, allowing the design of experiments to quantify 
the functional impact of a huge number of mutations at the same time. DMS experiments could 
potentially be hugely valuable for variant prioritisation, allowing direct identification of damaging 
human variants on a large scale (Majithia et al, 2016; Matreyek et al, 2018). DMS experiments can 
also be tailored to the specific definition of protein fitness required - something which computational 
methods are not able to account for (Harris et al, 2016). Even the best performing predictors struggle 
with more complex biological concepts such as allosteric regulation (Xu et al, 2017). 

In addition to directly identifying damaging variants, another major benefit of DMS experiments is 
that they produce large variant-effect datasets that can be used to benchmark and assess the 
performance of VEPs. These are fully independent from any training and testing data used by the 
phenotype predictors, with one exception (Gray et al, 2018). Previous studies have found that using 
DMS datasets to benchmark computational predictors resulted in reduced predictive power compared 
to other commonly used datasets, suggesting that these predictors may not be as accurate for human 
variants as previously reported (Mahmood et al, 2017). The Critical Assessment of Genome 
Interpretation (CAGI) experiment, which aims to drive innovations in VEPs frequently assesses 
predictors against novel unseen datasets (Hoskins et al, 2017) including those derived from DMS 
experiments. 

In this study, we have taken advantage of the large number of DMS experiments that have now been 
published for a variety of diverse proteins from different organisms. First, we have used these datasets 
to perform an independent assessment and comparison of many different VEPs. Second, we have 
compared the ability of DMS experiments and VEPs to directly identify pathogenic human mutations. 

Results  

Overview of DMS datasets and variant effect predictors used in this study 

To identify DMS datasets, we performed a literature search for papers presenting such experiments 
with available data. Using search terms such as ‘deep mutational scan’, ‘fitness landscape’, 
‘massively parallel mutagenesis’ and ‘saturation mutagenesis’, we identified 31 viable DMS datasets 
(Table 2). As shown in Fig 1, human proteins were the most numerous targets for these DMS 
experiments. Saccharomyces cerevisiae and Escherichia coli were also highly represented as they 
endogenously produce a number of model proteins, are easy to culture and maintain, and are 
amenable to several effective assays for protein activity (e.g. growth rate and two hybrid). Proteins 
from viruses were also represented from studies investigating viral adaptation through massively 
parallel mutagenesis techniques. 
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There was considerable variation in functional assays applied between the DMS studies. Growth rate 
of yeast was a most common technique, and was applied to multiple human proteins by knocking out 
the yeast orthologue and replacing it with the human gene that is capable of rescuing the null strain 
(Weile et al, 2017). Viral replication assays, performed by quantitative sequencing after a certain time 
point, were applied to all of the viral proteins (Haddox et al, 2016; Doud & Bloom, 2016; Lee et al, 
2018; Wu et al, 2015). Survival assays involved placing the organism in hostile conditions where the 
target protein confers an advantage such as antibiotic resistance (Dandage et al, 2018; Firnberg et al, 
2014; Stiffler et al, 2015; Jacquier et al, 2013; Deng et al, 2012). Two-hybrid assays allow protein-
protein interactions to be analysed, while fluorescence can be used to investigate enzyme activity, 
protein stability or transcriptional pathway activation (Starita et al, 2015; Bandaru et al, 2017; 
Kitzman et al, 2015). Phage-display assays allow a number of protein attributes to be tested ex vivo by 
externalising the protein of interest followed by selection based on its attributes (Starita et al, 2015). 
The E. coli toxin ccdB was assayed by reverse survival, investigating its ability to restrict cell growth 
(Adkar et al, 2012). 

Each study also varied in the coverage of possible single amino acid substitutions across the entire 
protein (Fig 1). Many of the studies included only those mutations that were possible by introducing a 
single nucleotide change, reducing potential coverage of all possible amino acid substitutions by 
around 70%. Some studies focused on specific regions of the target protein. In addition, most studies 
excluded low confidence mutants from their data, i.e. those with exceptionally low sequencing counts. 
For inclusion in this analysis, we required at least 5% coverage of all possible mutations in order to 
prevent unrepresentative low coverage data from skewing the results.  

The computational VEPs used in this study were found using a number of approaches, including the 
OMICtools database (Henry et al, 2014), identifying tools tagged with ‘variant effect prediction’ and 
searching for ‘protein variant effect prediction’ and ‘protein phenotype predictor’ using standard 
internet search engines. Priority was given to tools that featured either a web interface or an API that 
could be queried for thousands of mutations simultaneously. We also made use of the dbNSFP (Liu et 
al, 2016) database of pre-calculated predictions from multiple VEPs for the human genome 
(downloaded 2020-02-12). We split the predictors into four broad categories, based on the way in 
which they make predictions: 

1. Supervised predictors. These predictors use a machine learning technique that relies on 
learning from labelled examples, in particular datasets of known or suspected pathogenic and 
benign variants. Different predictors make use of a variety of different machine learning 
approaches, e.g. support vector machines and random forest algorithms.  

2. Unsupervised predictors. These predictors make use of an unsupervised machine learning 
technique, i.e. they are not trained using labelled pathogenic and benign variants. Instead, 
they rely mostly on evolutionary conservation from multiple sequence alignments. This 
includes unsupervised clustering techniques, hidden Markov models and generative models. 

3. Empirical predictors. These predictors do not make use of any machine learning techniques, 
instead making an empirical calculation using the input data. This category also includes 
amino acid substitution matrices and many evolutionary conservation metrics. Along with the 
unsupervised predictors, they should be free from any training bias. 

4. Metapredictors. These predictors integrate other VEP results as input features, although many 
also use additional features. The metapredictors used in our study are nearly all trained using 
a supervised learning approach, with one exception (Ionita-Laza et al, 2016). To qualify for 
this category in our classification a predictor must include at least two other VEPs as input 
features, not including substitution matrices or simple conservation metrics (such as GERP, 
PhyloP or SiPhy). 

Among the DMS datasets, there are several instances of the same protein being investigated in 
different studies by different groups. Specifically, there are four independent datasets for β-lactamase 
(bla) and two each for UBI4, PTEN and BRCA1. There are also two datasets for the influenza protein 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2020. ; https://doi.org/10.1101/855957doi: bioRxiv preprint 

https://doi.org/10.1101/855957
http://creativecommons.org/licenses/by/4.0/


5 
 

HA, but these were from different strains, so not directly comparable. To assess the reproducibility of 
DMS and its viability as a benchmark, we calculated the Spearman’s correlation coefficient between 
the functional scores of each DMS set in the same protein. Our results (Table EV1) demonstrate a 
range of correlations from 0.94 (bla(a)/(b)) to 0.34 (PTEN(a)/(b)). The average correlations observed 
over all pairs of analyses was 0.66. Some level of variance is expected due to differences in 
experimental method, fitness assays and conditions between experiments. Overall the moderately high 
correlations suggest that DMS scores constitute a reasonably robust benchmark despite differing 
experimental conditions. We can also treat this correlation as a rough guide for how well we could 
expect a ‘perfect’ computational predictor to perform against DMS data from these experiments. 

We also assessed the correlation between different DMS datasets generated by the same studies. The 
purposes of these assays varied and included controls with no selection pressure, biological replicates, 
incrementally differing conditions and different fitness assays (Table EV2). Incremental changes in 
conditions tended to result in high correlations while larger alterations to conditions, assay type or 
protein partners resulted in much lower correlations between the datasets. Nonselective controls 
produced low correlations while comparison of positive to negative selection assays produced a 
negative correlation. These results indicate that interpretation of DMS results depends to some extent 
on the exact fitness assay. However, certain mutations (e.g. those that destabilise the protein) are 
likely to always have an impact on fitness if a selection pressure is present. 

Assessment of variant effect predictors using DMS data 

Where possible, we applied every computational predictor to each protein in the DMS datasets, 
substituting every possible amino acid at all positions. Some predictors failed to generate results for 
some proteins; this can occur due to an insufficiently deep multiple sequence alignment, mapping 
errors or other causes depending on the predictor. In order to get a measure of relative performance 
for each predictor, we calculated the Spearman’s rank correlation between the independent DMS 
scores for each protein and the predictions of every VEP (Fig 2). We also performed the same 
analysis using Kendall’s Tau (Fig EV1) which produced only minor changes in predictor ranking and 
lower average correlations. 

Given the large number of predictors that are specific to humans, we split this analysis up into human 
(Fig 2A) and non-human (Fig 2B) proteins. The top-performing predictor for each protein is labelled 
on the plot, while the full set of correlations are provided in Tables EV3-4. Table 3 shows the relative 
ranking of each predictor using a rank score that combines the rankings for all proteins in the human, 
yeast, bacterial and viral datasets (Table EV5 shows the same using Kendall’s Tau instead). 

DeepSequence was the overall top performing method for predicting DMS results in the human 
proteins, showing the highest correlations out of all predictors for ADRB2, CALM1 and PTEN(b), 
and ranking within the top five predictors for 7 of the 13 DMS datasets. It also had by far the highest 
rank score. To assess the statistical significance of this, we used a bootstrapping approach and re-
calculated the ranking by re-sampling all DMS datasets with replacement 1000 times. Strikingly, we 
found that DeepSequence always ranked the highest, showing that it is significantly better than all 
other predictors (p<0.001). DeepSequence also ranked best for bacterial proteins, being the top 
predictor for six proteins: infA, bla(b), bla(c), ccdB, haeIIIM and GmR. In contrast, DeepSequence 
produced only a moderate rank score for yeast proteins, with a high coefficient of variation. This was 
largely due to poor performance on the ubiquitin (UBI4) datasets, which reduced the overall rank 
score considerably. If the UBI4 datasets are excluded from the analysis, then DeepSequence becomes 
the second-highest ranked predictor for yeast proteins. Interestingly, DeepSequence performs poorly 
for viral proteins, ranking second to last out of all predictors tested. This is consistent with the original 
publication, where the creators report poor performance on viral proteins due to insufficient sequence 
diversity within the alignments used (Riesselman et al, 2018). 

Among the other predictors, certain supervised approaches were particularly notable. SNPs&GO 
(Capriotti et al, 2013) ranked 2nd for human and 1st for yeast proteins, although its predictions were 
relatively poor for non-eukaryotic (bacterial and viral) proteins. SNAP2 (Hecht et al, 2015) also 
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performed well, ranking 3rd for human proteins and 2nd for yeast. DEOGEN2 (Raimondi et al, 2017), 
a human-specific predictor came 4th. SuSPect (Yates et al, 2014) showed good performance across 
most groups, ranking 5th for humans 3rd for bacteria and 2nd for viral proteins. REVEL was the only 
metapredictor to show notable performance, ranking 6th overall and having the highest correlation 
with the SUMO1 DMS data.  

Certain predictors incorporate features derived from experimentally determined protein structures into 
their predictions. Specifically SNP&GOs3D and S3D-PROF (Capriotti & Altman, 2011) require a 
PDB structure to be provided in order to make their predictions and use features representing the 3D 
environment of the mutation. Other predictors such as PolyPhen-2 (Adzhubei et al, 2010), DEOGEN2 
and MPC derive some features from experimental structures, but are still capable of making 
predictions without them. While these methods ranked average-to-high and achieved a number of top 
correlations with the DMS data, overall they do not perform better than the top-performing sequence-
based methods. We also find that, in proteins with partial coverage of high-resolution structures, the 
difference in performance between areas of structural coverage and areas with no coverage is 
comparable between structural methods and pure sequence-based methods (Fig EV2). This may be 
due to regions without structures being more likely to be disordered and less conserved, and thus 
harder to characterise by conservation metrics. 

Of all the predictors, FATHMM (Shihab et al, 2013) produced the most significant outlier, generating 
predictions with by far the highest correlation for P53, but having low correlations for all other 
proteins, resulting in an overall low rank score with a high coefficient of variation. The explanation 
for this is unclear, but it may be due to overfitting of the predictor for specific proteins, given the 
enrichment of P53 mutations in human disease databases compared to many of the other proteins in 
this study. 

Different DMS datasets varied greatly in their correlations with the computational predictors. In 
particular, BRCA1, CALM1 and TPK1 among the human proteins, and ccdB, Cas9 and env among 
the non-human proteins showed low correlations, even from the best predictors. As far as we can tell, 
this effect appears to be unrelated to protein coverage, dataset size or experimental methodology. For 
example, UBE2I, SUMO1, TPK1 and CALM1 were all studied by the same group using the same 
approach (growth rate in yeast) (Weile et al, 2017), yet UBE2I and SUMO1 show markedly higher 
correlations with all predictors than the others. Viral proteins also showed low correlations, and in 
fact, the simple BLOSUM62 substitution matrix (Henikoff & Henikoff, 1992) was the most highly 
correlated with the env dataset when using Kendall’s Tau (second highest when using Spearman’s). 
This indicates that the inclusion of typical training features are of less use when predicting the fitness 
of viral proteins, likely due to lack of viral representation in training sets and lack of viral sequence 
diversity in many databases used to generate multiple sequence alignments. Viral proteins may also be 
more likely protein to undergo adaptive evolution, thus potentially confounding conservation-based 
approaches. 

It is also interesting to note that, despite that fact that most of the predictors used in this study are 
human-specific, the top-ranking predictors for the human DMS datasets tend to be general predictors 
applicable to proteins from all species. For example, for the human DMS datasets, only one of the top 
five predictors is specific to humans, whereas many of the lowest ranked predictors are human-
specific. An important contributing factor to this may be overfitting against human mutation datasets 
for some predictors, which causes them to perform poorly against independent experimental 
phenotype measurements. In addition, several of the worst predictors are also based upon nucleotide-
level constraint (GERP++ (Davydov et al, 2010), SiPhy (Garber et al, 2009), phastCons (Siepel & 
Haussler, 2005) and fitCons (Gulko et al, 2015)). These predictors ranked even lower than the simple 
BLOSUM62 and Grantham (Grantham, 1974) substitution matrices, suggesting that such approaches 
are poorly suited to predicting the protein-level effects of mutations. 

Many DMS experiments included amino acid substitutions that are not possible by single nucleotide 
changes, i.e. they are technically not missense variants. Some VEPs do not produce predictions for 
these mutations, particularly those that take nucleotide-level substitutions into consideration. 
Therefore, we repeated our analysis, limiting our predictions to only those amino acid substitutions 
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that are possible by single nucleotide changes (Table EV6). The rankings remain broadly similar and 
the top-ranking method did not change for any group. 

Identification of pathogenic human mutations using DMS data and computational 

variant effect predictors 

We next investigated the ability of both DMS experiments and VEPs to distinguish pathogenic human 
missense mutations, taken from the ClinVar database (Landrum et al, 2014), from missense variants 
observed in the human population, taken from gnomAD (Karczewski et al, 2019). While some 
gnomAD variants may be damaging under certain circumstances (e.g. if associated with recessive, 
late-onset or incomplete penetrance disease), we assume that the vast majority of them should be non-
pathogenic, and therefore refer to them as “putatively benign”. Of the 11 human proteins with DMS 
datasets, 7 have known pathogenic or likely pathogenic missense variants in ClinVar as of 2019-10-25 
(93 for BRCA1, 31 for HRAS, 189 for P53, 108 for PTEN, 9 for CALM1, 5 for TPK1 and 2 for 
MAPK1). For CALM1 and TPK1, we identified additional pathogenic missense mutations in the 
literature (Banka et al, 2014; Crotti Lia et al, 2013; Jensen et al, 2018; Nomikos et al, 2018; Zhu et al, 
2019), leading to a total of 19 for CALM1 and 8 for TPK1. MAPK1 has too few recorded pathogenic 
missense variants to include in this analysis. 

For each predictor, we plotted a receiver operating characteristic (ROC) curve for classification 
performance on every protein, identifying pathogenic ClinVar mutations as true positives and the 
putatively benign gnomAD mutations as true negatives (removing any ClinVar mutations from the 
gnomAD set). We then calculated the area under the curve (AUC) for each plot as a measure of that 
predictor’s performance in classifying the data (Fig 3). We also calculated the precision recall AUCs 
(Fig EV3). Descriptions of each DMS dataset displayed in Fig 3 are provided in Table EV7. 

In the ROC analysis, an experimental DMS metric performed better than any of the 46 VEPs for four 
of the six human proteins, and ranked relatively high for the remaining two (CALM1 and PTEN). To 
determine the significance of the performance of the DMS data, we used a bootstrapping approach 
and individually re-sampled the gnomAD and ClinVar datasets with replacement 10,000 times, re-
calculating the AUC scores with the new data. DMS ranked first in 9202 trials, while DeepSequence 
came top in 600 trials, REVEL in 154, MutPred in 34, SNPs&GO in 7, SIFT4G in 2 and PhD-SNP in 
1. Thus, we cannot quite state at this point that DMS is significantly better than all computational 
predictors together (p = 0.080). However, it clearly ranks higher than all VEPs in our analysis, and is 
significantly better than all except DeepSequence. Very similar results are observed for the precision 
recall AUCs (Fig EV3), except that the TPK1 DMS dataset changed from ranking 1st to 6th. 

The DMS results for CALM1 and TPK1 were generated by the same group using the same method, 
assessing the effects of mutations on growth rate in a yeast system (Weile et al, 2017). The data 
processing pipeline used in this study penalised ‘hypercomplementing’ variants (i.e. those with fitness 
greater than the wild type) by setting the fitness to the reciprocal of the measured value. These are 
labelled as ‘flipped’ in Fig 3. Interestingly we found that, while these ‘flipped’ DMS results show a 
better correlation with the outputs of VEPs than the raw DMS data (Tables EV8-9), the raw scores are 
better for directly identifying pathogenic variants (Fig 3). This suggests that VEPs in general tend to 
be predictive of a perturbation away from wild type activity (regardless of whether it is an increase or 
decrease), whereas only a decrease in activity is predictive of disease, at least for these two proteins. 
This is consistent with a recent observation that beneficial effects on protein function, as measured by 
DMS experiments, were predicted less well than detrimental effects for all four tested VEPs (Reeb et 
al, 2019). 

While the primary objective of this study is to compare the DMS datasets to the VEPs, it is also 
interesting to observe the relative performances of the different computational predictors in terms of 
directly identifying pathogenic mutations for the six human proteins in Fig 3. This comparison is 
limited to some extent by the fact that there is likely some overlap between the mutations used to 
evaluate the predictors here, and the mutations originally used to train some of the supervised 
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predictors and metapredictors. In the regard, it is especially interesting to see that the unsupervised 
predictor DeepSequence again stood out amongst the VEPs, ranking 1st for TPK1 and CALM1, 2nd for 
HRAS, and within the top 11 predictors for all remaining proteins. This is considerably better and 
more consistent performance than any of the other computational predictors. 

A few supervised predictors and metapredictors performed well. While this could in part be due to 
overfitting, for those predictors that showed strong correlations with the DMS data, we can assume 
that the effects of this should be fairly small. SNAP ranked 3rd in the DMS analyses, and also showed 
strong predictions of disease mutations in PTEN (1st) and CALM1 (3rd). DEOGEN2 ranked 4th in the 
DMS analyses and performed well for P53 (3rd), CALM1 (4th) and PTEN (4th). REVEL, which was 
the best performing metapredictor against the DMS data, showed consistently good predictions, 
ranking 2nd for P53 and TPK1, and in the top 9 for all but CALM1. VEST4 ranked 1st for P53, 2nd for 
CALM1 and 3rd for TPK1, but was not as highly ranked in the DMS analysis (9th overall). SNPs&GO, 
which ranked 2nd in the human DMS analysis, performs well for HRAS (3rd) and CALM1 (5th), and 
never ranked worse than 17th. 

Some of these predictors did perform poorly on certain targets. For example, DEOGEN2 ranked last, 
by far, for BRCA1. Interestingly, however, the relative performance of DEOGEN2 improved 
markedly if only predictions of mutations with DMS measurements, which cover primarily just the 
RING domain of BRCA1, are considered (Fig EV4). This appears to be due to DEOGEN2 assigning 
extremely different weights to different domains in BRCA1, thus obscuring good predictions when 
analysing the entire protein. We also investigated other predictors with low AUCs for additional 
domain-specific effects. A further three datasets which showed a similar pattern were MPC on P53, 
VEST4 on BRCA1 and PROVEAN on BRCA1, which are all highlighted in Fig EV4.  

Discussion 

The number of available genome and protein sequences has increased tremendously in the last decade 
due to advances in next-generation sequencing technologies. In this wealth of new data, we have 
discovered a large number of previously unseen coding variants of unknown functional significance. 
To assist us in analysing this new data, computational predictors have been developed, but the training 
and evaluation of these predictors often suffer from biases. DMS experiments provide an ideal 
benchmark for testing predictors, ensuring that none of the training data is included in the evaluation. 
The availability of a large number of such experimental DMS datasets has facilitated this study. 

We are aware that numerous technical and computational factors can impact the quality of data from 
DMS studies. These can stem from experimental procedure, and thus be assessed through 
reproducibility in biological replicates, or measurement uncertainty assessed by technical replicates. 
The largest source of error from DMS is encountered in the sequencing stage, where next-generation 
sequencing typically misreads between 1/100 and 1/1000 bases incorrectly (Ma et al, 2019). Many 
groups adopt a barcoding strategy to address this issue, so that a multi-base unique artificial sequence 
is associated with each variant. In addition, reads below a certain quality threshold are rejected and 
variants which are present at a rate below a given detection threshold are removed. Several groups 
provide both their full fitness scores and a filter for high quality results (Mighell et al, 2018; Starita et 
al, 2015). In these cases, we find that the filtered high quality results have a higher average correlation 
with the VEPs (Tables EV8-9), as well as superior predictive power for disease mutations (Fig 3). 

Of the 46 different predictors evaluated in this study, we find that a single program, DeepSequence, 
clearly stands out from all of the others, both in terms of performance, and in terms of methodology. 
DeepSequence showed the strongest correlations with the DMS data in humans and bacteria and was 
the top predictor of human disease mutations. Most machine learning methods make use of several 
features, often including some measure of sequence conservation at the site of interest, and then learn 
the patterns of these features that result in a mutation being classified as damaging or benign. 
DeepSequence makes use of deep generative models to integrate factors from the entire sequence at 
once, rather than only one or a few sites. This type of problem is largely intractable for traditional 
machine learning, given the number of parameters involved; however, DeepSequence overcomes this 
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by learning the latent factors underlying the protein sequence. This approach also produces 
advantages in terms of the biases inherent in supervised methods. We can expect a machine learning 
method confronted with an example it was trained on to correctly classify it correctly most of the 
time, producing an unrepresentative assessment of its accuracy. DeepSequence makes use of multiple 
sequence alignments and never sees labelled protein data, resulting in scores that are not biased by 
training examples. This is not to say that DeepSequence is a completely unbiased method, however. 
The scores which are generated depend entirely upon the database from which multiple sequence 
alignments are drawn. If certain sequences are under-represented, then predictions for those will be 
lower quality, such as the results we observe for viral proteins drawn from the UniRef100 database. 
The success that DeepSequence has achieved in predicting mutations effects for human proteins show 
that deep generative models may well be the way forward in this field, removing the reliance on 
labelled datasets for making predictions. 

Most predictors, supervised or otherwise, undergo hyperparameter optimisation, a process to tweak 
internal variables such as learning rate, network architecture or regularisation in order to obtain better 
performance. This process invariably involves repeatedly testing the predictor’s performance against a 
certain ‘test’ dataset, and has potential to introduce another source of bias, even into unsupervised 
methods. For example, some of the DMS datasets used in this study were used to evaluate 
DeepSequence in the original study, and it is conceivable that some level of hyperparameter 
optimisation influenced its success here. Analysis of this bias is beyond the scope of this study, but we 
regard it as relatively minor compared to training biases of supervised methods. 

One of the VEPs we assessed, Envision is trained with a supervised learning approach using DMS 
data rather than labelled pathogenic and benign variants. This method uses a number of the same 
DMS sets we used in this analysis for training (BRCA1(a), HSP82, UBI4(a and b), PAB1 and bla(a)). 
Thus, the ranking of this method in Table 3 is almost certainly subject to training bias. It is interesting, 
however, that despite this advantage Envision only produces moderate overall performance for human 
DMS datasets (although it does rank 1st for TPK1). In terms of predicting pathogenic missense 
mutations, Envision performs well for BRCA1 (ranking 3rd) and P53 (ranking 4th), but its performance 
is unremarkable for the other proteins. Notably, although Envision was not trained on a P53 dataset, it 
was evaluated using one (although not the same DMS dataset used in this study). While the approach 
used by Envision is innovative, assessing its performance with DMS has the same caveats as 
assessing performance of other supervised VEPs using pathogenic mutation databases. Thus it is 
notable that, despite this advantage, Envision showed only modest performance against the DMS data. 

Certain DMS experiments appears to show outstanding performance at identifying disease mutations. 
It is interesting to compare performance with respect the experimental phenotypes used, as the utility 
of an experimental phenotype for identifying pathogenic mutations should be related to the 
mechanism by which mutations cause disease. We note that those DMS experiments based upon 
competitive growth assays appear to perform particularly well, ranking above all computational 
predictors for three of the four proteins where they are available.  For BRCA1, where there are DMS 
datasets based upon three different experimental phenotypes, the growth-rate-based assay (Findlay et 
al, 2018) performs much better than those based upon yeast two-hybrid or E3 ubiquitin ligase activity 
(Starita et al, 2015). Growth rate is likely to be a very general experimental phenotype that will reflect 
any loss of function occurring at a molecular level. In contrast, if some of the pathogenic BRCA1 
mutations acted by some mechanism other than perturbation of its interaction with specific binding 
partners (BARD1) or disrupting E3 activity, this could explain the underperformance of the DMS data 
based upon these alternate phenotypes. Interestingly, however, the HRAS DMS data, which is also 
superior to all computational predictors, is based upon a two-hybrid probe of its interaction with 
RasGAP (Bandaru et al, 2017), suggesting that disruption of this interaction is reflective of the 
molecular mechanisms underlying disease.  

PTEN is also noteworthy, as it too has different DMS datasets available based upon different 
experimental phenotypes. The screen for the PTEN(b) dataset assesses the disruption of an artificial 
gene circuit in yeast, essentially probing phosphatase activity. This dataset is superior to all but four 
VEPs, suggesting it is reasonably reflective of molecular disease mechanisms. In contrast, the 
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phenotypic screen for PTEN(a) measures protein abundance in the cell by fluorescence of EGFP 
bound to the protein (Matreyek et al, 2018). This technique, called VAMP-seq, identifies 
thermodynamically unstable variants; however, this may fail to capture disease mechanisms acting 
through interaction disruption and loss or gain of function unrelated to destabilisation. Indeed, it was 
noted in this study that dominant-negative variants were not significantly different from wild type, 
consistent with our previous observation that dominant-negative mutations tend to be very mild at the 
protein structural level (McEntagart et al, 2016). Thus, great care must be taken when selecting an 
experimental phenotype. In the absence of a better phenotypic assay specifically related to a known 
disease mechanism, experiments based upon growth may be the most general way of probing loss of 
protein function, and thus the most useful for predicting disease. 

Our results in analysing the predictive capability of DMS datasets largely recapitulate the results 
presented in the original studies. The CALM1 dataset (Weile et al, 2017) is reported to have superior 
precision-recall performance than PolyPhen-2 and PROVEAN, which we also find (for the raw scores 
rather than the flipped scores). The TPK1 dataset (Weile et al, 2017) allowed complete separation of 
the neutral and disease alleles as did PolyPhen-2 and PROVEAN, but only after additional filtering 
for recessive disease alleles, which we did not perform. The BRCA1(a) dataset (Starita et al, 2015) is 
used by the authors to train a model to predict homology-direct DNA repair rescue; however 
predictions are primarily made outside of the region of DMS coverage, which we are unable to assess. 
BRCA1(b) (Findlay et al, 2018) is reported by the authors to separate pathogenic and benign 
mutations in ClinVar almost perfectly, a result which we also see in our analysis. The PTEN(a) 
(Matreyek et al, 2018) dataset is stated to identify upwards of 90% of PTEN pathogenic variants, 
although no false positive rate is given since no PTEN variants were officially classified as benign. 
Again, our results are similar, given the high precision-recall AUC of the PTEN(a) dataset, but the 
considerably lower-ranked ROC AUC indicates a significant false positive rate. Finally the PTEN(b) 
authors (Mighell et al, 2018) employed an approach similar to us, using gnomAD variants to stand-in 
for benign substitutions. Their results indicate that their data has a superior positive predictive value 
than PROVEAN, SIFT and PolyPhen-2, which we also find. 

The two most commonly used VEPs are probably PolyPhen-2 and SIFT, which are both still very 
widely utilised in variant prioritisation. Neither showed exceptional performance in this study, 
ranking 14th and 25th against the human DMS data (although SIFT4G, a genomic-conservation based 
implementation of the SIFT algorithm (Vaser et al, 2016) ranked 9th). They also both tended to rank in 
the middle compared to all other predictors for identifying human pathogenic mutations. Therefore, 
we recommend other VEPs based upon our analyses. Unfortunately, DeepSequence is very 
computationally intensive and could be quite difficult for a typical end user to run. It also does not 
have defined disease thresholds; these would need to be assessed on a protein-by-protein basis, likely 
by analysis of putatively benign (e.g. gnomAD) variants. We therefore highlight SNAP2, DEOGEN2 
and SNPs&GO, which also tended to perform well against both the DMS and human mutation 
datasets, and have simple-to-use web interfaces. We further recommend REVEL - although it lacks a 
web interface, it has been pre-calculated for all human chromosomes and is available online to 
download. We suggest that these methods would make good choices for routine variant prioritisation. 
Importantly, however, they all showed large variation in their performance between different proteins, 
suggesting that one should still not rely too much on the results of any single predictor. 

While evolutionary conservation is widely accepted to be the most predictive feature used in variant 
effect prediction, some VEPs also integrate features derived from experimentally determined protein 
structures (PolyPhen-2, S3D-PROF, SNP&GOs3D, DEOGEN2 and MPC). It is interesting that the 
inclusion of protein structural models did not appear to be particularly useful for the VEPs. In 
principle, since disease mechanisms can often be explained by protein structural effects (Steward et 
al, 2003), one might expect that protein structure should be useful. It may be that the value of 
evolutionary information simply dwarfs any contribution from the inclusion of structure, i.e. if a 
mutation is damaging at a structural level, this is likely to be reflected in the evolutionary 
conservation of that residue. Moreover, many pathogenic mutations are not highly damaging at a 
protein structural level, e.g. those associated with a dominant-negative effect in protein complexes 
(Bergendahl et al, 2019) or those that affect transcription factor binding specificity (Williamson et al, 
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2019). It is possible that future strategies that take into consideration the diverse molecular 
mechanisms underlying human genetic disease and the unique structural properties of individual 
proteins will be able to make better use of the huge amount of protein structural data now available. 

The value of DMS data for directly identifying pathogenic mutations is especially exciting, based on 
the results we observed here. Given the proper choice of experimental phenotype, DMS experiments 
are likely to be better than (or at the very least competitive with) the best computational VEPs. The 
applicability of DMS data for direct variant prioritisation is currently limited by the small fraction of 
human protein residues for which DMS experiments have been performed. In the coming years, as 
more proteins are studied and experimental strategies are improved, we expect that the utilisation of 
such data for the identification of damaging variants will become routine. 

Methods 

Selecting DMS datasets for correlation analysis 

Most of the DMS studies analysed provided multiple fitness maps for the protein of interest. 
Depending on the study, this was due to replicates in differing conditions (e.g. multiple antibiotic 
concentrations), different functional assays or quality filtering of the results. As our interest was to see 
how well VEPs could replicate the results of DMS experiments, for proteins with multiple datasets 
available from a single study, we selected the fitness map with the highest average Spearman 
correlation to all predictors to assess in Fig 2 and Table 3. Where a quality threshold was given, 
separating high and low quality results, we tested all results, and high quality filtered results. We did 
not investigate imputed results or those generated by predictive models trained on the DMS fitness 
maps. 

Structure selection 

The SNP&GOs3D VEP along with S3D-PROF require a protein structure to be provided in order to 
generate results. Where possible, we selected an X-ray crystallography structure with a resolution 
≤2.5Å and selected the structure with greatest coverage of the DMS results for that protein. Otherwise 
we selected the highest resolution structure available. A full list of the structures and chains used for 
these predictors is provided in Table EV10. 

Calculating rank scores 

Rank score is defined as the mean, normalised correlation over all proteins, given by the following 
formula: 

! =	
∑ % − %!"#

%!$% − %!"#!

'%
 

where c is each correlation for a specific protein, cmin is the minimum correlation for each protein and 
cmax is the maximum correlation for each protein. This represents the correlation, normalised to a scale 
between 1 for the highest ranking method and 0 for the lowest. This is then summed across all 
proteins (m) for the same method, and divided by the number of proteins for which this method 
generated a result (mx), in order to normalise for instances where a predictor failed to generate results 
for a certain protein. Where multiple DMS datasets are present for a single protein, we averaged the 
normalised correlations of each predictor between these datasets, and treated the resulting values as 
scores from a single protein. 

Coefficient of variation is calculated from the normalised correlations, before the mean is taken. It is 
the standard deviation of these values across all proteins, divided by the mean. This represents the 
variation in predictor rank between different proteins. 
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It should be noted that rank scores are only comparable within the set of proteins that were used to 
calculate it, nor does it convey any information about predictor accuracy. The rank score metric can 
only be used for relative ranking within a set of proteins. 

Human mutation datasets 

Data was retrieved from gnomAD v2.1 by searching for each of the human genes at 
https://gnomad.broadinstitute.org. Because CALM1 had only 8 missense variants in gnomAD v2.1, 
we also included an additional 3 missense variants from gnomAD v3.0 (for CALM1 only). We did 
not filter for allele frequency. Each gene was also searched for in the ClinVar database at 
https://www.ncbi.nlm.nih.gov/clinvar. Data was filtered so that only missense mutations labelled as 
‘pathogenic’ or ‘likely pathogenic’ were present.  

Plotting ROC and precision recall curves 

To plot the ROC curves, mutations present in the gnomAD dataset were taken as true negatives, while 
mutations present in the ClinVar dataset were taken as true positives. Mutations present in both sets 
were removed from the gnomAD set. The ‘roc_curve’ and ‘auc’ functions for the sklearn Python 
package were used to calculate the true positive rate (TPR) and false positive rate (FPR) and the 
AUC. As some predictors utilise inverse metrics and thus produce an AUC under 0.5, we multiplied 
the predictions of all such methods by -1 to bring the value above 0.5; this is equivalent to inverting 
the TPR and FPR. Precision-recall curves were calculated using the ‘precision_recall_curve’ and 
‘auc’ functions from the sklearn package. A list of methods with inverted scores was retained from the 
ROC calculations. The scores from these methods were deducted from one to retain comparability. As 
precision-recall curves are sensitive to class balance, we removed methods with less-than complete 
coverage of the DMS mutations within the ClinVar and gnomAD datasets from the analysis. We also 
plotted individual curves for DMS assays in the same protein with differing coverage of the available 
ClinVar and gnomAD mutations. 

Bootstrapping 

To calculate statistical significance, we utilised a bootstrapping methodology and applied it to both 
the VEP ranking analysis using DMS data and the ROC curve calculation. For the ranking analysis, 
we re-sampled mutations from each protein with replacement 1000 times and re-calculated the rank 
scores. Our p-value for the top-ranking method was therefore the number of times it did not produce 
the top rank score, divided by 1000. The ROC curve bootstrapping was carried out using the same 
method with 10,000 replicates, except the ClinVar and gnomAD mutations were sampled individually 
to retain class balance and ensure that there was no chance one class could be lost from the analysis. 
The p-value for one method performing significantly better than another was the number of times it 
underperformed the second method, divided by 10,000. 

Data availability 

Datasets containing all variant effect predictions and DMS measurements used in this study are 
available at https://doi.org/10.7488/ds/2800 for the variants from all organisms, and 
https://doi.org/10.7488/ds/2799 for the human pathogenic and putatively benign variants. 
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Figure 1. The percentage of all amino acid substitutions covered by each DMS experiment. The total 
number of mutations assessed by each DMS experiment is indicated on the right. Where multiple 
datasets exist for a single protein, sequential letters are used to distinguish them. 
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Figure 2. Spearman’s correlation calculated between all VEP predictions and DMS datasets. The top-
performing predictor for each protein is labelled on the plot. This analysis is split into (A) human and 
(B) non-human proteins. 
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Figure 3. ROC AUC values for DMS datasets and VEPs in distinguishing between pathogenic 
missense variants from ClinVar and putatively benign missense variants from gnomAD for six human 
disease genes. The numbers of variants in each class are indicated on the plot. The different DMS 
datasets for each protein are described in Table EV7. 
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Table 1. Summary of the computational VEPs used in this analysis, along with a description of utilised predictive features and the total number of DMS 
datasets each method generated predictions for in the format human/yeast/bacterial/viral. 

Predictor Category Features Data Source, method source or online predictor. Number 
of 

prediction 
sets 

(h/y/b/v) 

Reference 

DEOGEN2 Supervised PROVEAN, sequence 
conservation, pathway 
features, early folding 
predictions, interface 
annotations from 3D 
structures 

https://deogen2.mutaframe.com/ 13/0/0/0 (Raimondi 
et al, 2017) 

Envision Supervised1 DMS measurements https://envision.gs.washington.edu/shiny/envision_new/ 13/3/0/0 (Gray et al, 
2018) 

FATHMM 
(weighted) 

Supervised HMM alignments, per-
domain mutation 
consequences 

http://fathmm.biocompute.org.uk/inherited.html 13/0/0/0 (Shihab et 
al, 2013) 

Fathmm-MKL Supervised Sequence 
conservation, 
epigenetic features, 
genome site features, 
DNA footprints 

dbNSFP database 13/0/0/0 (Shihab et 
al, 2015) 

FathmmXF Supervised Sequence 
conservation, residue 
features, gene 
expression, RNA 
interactions, 
segmentation features 

http://fathmm.biocompute.org.uk/fathmm-xf/ 13/0/0/0 (Rogers et 
al, 2018) 

MPC Supervised PolyPhen-2, ‘missense 
badness’, sequence 
conservation 

dbNSFP database 11/0/0/0 (Samocha et 
al, 2017) 

MutationTaster Supervised Regulatory features, 
PhyloP, phastCons, 

dbNSFP database 13/0/0/0 (Schwarz et 
al, 2014) 
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splice sites, sequence 
conservation, 
functional and domain 
annotations 

MutPred Supervised Sequence 
conservation, 
biophysical features, 
and sequence-based 
features 

dbNSFP database 13/0/0/0 (Pejaver et 
al, 2017) 

NetDiseaseSNP Supervised Predicted structural 
features, SIFT, 
sequence conservation 

http://www.cbs.dtu.dk/services/NetDiseaseSNP/ 13/5/9/4 (Johansen et 
al, 2013) 

PhD_SNP Supervised Sequence 
conservation, sequence 
features 

http://snps.biofold.org/snps-and-go/snps-and-go.html 13/5/9/4 (Capriotti et 
al, 2006) 

PolyPhen-2 
(HumDiv) 

Supervised Sequence 
conservation, sequence 
features, residue-level 
structural features 

http://genetics.bwh.harvard.edu/pph2/ 13/5/9/2 (Adzhubei 
et al, 2010) 

PolyPhen-2 
(HumVar) 

Supervised Sequence 
conservation, sequence 
features, residue-level 
structural features 

http://genetics.bwh.harvard.edu/pph2/ 13/0/0/0 (Adzhubei 
et al, 2010) 

PonPS Supervised PonP2, sequence 
conservation, 
biophysical features, 
sequence features, co-
evolution, predicted 
stability 

http://structure.bmc.lu.se/PON-PS/ 13/0/0/0 (Niroula & 
Vihinen, 
2017) 

PonP2 Supervised Biophysical features, 
GO terms, sequence 
conservation 

http://structure.bmc.lu.se/PON-P2/ 13/0/0/0 (Niroula et 
al, 2015) 

PrimateAI Supervised Sequence-based 
features, predicted 
structural features 

dbNSFP database 13/0/0/0 (Sundaram 
et al, 2018) 
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S3D-PROF Supervised Structural 
environment, sequence 
conservation 

http://snps.biofold.org/snps-and-go/snps-and-go-3d.html 12/5/7/2 (Capriotti & 
Altman, 
2011) 

SNAP2 Supervised Biophysical features, 
sequence conservation, 
predicted structural 
features, co-evolution, 
residue annotations 

https://www.rostlab.org/services/snap/ 13/5/9/4 (Hecht et al, 
2015) 

SNPs&GO Supervised Sequence 
conservation, sequence 
features, PANTHER 
output, GO terms 

http://snps.biofold.org/snps-and-go/snps-and-go.html 13/5/9/4 (Capriotti et 
al, 2013) 

SNP&GOs3D Supervised PANTHER, GO terms, 
structural environment, 
sequence conservation 

http://snps.biofold.org/snps-and-go/snps-and-go-3d.html 12/5/7/2 (Capriotti & 
Altman, 
2011) 

SuSPect Supervised Network centrality, 
UniProt annotations, 
sequence conservation, 
predicted surface 
accessibility 

http://www.sbg.bio.ic.ac.uk/suspect/about.html 13/5/9/4 (Yates et al, 
2014) 

VEST4 Supervised 86 pre-calculated 
features from SNVBox 

https://www.cravat.us/CRAVAT/ 13/0/0/0 (Carter et 
al, 2013) 

DeepSequence Unsupervised Sequence conservation https://github.com/debbiemarkslab/DeepSequence 13/5/9/3 (Riesselman 
et al, 2018) 

fitCons Unsupervised DNA accessibility, 
transcription, 
epigenetic features 

dbNSFP database 13/0/0/0 (Gulko et 
al, 2015) 

GenoCanyon Unsupervised Sequence 
conservation, 
biochemical signals 

dbNSFP database 13/0/0/0 (Lu et al, 
2015) 

PANTHER Unsupervised HMM alignment 
scores from protein 
subfamilies 

http://snps.biofold.org/snps-and-go/snps-and-go.html 13/4/1/0 (Thomas & 
Kejariwal) 
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phastCons Unsupervised Sequence conservation dbNSFP database 13/0/0/0 (Siepel & 
Haussler, 
2005) 

PROVEAN Unsupervised Sequence conservation http://provean.jcvi.org/index.php 13/5/9/4 (Choi et al, 
2012) 

MutationAssessor Unsupervised Sequence 
conservation, 
conservation between 
subfamilies 

dbNSFP database 12/0/0/0 (Reva et al, 
2011) 

BLOSUM62 Empirical 
(substitution 
matrix) 

Sequence conservation https://www.ncbi.nlm.nih.gov/Class/FieldGuide/BLOSUM62.txt 13/5/9/4 (Henikoff & 
Henikoff, 
1992) 

GERP++ Empirical Sequence conservation dbNSFP database 13/0/0/0 (Davydov et 
al, 2010) 

Grantham Empirical 
(substitution 
matrix) 

Amino acid property 
differences 

Matrix available in reference. 13/5/9/4 (Grantham, 
1974) 

LRT Empirical Sequence conservation dbNSFP database 13/0/0/0 (Chun & 
Fay, 2009) 

phyloP Empirical Sequence conservation http://papi.unipv.it/ 13/0/0/0 (Pollard et 
al, 2010) 

SIFT Empirical Sequence conservation https://sift.bii.a-star.edu.sg/www/code.html 13/5/9/4 (Sim et al, 
2012) 

SIFT4G Empirical Sequence conservation dbNSFP database 13/0/0/0 (Vaser et al, 
2016) 

SiPhy Empirical Sequence conservation dbNSFP database 13/0/0/0 (Garber et 
al, 2009) 

CADD Metapredictor 949 features including 
numerous other 
predictors; uses the 
same feature set as 
DANN 

https://cadd.gs.washington.edu/snv 13/0/0/0 (Kircher et 
al, 2014) 

CONDEL Metapredictor Mutation Assessor, 
SIFT, PolyPhen-2, 

http://bbglab.irbbarcelona.org/fannsdb/ 13/0/0/0 (González-
Pérez & 
López-
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MAPP, Pfam E-value, 
Fathmm 

Bigas, 
2011) 

DANN Metapredictor 949 features including 
numerous other 
predictors. Uses the 
same feature set as 
CADD 

dbNSFP database 13/0/0/0 (Quang et 
al, 2015) 

Eigen-pred Metapredictor2 SIFT, PolyPhen-2, 
MutationAssessor, 
conservation metrics 

dbNSFP database 13/0/0/0 (Ionita-Laza 
et al, 2016) 

M-CAP Metapredictor SIFT, PolyPhen2, 
CADD, MetaLR, 
MutationTaster, 
MutationAssessor, 
Fathmm, LRT, 
evolutionary 
conservation metrics, 
substitution matrices 

http://bejerano.stanford.edu/mcap/ 13/0/0/0 (Jagadeesh 
et al, 2016) 

MetaLR Metapredictor SIFT, PolyPhen2, 
GERP++, 
MutationTaster, 
MutationAssessor, 
Fathmm, LRT, SiPhy, 
PhyloP 

dbNSFP database 13/0/0/0 (Dong et al, 
2015) 

MetaSVM Metapredictor SIFT, PolyPhen2, 
GERP++, 
MutationTaster, 
MutationAssessor, 
Fathmm, LRT, SiPhy, 
PhyloP 

dbNSFP database 13/0/0/0 (Dong et al, 
2015) 

MVP Metapredictor Sequence context, 
sequence conservation, 
conservation metrics, 
predicted structural 
features, mutational 

dbNSFP database 13/0/0/0 (Qi et al, 
2018) 
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tolerance, Eigen, 
VEST3, 
MutationTaster, 
PolyPhen2, SIFT, 
PROVEAN, fathmm-
MKL, FATHMM, 
MutationAssessor, 
LRT 

PAPI Metapredictor PolyPhen2, SIFT, 
PseAA RF model 
(evolutionary 
conservation metrics, 
sequence environment) 

http://papi.unipv.it/ 13/0/0/0 (Limongelli 
et al, 2015) 

REVEL Metapredictor MutPred, PROVEAN, 
SIFT, PolyPhen2, 
LRT, MutationTaster, 
MutationAssessor, 
Fathmm, VEST3, 
GERP++, SiPhy, 
PhyloP 

https://sites.google.com/site/revelgenomics/ 13/0/0/0 (Ioannidis 
et al, 2016) 

1Envision is a supervised method, but trained on DMS data, thus not used for calculating the RankScore in table 3. 

2Unlike the other metapredictors, Eigen-pred uses an unsupervised machine learning method. 
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Table 2. Summary of the DMS datasets used in this analysis, including functional assay and method of mutagenesis. We also note the specific DMS assay 
from each study we use for calculating correlation with the VEP predictions. 

Protein(s) 
(Uniprot ID) 

Organism Functional Assay Mutagenesis 
Method 

Utilised assay Access date Reference 

UBE2I (P63279) 
SUMO1 
(P63165) 
TPK1 (Q9H3S3) 
CALM1 
(P0DP23) 

Human POPCode, a 
variant of 
multiple-site 
directed 
mutagenesis 

Competitive 
growth assay in 
yeast 

(screen.score column) 
UBE2I_flipped_scores 
SUMO1_flipped_scores 
TPK1_flipped_scores 
CALM1_flipped_scores 

2018-10-12 (Weile et al, 
2017) 

BRCA1(a) 
(P38398) 

Human Systematic site-
directed 
mutagenesis 

Yeast two-hybrid 
assay and phage 
display 

E3_score_800_filter_pass 2018-10-12 (Starita et al, 
2015) 

BRCA1(b) 
(P38398) 

Human Systematic site-
directed 
mutagenesis 

Competitive 
growth assay in 
HAP1 cells 

function.score.mean 2020-02-14 (Findlay et al, 
2018) 

P53 (P04637) Human Systematic site-
directed 
mutagenesis 

Competitive 
growth assay in 
the presence of 
P53 agonists 

A549_p53WT_Nutlin-3_Z-score 2018-10-12 (Giacomelli et 
al, 2018) 

HRas (P01112) Human Systematic site-
directed 
mutagenesis 

Two-hybrid assay Ras-G12V 2018-10-12 (Bandaru et al, 
2017) 

MAPK1 
(P28482)  

Human Systematic site-
directed 
mutagenesis 

Competitive 
growth assay 

Doxycycline 2018-10-12 (Brenan et al, 
2016) 

PTEN(a) 
(P60484) 
TPMT (P51580) 

Human Systematic site-
directed 
mutagenesis 

Fluorescence of a 
GFP fusion 
protein 

score 
score 

2018-10-12 (Matreyek et 
al, 2018) 

PTEN(b) 
(P60484) 

Human Systematic site-
directed 
mutagenesis 

Disruption of an 
artificial genetic 
circuit in yeast 

Cum_score_high_conf 2020-02-14 (Mighell et al, 
2018) 
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ADRB2 
(P07550) 

Human Systematic site-
directed 
mutagenesis 

Pathway-specific 
reporter 
gene transcription 
assessed by RNA-
seq 

condition_0.625 2019-04-31 (Jones et al, 
2019) 

HSP82 (P02829) Yeast Systematic site-
directed 
mutagenesis 

Competitive 
growth assay 

norm_ratiochange 2018-10-12 (Mishra et al, 
2016) 

UBI4(a) 
(P0CG63) 

Yeast Systematic site-
directed 
mutagenesis 

Competitive 
growth assay 

selection_coefficient 2018-10-12 (Roscoe et al, 
2013) 

UBI4(b) 
(P0CG63) 

Yeast Site directed 
mutagenesis by 
cassette ligation 

Fluorescence 
activated cell 
sorting 

Relative_E1-activity_limiting 2018-10-12 (Roscoe & 
Bolon, 2014) 

PAB1 (P04147) Yeast Random 
mutagenesis by 
error-prone PCR 

Competitive 
growth assay 

Linear 2018-10-12 (Melamed et 
al, 2013) 

GAL4 (P04386) 
 

Yeast Systematic site-
directed 
mutagenesis 

Two-hybrid assay SEL_A_24h 2018-10-12 (Kitzman et al, 
2015) 

infA (P69222) E. coli Systematic site-
directed 
mutagenesis 

Competitive 
growth assay 

fitness_min 2018-10-12 (Kelsic et al, 
2016) 

GmR (N/A)1 E. coli Systematic site-
directed 
mutagenesis 

Antibiotic 
resistance 

37C 2018-10-12 (Dandage et al, 
2018) 

bla(a) (P62593) E. coli Systematic site-
directed 
mutagenesis 

Antibiotic 
resistance 

Fitness 2018-10-12 (Firnberg et al, 
2014) 

bla(b) (P62593) E. coli Systematic site-
directed 
mutagenesis 

Antibiotic 
resistance 

Ampicillin_2500 2018-10-12 (Stiffler et al, 
2015) 

bla(c) (P62593) E. coli Random 
mutagenesis 

Antibiotic 
resistance 

MIC_Score_WT 2018-10-12 (Jacquier et al, 
2013) 
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bla(d) (P62593) E. coli Random and site-
directed 
mutagenesis 

Antibiotic 
resistance 

DMS 2018-10-12 (Deng et al, 
2012) 

ccdB (P62554) E. coli Systematic site-
directed 
mutagenesis 

Reverse survival 
assay (for toxin 
activity) 

MSseq 2018-10-12 (Adkar et al, 
2012) 

haeIIIM 
(P20589) 

H. 
aegyptius 

Random 
mutagenesis 

Competitive 
growth assay 

W_rel_G17 2018-10-12 (Rockah-
Shmuel et al, 
2015) 

Cas9 (Q99ZW2) S. 
pyrogenes 

Random 
mutagenesis by 
error-prone PCR 

Survival assay Log2_Fold_Change_after_Positive_Selection 2018-10-12 (Spencer & 
Zhang, 2017) 

env (P03377) HIV virus Systematic site-
directed 
mutagenesis 

Competitive 
replication assay 

Site_preferences 2018-10-12 (Haddox et al, 
2016) 

HA-H1N1 
(A0A2Z5U3Z0) 

Influenza 
virus 

Helper virus Competitive 
replication assay 

Site_preferences 2018-10-12 (Doud & 
Bloom, 2016) 

HA-H3N2 
(A0A097PF60) 

Influenza 
virus 

Helper virus Competitive 
replication assay 

avg_prefs 2018-10-12 (Lee et al, 
2018) 

PA (P15659) Influenza 
virus 

Helper virus Competitive 
replication assay 

RF_index 2018-10-12 (Wu et al, 
2015) 

1The GmR sequence used in the study does not correspond to any Uniprot ID. We used the sequence in the paper for predictor input. 
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Table 3. Calculated rank scores of VEPs based on the mean, normalised correlation of DMS data for human, yeast, bacterial and viral proteins. Standard 
deviation and coefficient of variation are based on the normalised correlations of each predictor between different proteins. 

Human proteins 
Predictor RankScore Cofficient of variation Standard deviation Number of proteins Category 
DeepSequence 0.884493 0.150842 0.133419 11 Unsupervised 
SNPs&GO 0.832998 0.128118 0.106722 11 Supervised 
SNAP2 0.821118 0.15786 0.129622 11 Supervised 
DEOGEN2 0.810199 0.206995 0.167707 11 Supervised 
SuSPect 0.806086 0.234057 0.18867 11 Supervised 
REVEL 0.804425 0.219104 0.176253 11 Metapredictor 
PhD_SNP 0.800309 0.091052 0.07287 11 Supervised 
S3D-PROF 0.798352 0.102889 0.082142 10 Supervised 
VEST4 0.779683 0.165271 0.128859 11 Supervised 
SIFT4G 0.777466 0.127501 0.099128 11 Empirical 
PANTHER 0.773401 0.14865 0.114966 11 Empirical 
Eigen-pred 0.77282 0.143674 0.111034 11 Metapredictor 
MPC 0.770669 0.26447 0.203819 10 Supervised 
MutationAssessor 0.769645 0.208029 0.160109 10 Unsupervised 
PPH2_HumVar 0.752304 0.203427 0.153039 11 Supervised 
MetaLR 0.737236 0.230105 0.169642 11 Metapredictor 
Envision 0.734916 0.292611 0.215045 11 Supervised 
PROVEAN 0.734866 0.188153 0.138267 11 Unsupervised 
SNP&GOs3D 0.732097 0.23776 0.174063 10 Supervised 
MutPred 0.730093 0.244265 0.178336 11 Supervised 
PPH2_HumDiv 0.717007 0.220618 0.158185 11 Supervised 
M-CAP 0.714093 0.266564 0.190351 11 Metapredictor 
MetaSVM 0.701199 0.30728 0.215465 11 Metapredictor 
CONDEL 0.696421 0.327479 0.228063 11 Metapredictor 
SIFT 0.689208 0.152913 0.105389 11 Empirical 
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CADD 0.67234 0.1284 0.086329 11 Metapredictor 
MVP 0.645229 0.187356 0.120888 11 Metapredictor 
PAPI 0.627417 0.377005 0.236539 11 Metapredictor 
PonPS 0.594731 0.128064 0.076164 11 Supervised 
NetDiseaseSNP 0.583933 0.221029 0.129066 11 Supervised 
PonP2 0.540467 0.461565 0.249461 11 Supervised 
PrimateAI 0.473828 0.41569 0.196966 11 Supervised 
FathmmXF 0.455187 0.570612 0.259735 11 Supervised 
BLOSUM62 0.44217 0.55099 0.243631 11 Empirical 
fathmm-MKL 0.38756 0.557953 0.21624 11 Supervised 
DANN 0.38604 0.41349 0.159624 11 Metapredictor 
LRT 0.366185 0.70642 0.258681 11 Empirical 
phyloP 0.354074 0.713528 0.252642 11 Empirical 
FATHMM 0.33821 0.764497 0.258561 11 Supervised 
Grantham 0.298924 0.723971 0.216412 11 Empirical 
GERP++ 0.267974 0.654054 0.175269 11 Empirical 
MutationTaster 0.265101 0.627194 0.16627 11 Supervised 
SiPhy 0.243562 0.891019 0.217018 11 Empirical 
GenoCanyon 0.2307 0.70624 0.162929 11 Unsupervised 
phastCons 0.221789 0.995113 0.220706 11 Unsupervised 
fitCons 0.166508 1.090584 0.181591 11 Unsupervised 
Yeast proteins 
Predictor RankScore Cofficient of variation Standard deviation Number of proteins Category 
SNPs&GO 0.858236 0.156899 0.134656 4 Supervised 
SNAP2 0.852111 0.032678 0.027845 4 Supervised 
PPH2_HumDiv 0.833507 0.127008 0.105862 4 Supervised 
SNP&GOs3D 0.805788 0.139875 0.112709 4 Supervised 
PANTHER 0.783467 0.132181 0.10356 3 Empirical 
PhD_SNP 0.770593 0.244619 0.188501 4 Supervised 
S3D-PROF 0.71706 0.137327 0.098472 4 Supervised 
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DeepSequence 0.682324 0.493253 0.336558 4 Unsupervised 
PROVEAN 0.635131 0.149621 0.095029 4 Unsupervised 
SIFT 0.578382 0.305186 0.176514 4 Empirical 
SuSPect 0.538334 0.583936 0.314353 4 Supervised 
NetDiseaseSNP 0.439179 0.404522 0.177658 4 Supervised 
BLOSUM62 0.206271 0.965246 0.199102 4 Empirical 
Grantham 0.057549 1.476692 0.084982 4 Empirical 
Bacterial protein 
Predictor RankScore Cofficient of variation Standard deviation Number of proteins Category 
DeepSequence 0.961651 0.074785 0.071917 6 Unsupervised 
PPH2_HumDiv 0.855432 0.094009 0.080418 6 Supervised 
SuSPect 0.787043 0.104549 0.082285 6 Supervised 
S3D-PROF 0.781873 0.157896 0.123455 4 Supervised 
PROVEAN 0.764829 0.19325 0.147804 6 Unsupervised 
SNAP2 0.75292 0.451042 0.339598 6 Supervised 
SIFT 0.745189 0.129724 0.096669 6 Empirical 
SNP&GOs3D 0.719106 0.199922 0.143765 4 Supervised 
PhD_SNP 0.655059 0.393602 0.257833 6 Supervised 
SNPs&GO 0.611539 0.334995 0.204862 6 Supervised 
NetDiseaseSNP 0.25414 0.548375 0.139364 6 Supervised 
BLOSUM62 0.227926 0.41492 0.094571 6 Empirical 
Grantham 0.028098 2.236068 0.062829 6 Empirical 
Viral proteins 
Predictor RankScore Cofficient of variation Standard deviation Number of proteins Category 
PROVEAN 0.890462 0.118196 0.105249 4 Unsupervised 
SuSPect 0.853037 0.039862 0.034003 4 Supervised 
PhD_SNP 0.774817 0.291176 0.225608 4 Sueprvised 
SNAP2 0.759121 0.512382 0.38896 4 Supervised 
BLOSUM62 0.614111 0.341185 0.209525 4 Empirical 
SNPs&GO 0.610413 0.319614 0.195097 4 Supervised 
NetDiseaseSNP 0.587275 0.410319 0.24097 4 Supervised 
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SIFT 0.574467 0.180874 0.103906 4 Empirical 
DeepSequence 0.298481 0.396879 0.118461 3 Unsupervised 
Grantham 0.171763 1.732051 0.297502 4 Empirical 
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