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Abstract 18 

Microbial communities are of considerable significance for biogeochemical processes, for the health 19 

of both animals and plants, and for biotechnological purposes. A key feature of the interactions 20 

between microbes is the exchange of nutrients between cells. Isotope labelling followed by analysis 21 

with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of 22 

substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS 23 

with a mechanistic model to reveal otherwise inaccessible nutrient kinetics. The method is applied 24 

to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant 25 

of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium 26 

Mesorhizobium loti, which is supported by algal photosynthesis. Results show that an initial pool of 27 

fixed carbon delays the onset of mutualistic cross-feeding, and the model allows quantification of 28 

this delay. Our method is widely applicable to other microbial systems, and will contribute to 29 

furthering a mechanistic understanding of microbial interactions. 30 

Introduction 31 

Microbial communities underpin many globally important processes, from biogeochemical cycles (1) 32 

and the ecology of aquatic (2,3) and terrestrial food webs (4,5), to wastewater treatment (6,7) and 33 

the health of agricultural soils (8). A key feature of the interactions within these communities is the 34 

exchange of metabolites between species (9). In aquatic environments, photosynthetic carbon 35 

fixation by phytoplankton supports higher trophic levels, but also provides an important carbon 36 

source for heterotrophic bacteria (10–12). Conversely, bacteria have been shown to provide limiting 37 

nutrients to algae, including nitrates, phosphates and iron (13), vitamins (14,15) and carbon dioxide 38 

(16). Depending on environmental conditions, these metabolite exchanges control the outcome of 39 

microbial interactions, from parasitic, through commensal, to mutualistic (17–19).  40 

To exploit microbial communities for biotechnological applications, it is crucial to be able to 41 

predict and control microbial interactions. Extensive studies of natural microbial communities using 42 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/855999doi: bioRxiv preprint 

https://doi.org/10.1101/855999


SIMS-modelling approach to nutrient kinetics H. Laeverenz Schlogelhofer et al 

3 
 

metagenomics, metatranscriptomics and metaproteomics have provided considerable insight into 43 

potential metabolite exchanges (20,21). However, to obtain a fully predictive, mechanistic 44 

understanding of microbial interactions it is also essential to use bottom-up approaches employing 45 

laboratory model systems and mathematical models (22–25). For example, the comparison of a 46 

nutrient-implicit Lotka-Volterra model with experiments studying co-cultures of genetically 47 

engineered strains of yeast that each provide a different essential nutrient to the other 48 

demonstrated a limiting nutrient-induced shift from mutualism via parasitism to competition (26). 49 

Moreover, studies of engineered yeast communities combining agar pad experiments and models 50 

incorporating nutrient diffusion revealed that cross-feeding interactions influence genetic drift 51 

during spatial expansion (27), and that spatial self-organisation favours cooperation over cheating 52 

(28). 53 

The exact metabolic interactions within microbial communities are often unknown. 54 

Secondary ion mass spectrometry (SIMS, NanoSIMS), an imaging mass spectrometry technique 55 

capable of analysing single microbial cells, reviewed in (29–33), has been instrumental in identifying 56 

new symbioses and microbial interactions for both cultured and non-cultured associations (34–37). 57 

Moreover, the metabolic activity and phylogenetic identity (16S rRNA) of single cells can be linked by 58 

combining in situ hybridization methods with SIMS (38,39). Using SIMS and NanoSIMS to visualise 59 

and quantify substrate utilisation in single cells, filaments, and colonies of microbial cells has helped 60 

to determine the heterogeneity of single cell metabolic activity (38,40), sub-cellular location of 61 

assimilated substrates (41,42), nutrient exchanges between symbiotic partners (35,36) and the 62 

effect of physical attachment on carbon and nitrogen fluxes between bacteria and microalgae 63 

(43,44). 64 

In these studies, SIMS was primarily used to visualise and measure nutrient assimilation and 65 

transfer. In the dilute aquatic environment, microbial interactions will involve dynamic nutrient 66 

exchanges, particularly at the onset of association, when metabolite fluxes may be quite different 67 

from those arising during a stable, long-term interaction. Here we explore the establishment of 68 
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mutualistic interactions with a well-characterised model system: a co-culture of the cobalamin 69 

(vitamin B12) dependent, photosynthetic alga Chlamydomonas reinhardtii metE7 strain (45) and the 70 

B12-producing, heterotrophic bacterium Mesorhizobium loti. Previous studies of this system, and a 71 

closely related one comprising the naturally B12-dependent alga Lobomonas rostrata, have 72 

demonstrated mutualistic growth dynamics predicated on the exchange of vitamin B12 and organic 73 

carbon photosynthate (45,46). The relative proportions of the two organisms are stably maintained 74 

over hundreds of generations, but can be perturbed by supplementation with cobalamin or an 75 

organic carbon source like glycerol (46). The effect of environment geometry on the mutualistic 76 

dynamics of spatially separated populations was also recently modelled mathematically, and realised 77 

experimentally (47). Here, SIMS experiments that follow the temporal variation in 𝐶	#$  labelling are 78 

combined with a mechanistic, nutrient-explicit model to gain further insight into how these 79 

organisms interact. The model permits use of the SIMS data to obtain nutrient exchange kinetics, 80 

which were not possible to measure experimentally, and to explore potential mechanisms for the 81 

observed single cell heterogeneity. 82 

Materials and Methods 83 

Algal and bacterial strains 84 

The B12-dependent alga used in this work was C. reinhardtii metE7 (ref. 45). The B12-producing 85 

bacterium used was M. loti (MAFF 303099), originally a gift from Prof Allan Downie, John Innes 86 

Centre, UK. 87 

Growth conditions 88 

All cultures were grown in a 12	ℎ − 12	ℎ light-dark cycle at 25°𝐶, shaking at 120	𝑟𝑝𝑚. The light 89 

intensity of the photosynthetically active radiation was approximately 70	µ𝑚𝑜𝑙	𝑚34	𝑠3#, measured 90 

using a Skye PAR sensor (SKP 215). Tris-minimal medium was used for all cultures, meaning that C. 91 

reinhardtii metE7 grew phototrophically in our experiments. Tris-minimal medium is based on TAP 92 
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(48) but omits the acetic acid and 𝐻𝐶𝑙 is used to titrate to 𝑝𝐻	7 (ref. 49). The trace elements 93 

solutions used (Supplementary Table S1) were adapted from (50) to include a seventh solution 94 

containing cobalt, since cobalt is required as the central ion of vitamin B12. The cobalt concentration 95 

was chosen to be the same as in Hutner's trace elements (51). Cyanocobalamin (referred to as B12 96 

throughout this work), glycerol and sodium bicarbonate were added to the medium as required 97 

(Supplementary Table S2). 98 

Dissolved sodium 𝐶	#$ -bicarbonate (Sigma-Aldrich 𝑁𝑎𝐻 𝐶	#$ 𝑂$, 98	𝑎𝑡𝑚%	 𝐶	#$ ) was used for 99 

the stable isotope labelling of microbial cultures (the work-flow is illustrated in Supplementary 100 

Figure S1). A sample taken from the 600	𝑚𝐿 axenic pre-culture of algae was washed and then re-101 

suspended in 1	𝐿 of fresh media containing 100	𝑛𝑔	𝐿3# B12 and 5	𝑚𝑀	𝑁𝑎𝐻 𝐶	#$ 𝑂$. This pre-labelling 102 

culture of algae was grown for 48	ℎ (see Supplementary Information for the experimental and 103 

model results for this culture). An axenic pre-culture of bacteria was grown in media with 104 

0.1	%	(𝑣/𝑣) glycerol, which was then sampled, washed and re-suspended in 750	𝑚𝐿 fresh media 105 

containing 5	𝑚𝑀 𝑁𝑎𝐻 𝐶	#$ 𝑂$, to which 250	𝑚𝐿 of pre-labelled algae was added to initiate the co-106 

culture. Cultures of axenic bacteria were grown with 5	𝑚𝑀	𝑁𝑎𝐻 𝐶	#$ 𝑂$	and different concentrations 107 

of unlabelled glycerol. 108 

Population growth 109 

Population growth was monitored using viable counts. A series of 10-fold dilutions were performed 110 

and aliquots of 20	µ𝐿 from relevant dilutions (i.e. chosen such that approximately	10 to 100 111 

colonies would result after plating) were spotted onto TY agar plates. The plates were tilted back 112 

and forth to disperse the cells and make the colonies easier to distinguish (52). Plates were 113 

incubated in continuous light at 25°𝐶 for approximately 5 days and in the dark at 30°𝐶 for 114 

approximately 2 days, for algal and bacterial colonies respectively. Two independent viable counts 115 

were obtained for each time-point and the results converted to values for the population size in 116 

units of colony forming units per unit volume (𝑐𝑓𝑢	𝑚𝐿3#). 117 
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Isotope Ratio Mass Spectrometry 118 

Isotope Ratio Mass Spectrometry (IRMS) was used to measure 𝐶	#$  ratios for bulk samples of algal 119 

and bacterial biomass. IRMS also measured the total carbon and nitrogen content, which was used 120 

to calculate the C:N ratio and, together with dry mass and cell density measurements, to estimate 121 

the carbon yield (i.e. 𝑐𝑒𝑙𝑙𝑠	𝑚𝑜𝑙𝐶3#) for algae and bacteria, see Table S4 and Supplementary 122 

Information for details.  123 

Secondary Ion Mass Spectrometry  124 

Sample preparation 125 

Below is a brief outline of the SIMS sample preparation procedure, full details are in Supplementary 126 

Information. Samples were chemically fixed using formaldehyde. Vacuum filtration was used to 127 

deposit the cells onto 0.22	µ𝑚 pore size membrane filters with a ≈ 20	𝑛𝑚 gold coating, with nucleic 128 

acid staining and confocal microscopy (Olympus Fluoview FV1200) used to confirm an even 129 

distribution of cells on the filter. A single hole punch was used to cut out 4 − 6	𝑚𝑚 disks from the 130 

filter samples. Following this, a Zeiss laser micro-dissection microscope (Zeiss LSM710-NLO housed 131 

at the LCI facility of the Karolinska Institute, Stockholm) was used to image the autofluorescence of 132 

the algal chlorophyll and create laser marks on the samples, used to locate areas of interest with the 133 

camera of the SIMS instrument. Lastly, the samples were placed on conductive sticky tape, mounted 134 

onto a glass disk and sputter coated with gold. 135 

SIMS analysis 136 

SIMS analysis was performed using the Cameca IMS 1280 at the NordSIM facility in the Department 137 

of Geosciences at the Swedish Museum of Natural History in Stockholm. The instrument uses a 138 

Gaussian focussed primary ion beam of caesium ions (𝐶𝑠O). For selected positions on the filter 139 

sample, 45	 × 	45	µ𝑚 square areas were pre-sputtered for 10	𝑠 with a 3	𝑛𝐴 primary ion beam. 140 

Within this pre-sputtered region, 100 scans of a 35	 × 	35	µ𝑚 square area were measured using a ≈141 

60 − 80	𝑝𝐴 primary ion beam (spot size of approximately 1	µ𝑚). The secondary ion mass peaks 142 
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were measured using an ion counting electron multiplier in peak hopping mode with a 44	𝑛𝑠 143 

electronically gated dead-time. The count times for the 𝐶	#4 𝑁	#R 3, 𝐶	#4 𝑁	#S 3 (not used in subsequent 144 

analysis) and 𝐶	#$ 𝑁	#R 3secondary ion peaks were 1, 0.5 and 2	𝑠 respectively. A mass resolution 145 

(𝑀/∆𝑀) of approximately 6000 for the preliminary experiments (see Figure S10) and 7000 for the 146 

final experiments was used; a mass resolution of 6000 − 7000 was sufficient in resolving both the 147 

𝐶	#4 𝑁	#R 3 and 𝐶	#$ 𝑁	#R 3 peaks. Interference of 𝐵	## 𝑂	#V 3 with the 𝐶	#$ 𝑁	#R 3 peak at mass 27 was not 148 

an issue because no boron or boron containing compounds were used in the culture media. The 149 

SIMS measurements were run once for bacterial cells and repeated 1 − 8 times for each algal cell. 150 

The WinImage2 software (Cameca) was used to obtain the isotope ratio 𝑅 = 𝐶	#$ /#4𝐶 for single cells 151 

of algae and bacteria (see Supplementary Information for details). The atomic fraction of 𝐶	#$ , i.e. 152 

𝑓 = 	 𝐶	#$ /( 𝐶	#$ + 𝐶	#4 ), was calculated using 153 

𝑓	 = Z
#OZ

	.      (1) 154 

Several technical considerations were taken into account (full details in Supplementary 155 

Information and Figure S2). First, a depth analysis was performed by taking repeated measurements 156 

of the same cells, which demonstrated that a single measurement was sufficiently representative for 157 

bacteria, whereas for algal cells the mean of three repeated measurements was used to obtain a 158 

representative measurement. Second, a scattering effect associated with highly labelled algae was 159 

observed, therefore for the analysis described in this work only bacteria from scan areas not 160 

containing labelled algae were included. Lastly, the dilution effect, due to chemical fixation and 161 

nucleic acid staining introducing unlabelled carbon into cells, was taken into consideration (see Table 162 

S3). To estimate the undiluted atomic fraction of 𝐶	#$ , SIMS results were dilution-corrected using the 163 

method established in (53). 164 

Mechanistic model 165 

To better understand the carbon kinetics revealed by the co-culture experiments and the underlying 166 

mutualistic microbial dynamics, a mechanistic model was formulated. A brief overview is provided 167 
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here with full details given in Supplementary Information. The model captures essential nutrient 168 

exchanges between algae and bacteria, shown schematically in Figure 1. Algal growth is dependent 169 

on the external B12 concentration 𝑣, originating from bacterial production. The growth of bacteria, in 170 

turn, depends on the external concentration of algal-derived DOC, modelled as an effective single 171 

carbon source 𝑐[. This exchange of B12 and DOC provides mutualistic coupling between the two 172 

species. The co-culture is assumed to be well-mixed, such that 173 

\]
\^
= 𝜇]	𝑎	 `1 −

]
ab
c ` d

aeOd
c and  \f

\^
= 𝜇f	𝑏	 `1 −

f
ah
c ` ij

akOij
c,  (2) 174 

with 𝑎 and 𝑏 the algal and bacterial cell densities respectively, 𝜇] and 𝜇f the maximum growth 175 

rates, 𝐾] and 𝐾f the carrying capacities, and 𝐾d and 𝐾i  the half-saturation concentrations. Although 176 

DIC is assumed to be non-limiting (as in the experiments), accounting for DIC kinetics was essential 177 

to connect the model to SIMS experiments, where isotope labelling relied on assimilation of 𝐶	#$  via 178 

DIC. As any living cell, heterotrophic bacteria can assimilate inorganic carbon through carboxylation 179 

reactions (54,55). The model incorporates this observation through a DIC uptake parameter defined 180 

as 𝑋 = 𝑟nopq/𝑟n, where 𝑟nopq  is the DIC uptake rate and 𝑟n the total carbon uptake rate. Bacterial 181 

respiration further contributes to the inorganic carbon kinetics (56). This is modelled through the 182 

maximum bacterial growth efficiency 𝜂, which quantifies how respiration affects carbon uptake in 183 

the exponential growth phase. For 𝜂 → 1, respiration goes to zero and does not affect carbon 184 

uptake. Instead, with 𝜂 → 0 respiration rate is high compared to growth rate and thus strongly 185 

affects the carbon kinetics. Further, the model minimally describes photosynthesis and carbon 186 

storage in algae by splitting algal carbon biomass into two internal components, photosynthetically-187 

active carbon 𝑐],u, available for exudation, and stored carbon 𝑐],v, used for biomass growth, in 188 

storage compounds (e.g. starch) and for cellular maintenance. Thus, the model effectively describes 189 

DOC exudation as originating from excess algal photosynthesis. The vitamin, DOC and DIC 190 

concentrations in the model are governed by the rate laws 191 

\d
\^
= 𝑝d𝑏 − 𝑟d,  \ij

\^
= 𝑟w − (1 − 𝑋)𝑟n  and  \ix

\^
= 𝑟y − 𝑋	𝑟n − 𝑟u  (3) 192 
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respectively, where we assume a constant B12 production rate per bacterial cell 𝑝d, 𝑟d is the total 193 

vitamin uptake rate by algae, 𝑟w the total DOC exudation rate by algae, 𝑟n the total carbon uptake 194 

rate by bacteria, 𝑟y  the total bacterial respiration rate and 𝑟u the total photosynthetic carbon 195 

assimilation rate by algae. The DOC exudation rate from algae is given by 𝑟w = (1 − 𝜙v)	𝑝i	𝑎, where 196 

𝑝i  determines the DOC production rate per algal cell (assumed constant), and 𝜙v defines the 197 

fraction of carbon stored by algae, i.e. 𝜙v = 𝑐],v/(𝑐],v + 𝑐],u). Combining the differential equations 198 

for the carbon concentrations and the definition of atomic fraction 𝑓 = 𝐶	#$ /( 𝐶	#$ 	+ 𝐶	#4 ), we can 199 

write down differential equations for the dynamics of the atomic fractions, observed experimentally 200 

using SIMS. As an example, the atomic fraction for bacteria is given by 201 

\{h
\^

= (𝑋	𝑓| + (1 − 𝑋)𝑓[ − 𝑓f)
}h
~
` ij
akOij

c,   (4) 202 

with 𝑓f, 𝑓|  and 𝑓[ the atomic fractions of 𝐶	#$  for bacteria, DIC and DOC respectively, and all other 203 

parameters as previously defined.  204 

Results 205 

Inorganic carbon acquisition by axenic bacteria 206 

Axenic cultures of the rhizobial bacterium M. loti provided a benchmark for applying our method to 207 

the co-culture and allowed quantification of bacterial inorganic carbon acquisition. M. loti was 208 

grown axenically for 72	ℎ with 5	𝑚𝑀	𝑁𝑎𝐻 𝐶	#$ 𝑂$ (the labelled DIC source) and different 209 

concentrations of unlabelled glycerol, providing a source of organic carbon. SIMS images (Figure 2A) 210 

were used to determine the atomic fraction of 𝐶	#$ , 𝑓, for individual bacterial cells. The quantity 𝑓f 211 

(Figure 2B) represents the fraction of 𝐶	#$  averaged over a distribution of single cell measurements; 212 

single cell heterogeneity effects are discussed below. 213 

Concomitantly to SIMS, bacterial abundance was quantified using viable counts. As 214 

expected, higher glycerol concentrations resulted in faster exponential growth and larger carrying 215 

capacities (Figure 2C). Even with no glycerol added to the growth medium, bacterial growth was still 216 
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observed (see also Figure S7). This was likely due to internal stored carbon carried forward from the 217 

pre-culture. During the first 24	ℎ, when all cultures analysed were in the exponential growth phase, 218 

greater 𝐶	#$ -enrichment was observed for bacteria grown with a higher concentration of glycerol 219 

(Figure 2B). Since only inorganic carbon was labelled, the increase in 𝑓f demonstrates DIC acquisition 220 

by M. loti.  221 

The co-culture model was applied to interpret the SIMS results for the axenic cultures of M. 222 

loti. Mathematically, the model used for axenic bacteria is given by equations (2), (3) and (4) in 223 

Materials and Methods, with 𝑎 = 𝑣 = 𝑟w = 𝑟u = 0, which describes logistic growth of a bacterial 224 

population growing on a limiting organic carbon source. 225 

To fit the model to the SIMS and growth data, two global fits were performed, one including 226 

respiration and another ignoring it. In the latter case, the model was unable to reproduce the data 227 

well (dotted line in Figure 2B-C). This suggests that DIC uptake and respiration are essential to 228 

accurately describe the carbon kinetics of axenic bacteria. The bacteria grown with 0.1	% glycerol 229 

showed a prominent peak in 𝑓f, which the model without respiration was unable to reproduce 230 

(Figure 2B). This can be explained by considering that only respiration provides the feedback of 231 

unlabelled carbon necessary for 𝑓f to decrease. Respiration converts glycerol to 𝐶𝑂4, which is 232 

released into solution and lowers the total labelled fraction of DIC. Thus, the labelled fraction of 233 

carbon consumed by bacteria decreases, causing 𝑓f to decrease. The fit results for the growth 234 

efficiency 𝜂 ∈ [0.15 − 0.63] and DIC uptake parameter 𝑋 ∈ [0.009 − 0.046] (Supplementary Table 235 

S7) are similar to those reported in the literature, e.g. 𝜂 ∈ [0.05 − 0.6] (ref. 57) and 𝑋 ∈236 

[0.014 − 0.065] (ref. 54). Moreover, the DIC uptake parameter 𝑋 was found to increase as a 237 

function of the exponential growth rate 𝜇�, according to 𝑋	 = 	𝑚	ln(𝜇�)	+ 	𝑛	with 𝑚 = 0.0167 ±238 

0.0004, 𝑛 = 0.0785 ± 0.0013 and 𝑅4 = 0.999. A negative correlation between the growth 239 

efficiency 𝜂 and ln(𝜇�) was found, giving 𝜂	 = 	𝑝	ln(𝜇�) 	+ 	𝑞	with 𝑝 = −0.10 ± 0.12, 𝑞 = 0.12 ±240 

0.36 and 𝑅4 = 0.282; see Supplementary Table S7 and Supplementary Figure S8. The increase in the 241 

DIC uptake parameter 𝑋 can be reasonably associated with an increase in carboxylation reactions 242 
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responsible for DIC acquisition with faster growth (54,55), however a more detailed metabolic model 243 

would be required to further investigate the functional relationships emerging from our data. 244 

Overall, this study of axenic cultures revealed how the combination of temporal SIMS measurements 245 

with modelling can help determine which key metabolic phenomena are responsible for observed 246 

isotope labelling dynamics. 247 

Carbon transfer from algae to bacteria in co-culture 248 

To gain new insights into the establishment of mutualistic algal-bacterial interactions, we applied the 249 

combined SIMS-modelling approach to study a co-culture between C. reinhardtii metE7 and M. loti. 250 

The algae were pre-labelled and not washed prior to co-culture inoculation (see Materials and 251 

Methods and Figure S9), therefore DOC from the pre-culture was carried over into the co-culture. 252 

This provided the best chance of observing bacterial assimilation of algal derived carbon, given that 253 

the time-scale for DOC to become available to bacteria in the co-culture had not been measured 254 

previously. 255 

The labelled carbon kinetics in the co-culture were followed using SIMS over a period of 256 

72	ℎ. SIMS images (Figure 3A) were used to determine the atomic fraction of 𝐶	#$ , 𝑓, for individual 257 

bacterial and algal cells. As for axenic bacteria, the quantities 𝑓] and 𝑓f denote the average atomic 258 

fractions for a population of algae and bacteria respectively (Figure 3B); single cell heterogeneity is 259 

considered below. Sustained population growth was observed for both the algal and bacterial 260 

populations (Figure 3C), which implied that they were not nutrient limited. In spite of algal 261 

population growth, 𝑓] remained approximately constant throughout the co-culture (Figure 3B), 262 

which indicates a likely equilibrium for 𝐶	#$  in algae, with 𝑓] equal to the atomic fraction of DIC 𝑓|  263 

(see equation (S30) in Supplementary Methods). The increase in 𝑓f (Figure 3B) showed that the 264 

bacteria assimilated 𝐶	#$  compounds from the extracellular environment. However, on its own, the 265 

SIMS results could not provide information on the precise carbon kinetics within the co-culture. In 266 

the early stages of a co-culture the question remains: are cells growing on mutually produced 267 
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nutrients, nutrients carried-over from pre-culture or internal stores? Combining SIMS data with our 268 

mechanistic model allowed this question to be addressed. 269 

Hidden nutrient kinetics 270 

To further analyse the SIMS data and explore possible nutrient kinetics that couple the interaction 271 

partners, we formulated a mechanistic model of the algal-bacterial co-culture (see Materials and 272 

Methods) and performed parameter optimisations (see Supplementary Information, Figure S5, S6 273 

and Tables S5 and S6). Figure 3B-C shows two separate global fits of the model to the algal and 274 

bacterial atomic fractions and cell densities. Fit 1 fixed the initial atomic fraction of 𝐶	#$  for DOC at 275 

𝑓[(0) = 0.64, the expected value from the pre-labelled culture of algae (see Supplementary 276 

Information), whereas fit 2 included 𝑓[(0) as a free parameter. Fit 2 may appear to better describe 277 

the data, because it better reproduces bacterial growth, but the parameter optimisation result for 278 

𝑓[(0) in fit 2 was close to natural abundance (Supplementary Table S8), which is not realistic for a 279 

culture expected to contain some labelled DOC from the highly labelled algal pre-culture. Neither fit 280 

was thus able to quantitatively capture the observations, suggesting that our model is probably too 281 

simple to be fully quantitative. Nonetheless, the model fits the data well qualitatively, and could be 282 

used to explore the nutrient kinetics that are not directly inferable from our measurements. 283 

Using parameters from fit 1 (Supplementary Table S6), the model revealed the potential B12 284 

and DOC kinetics driving the microbial growth dynamics (Figure 4A-B). The vitamin concentration 𝑣 285 

increases from zero (the co-culture medium was assumed to be initially vitamin-free because 286 

bacteria were washed thoroughly prior to establishing the co-culture and B12 was assumed to have 287 

been fully depleted in the pre-labelling culture of algae because it was inoculated with only 288 

100	𝑛𝑔	𝐿3# B12), and then starts to decrease after about 40	ℎ (Figure 4A). Conversely, the DOC 289 

concentration 𝑐[ drops from the initial concentration 𝑐[(0), carried over from the unwashed algal 290 

pre-culture, and then starts to rise after approximately 30	ℎ (Figure 4B), a few hours before the 291 

turnaround in B12 concentration. These results can be interpreted in terms of the production and 292 

consumption of nutrients, and the resulting population growth. At the start of the experiment 293 
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bacterial DOC uptake during growth was likely responsible for the initial depletion of DOC (Figure 294 

4B), which occurred at a faster rate than could be replenished by the algae. The model results also 295 

suggest that growing bacteria were initially producing B12 faster than the algal uptake rate, allowing 296 

the vitamin concentration to increase (Figure 4A). As it did so, the algae grew and photosynthesised, 297 

producing DOC to be utilised by the bacteria, which proliferated in turn. The turnaround in the 298 

nutrient kinetics occurs when production and consumption rates are matched, seen mathematically 299 

by setting \d
\^
= 0 = \ij

\^
 in equation (3). Figure 4A-B suggests that beyond the turning point at ≈300 

30	ℎ, DOC became more abundant as production by algae out-paced bacterial consumption. A short 301 

time later, the concentration of B12 began to decrease as production by bacteria fell below algal 302 

consumption. 303 

Furthermore, the time evolution of the derivative of the bacterial atomic fraction 304 

\{h
\^
	(obtainable from the model; equation (4)) is seen to mirror closely the fall and rise of the DOC, 305 

reproducing a turnaround at approximately the same time (Figure 4C). The model implies that this is 306 

because the rate of DOC uptake by bacteria is proportional to the DOC concentration, such that a 307 

decrease in the DOC concentration decreases the uptake rate, which directly slows down the rate of 308 

𝐶	#$  assimilation. Thus, the model, while not providing a fully quantitative description of the growth 309 

dynamics, is nevertheless able to chart the temporal variation of the nutrient kinetics from isotope 310 

labelling experiments. 311 

Single cell heterogeneity 312 

The SIMS results discussed thus far were averages obtained from several single cell measurements. 313 

We now turn to the heterogeneity in atomic fraction revealed by SIMS (see Supplementary Figures 314 

S3 and S4 for histograms of the single cell data). For this we concentrated on bacteria which 315 

provided better statistics than algae (minimum 80 bacterial cells measured per time point, versus 316 

5 − 29 cells per time-point for algae). For unlabelled bacteria at natural abundance the single cell 317 

measurements showed a narrow distribution of atomic fractions (Supplementary Figure S3), 318 
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indicating that all bacteria started at approximately the same value. For axenic bacteria, increasing 319 

the glycerol concentration caused greater DIC uptake, and 𝐶	#$  was seen to be more widely spread 320 

across the population (Supplementary Figure S3). For the highest glycerol concentration, the cell 321 

distribution was seen to broaden and then narrow again over time, corresponding to the rise and fall 322 

of the mean atomic fraction, and a transition of the culture to stationary phase. In contrast, for 323 

bacteria in co-culture, the distribution of single cell atomic fractions broadened steadily over time 324 

(Supplementary Figure S4). 325 

These single cell results clearly indicate heterogeneity in isotope labelling across the 326 

bacterial populations. To analyse heterogeneity, a stochastic, structured model would strictly be 327 

required, for example as was used to explain how the circadian clock and environmental cycles 328 

affect cell size control and generate two subpopulations in the cyanobacterium Synechococcus 329 

elongatus (58). Our mean field model could, however, still be usefully applied to simulate 330 

heterogeneity and investigate potential origins of the observed single cell distributions by solving the 331 

model for parameter values above and below the fit results obtained for the mean atomic fractions 332 

(Supplementary Tables S6 and S7). Specifically, we considered the effect of varying the DIC uptake 333 

parameter 𝑋, bacterial maximum growth efficiency 𝜂 and maximum bacterial growth rate 𝜇f, with 334 

ranges given in the legend of Figure 5. The resulting variations in predicted bacterial atomic fractions 335 

(shaded areas in Figure 5) could then be compared with the variation observed experimentally, 336 

considered as the standard deviations of the SIMS single cell distributions (error bars in Figure 5). For 337 

axenic bacteria, a distribution in the values of 𝑋 appeared to best account for the experimental 338 

standard deviation in the atomic fraction 𝑓f, especially for the culture grown at the highest glycerol 339 

concentration, where the model successfully reproduced the experimentally observed narrowing of 340 

the distribution at long times (Figure 5A). The comparison with experimental trends for variations in 341 

𝜂 and 𝜇f was less favourable (Figure 5B-C). Instead, for bacteria in co-culture, the progressive 342 

broadening of the distribution of 𝑓f was best described by a distribution in 𝜇f (Figure 5C), with 343 

distributions in 𝜂 and 𝑋	not doing as well in the comparison (Figure 5A-B). 344 
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Discussion 345 

Whilst several studies have demonstrated mutualistic interaction between bacteria and algae 346 

mediated by nutrient exchange (43,44,46), none have integrated time-resolved SIMS with 347 

mechanistic modelling to elucidate nutrient kinetics, as we have done here. Our findings examine 348 

how nutrient kinetics control the inception and temporal development of an algal-bacterial 349 

mutualism. More broadly, this connects to the question of how co-occurrence can, on an 350 

evolutionary timescale, transform non-specialised relationships into more specialised partnerships, 351 

from streamlined microbial metabolisms (59–62) to plant-microbe interactions (63–65).  352 

Initially, our SIMS-modelling approach demonstrated the uptake of labelled DIC by the 353 

heterotrophic bacterium M. loti, grown axenically on an unlabelled carbon source (glycerol). This 354 

confirmed similar results from previous studies of DIC uptake by heterotrophic bacteria (54,55), 355 

while also providing more extensive data in terms of temporal dynamics and concentration of 356 

organic carbon. Fractional DIC uptake, described by the parameter 𝑋, and respiration, described by 357 

the bacterial growth efficiency parameter 𝜂, were essential for quantitatively describing the results. 358 

Fitting the model to results of 𝐶	#$  labelling experiments provided values for these parameters, an 359 

approach that could be used in future studies to investigate how these parameters are affected by 360 

environmental variables, including temperature, nutrient limitation and energetic quality of the 361 

organic carbon substrate (56,66). 362 

The SIMS-modelling approach was then used to shed light on the role of nutrient exchange 363 

during the onset of mutualistic interaction in a co-culture of M. loti bacteria and vitamin B12-364 

dependent C. reinhardtii metE7 algae. SIMS results showed that the bacteria assimilated algal-365 

derived labelled carbon and using our mechanistic model we further revealed nutrient kinetics that 366 

couple the mutualistic partners. Initial DOC in the co-culture (carried forward from the algal pre-367 

culture) delayed the onset of reciprocal mutualistic interaction: algae and bacteria started to grow 368 

exclusively on what each partner was producing only after about 30	ℎ into the co-culture. A similar 369 
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time-scale was observed in a NanoSIMS study of Antarctic microbial communities, which found that 370 

heterotrophic bacteria used organic carbon exudates from primary producers within 24	ℎ (67). 371 

Exploiting the single cell resolution of SIMS, our results revealed the heterogeneity of carbon 372 

uptake across a bacterial population. The distribution of atomic fractions for axenic bacteria 373 

displayed a width that was non-monotonic with time, whereas for the bacteria in co-culture with 374 

algae, this width increased monotonically. This difference in the temporal evolution of the standard 375 

deviation could be because DIC kinetics governed the isotope labelling in the axenic cultures, while 376 

the isotope labelling of co-cultured bacteria was likely dominated by uptake of algal derived DOC. To 377 

simulate variation of phenotypes across the bacterial population, our model was solved with 378 

parameter values above and below the fit results. A distribution in inorganic carbon uptake gave the 379 

best agreement with experiment for axenic cultures, whereas a distribution in bacterial growth rate 380 

best accounted for the co-culture measurements. This could well reflect the heterogeneous carbon 381 

environment for bacteria growing on algal exudates comprising a mix of compounds, each 382 

corresponding to a different growth rate. Conversely, axenic bacteria were fed on a single carbon 383 

substrate. Future studies could compare structured mechanistic models and computer simulations 384 

that describe variation in population dynamics and nutrient kinetics across microbial populations 385 

(58,68,69) with the approach to modelling heterogeneity used here. 386 

Using a mechanistic model enhanced the interpretation of temporal nutrient kinetics data 387 

obtained using SIMS for an algal-bacterial co-culture. As discussed, the model we have constructed 388 

works well qualitatively, but comparison with the SIMS experiment points to possible improvements. 389 

For example, the model fit to SIMS data for the co-culture could benefit from better parametrisation 390 

of DOC production and its assimilation by bacteria. Further experiments that include DOC 391 

measurements would allow better estimates for the algal DOC export parameter 𝑠i  and the bacterial 392 

carbon uptake parameter 𝑘f,i  to be obtained. For the co-culture a discrepancy between bacterial 393 

growth and isotope labelling was observed, with estimates of net carbon assimilation rate from 394 

bacterial 𝐶	#$  enrichment measurements accounting for only about 6	% of bacterial population 395 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/855999doi: bioRxiv preprint 

https://doi.org/10.1101/855999


SIMS-modelling approach to nutrient kinetics H. Laeverenz Schlogelhofer et al 

17 
 

growth (see Supplementary Information). This suggests that the pre-cultured bacteria were not 396 

completely carbon starved and could grow using internal stores of organic carbon. Future models 397 

could account for internal carbon storage in bacteria, e.g. using nutrient kinetic models informed by 398 

flux balance analysis. Despite these limitations, the current model could be used to qualitatively 399 

predict mutualistic dynamics, e.g. how different species or mutant combinations would grow or how 400 

different initial conditions affect the interaction outcome. This could guide experimental 401 

investigation and accelerate discovery towards a mechanistic understanding of microbial 402 

interactions. 403 
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Figure Legends 599 

 600 

 601 

Figure 1: Schematic to illustrate the nutrient kinetics included in the algal-bacterial co-culture 602 

model. Vitamin B12 is released by bacteria and required for algal growth. Bacterial growth is 603 

dependent on DOC produced by algae. Also considered are: algal photosynthesis, carbon storage, 604 

and DOC exudation from excess photosynthesis; bacterial respiration and DIC uptake. An overview 605 

of the model is given in Materials and Methods with full details provided in Supplementary 606 

Information.  607 
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 608 

Figure 2: Inorganic carbon acquisition by axenic bacteria. (A) Example images of the atomic fraction 609 

of 𝐶	#$ , 𝑓, obtained by SIMS analysis of bacterial cells sampled after 24	ℎ of axenic cultures grown 610 

with different concentrations of unlabelled glycerol and 5	𝑚𝑀 𝑁𝑎𝐻 𝐶	#$ 𝑂$. The colour map shows 611 

the scale, starting at natural abundance. (B) The mean atomic fraction of 𝐶	#$ , 𝑓f, for the dilution-612 

corrected SIMS measurements (circles and diamonds) demonstrate inorganic carbon acquisition by 613 

the bacteria. Error bars correspond to the standard errors. (C) Bacterial growth measured using 614 

viable counts, plotted on a logarithmic scale as the mean (with standard error shown as error bars) 615 

of two measurements (circles and diamonds), shows an increase in the exponential growth rate and 616 

carrying capacity for a higher initial concentration of glycerol. The red crosses indicate the points 617 
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that were unexpectedly high (approximately 1 × 10#4	𝑐𝑓𝑢	𝑚𝐿3#) and therefore considered outliers 618 

and not included in the parameter optimisation. The results of the model fit, with parameters as 619 

specified in Supplementary Tables S6 and S7, are also plotted for the (B) atomic fraction 𝑓f	and (C) 620 

cell density 𝑏. For the 0.1	% glycerol culture the results from two different parameter optimisations 621 

are compared. For the fit that includes respiration (solid line), i.e. 𝜂 included as a free parameter, the 622 

results are given in Supplementary Tables S6 and S7. For the fit that neglects bacterial respiration 623 

(dotted line), i.e. 𝜂′ = 1, the parameter optimisation results are 𝐾i = 6.6 × 103V	𝑚𝑜𝑙𝐶	𝑚𝐿3#, 𝜇f 	=624 

0.15	ℎ3# and for the 0.1	% glycerol culture 𝑏(0) = 1.2 × 10�	𝑐𝑒𝑙𝑙𝑠	𝑚𝐿3# and 𝑋 = 0.025. 625 

 626 

Figure 3: The algal-bacterial co-culture. (A) Example images of the atomic fraction of 𝐶	#$ , 𝑓, 627 

obtained by SIMS analysis of algal and bacterial cells sampled from the co-culture. The colour maps 628 

show the scale, starting at natural abundance. (B) The mean atomic fraction of 𝐶	#$ , 𝑓] and 𝑓f for 629 

algae and bacteria respectively, calculated from the dilution-corrected SIMS measurements for at 630 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/855999doi: bioRxiv preprint 

https://doi.org/10.1101/855999


SIMS-modelling approach to nutrient kinetics H. Laeverenz Schlogelhofer et al 

28 
 

least 5 algal cells and 100 bacterial cells per time-point (circles). Error bars correspond to the 631 

standard errors. (C) Algal and bacterial growth measured using viable counts, plotted as the mean 632 

(with standard error shown as error bars) of two viable count measurements (circles). The results of 633 

two model fits are also plotted for (B) the atomic fractions 𝑓] and 𝑓f, and (C) cell densities 𝑎 and 𝑏. 634 

Fit 1 fixed the initial 𝑓[(0) = 0.64, estimated using results for the pre-labelling culture of algae, 635 

whereas fit 2 included 𝑓[(0) as a free parameter. The model parameter values and initial conditions 636 

are as specified in Supplementary Tables S6 and S8. Although fit 2 gives a better fit to the data, it 637 

gives a low initial atomic fraction for the DOC 𝑓[(0) and high initial DOC concentration 𝑐[(0). 638 

 639 

Figure 4: Nutrient kinetics in the co-culture predicted by the model. The concentrations of (A) B12 640 

and (B) DOC in the co-culture predicted by the nutrient-explicit co-culture model using the 641 

parameter optimisation results obtained from fit 1, see Supplementary Table S6 for details of the 642 

parameter values and initial conditions used. (C) The isotope labelling rate calculated as \{h
\^

 given by 643 

equation (4). 644 
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 645 

Figure 5: Comparison of single cell heterogeneity predicted by the model and measured 646 

experimentally with SIMS. The mean for the dilution-corrected results for 𝑓f obtained using SIMS 647 

are plotted as circles with error bars indicating the standard deviation of the single cell values. The 648 

results of the model fit to the experiments is shown as a solid line and the shaded regions indicate 649 

the predicted range of 𝑓f values when a range in a specific model parameter is considered. (A) The 650 

range of 𝑋 values considered for the 0.1	%, 0.01	%, 0.001	% and no glycerol cultures of axenic 651 

bacteria were 𝑋 ∈ [0.034,0.058], 𝑋 ∈ [0.031,0.053], 𝑋 ∈ [0.016,0.028] and 𝑋 ∈ [0.007,0.011] 652 

respectively. For the co-culture the range considered was 𝑋 ∈ [0.011,0.019]. (B) The range of 𝜂 653 

values considered for the 0.1	%, 0.01	%, 0.001	% and no glycerol cultures of axenic bacteria were 654 

𝜂 ∈ [0.21,0.81], 𝜂 ∈ [0.05,0.25], 𝜂 ∈ [0.09,0.69] and 𝜂 ∈ [0.33,0.93] respectively. For the co-655 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/855999doi: bioRxiv preprint 

https://doi.org/10.1101/855999


SIMS-modelling approach to nutrient kinetics H. Laeverenz Schlogelhofer et al 

30 
 

culture the range considered was 𝜂 ∈ [0.11,0.91]. (C) For the axenic cultures of bacteria 𝜇f ∈656 

[0.11,0.19] and for the co-culture 𝜇f ∈ [0.34,0.50] in units ℎ3#. Variation in 𝑋 best accounts for the 657 

observed temporal trends in the standard deviations of the single cell data for the axenic cultures, 658 

whereas variation in 𝜇f best accounts for the co-culture results. 659 
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