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Abstract: 

In the first days of embryogenesis, transposable element-embedded regulatory sequences 

(TEeRS) are silenced by Kruppel-associated box (KRAB)-zinc finger proteins (KZFPs). 

Many TEeRS are subsequently coopted in transcription networks, but how KZFPs influence 

this process is largely unknown. We identify ZNF417 and ZNF587 as primate-specific 

KZFPs repressing HERVK (human endogenous retrovirus K) and SVA (SINE-VNTR-Alu) 

integrants in human embryonic stem cells (ESC). Expressed in specific regions of the human 

developing and adult brain, ZNF417/587 keep controlling TEeRS in ESC-derived neurons 

and brain organoids, secondarily influencing the differentiation and neurotransmission profile 

of neurons and preventing the induction of neurotoxic retroviral proteins and an interferon-

like response. Thus, evolutionarily recent KZFPs and their TE targets partner up to influence 

human neuronal differentiation and physiology. 
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One Sentence Summary: Young transposable elements and their protein controllers team up 

to regulate the differentiation and function of human neurons. 

 

Main Text: 

Some 4.5 million transposable element (TE)-derived sequences are disseminated across the 

human genome, many of which integrated within the last few tens of million years (1). TEs are 

typically enriched in transcription factor (TF) binding sites, and correspondingly influence 

gene expression in a broad range of biological events (2–5). However, TEeRS are silenced 

during the earliest phase of embryogenesis by KZFPs, which dock KAP1 (KRAB-associated 

protein 1, a.k.a. TRIM28) and associated heterochromatin inducers to TE loci (6–8). The rapid 

evolutionary selection of KZFP genes was initially interpreted as solely reflecting the host 

component of an arms race, but recent data suggest that KZFPs team up with TEs to build 

species-restricted layers of epigenetic regulation (8, 9). The present work provides direct 

support for this model.  

We previously determined that a 35bp-long TE sequence encompassing the HERVK14C 

primer binding site (PBS)-encoding region (coined HERVK-R) confers KAP1-induced 

repression to a nearby PGK promoter in hESC (10). As part of a large-scale screen, we 

identified ZNF417 and ZNF587 as selectively enriched at loci containing this HERVK 

sequence (9). Depleting these two KZFPs from hESC restored expression of an HERVK-R-

containing PGK-GFP lentivector (LV) (Fig. 1A), while producing them in murine ESCs 

silenced this vector, demonstrating the sequence-specific repressor potential of ZNF417 and 

ZNF587 and the likely absence of mouse orthologue (fig. S1A). Phylogenetic analyses 

confirmed that ZNF417 emerged in the human ancestral genome ahead of the New World 

Monkey split 43 million years ago and that ZNF587 arose by duplication some 24 million years 

later (fig. S1, B and C). ZNF417 and ZNF587 display 98% amino acid homology with some 
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differences in their zinc fingerprints, the series of amino acids trios predicted to dictate the 

sequence specificity of their DNA binding (Fig. 1B and fig. S1, B and C). Only rare individuals 

harbor homozygous loss of function (LoF) mutations in ZNF417 or ZNF587 in the gnomAD 

repertoire (https://gnomad.broadinstitute.org/) (Fig. 1B), and the two genes exhibit fairly 

comparable patterns of expression across tissues according to GTEX (https://gtexportal.org/) 

and the BrainSpan Atlas of the Developing Human Brain (human.brain-map.org), with higher 

levels of transcripts in adult pituitary gland, thyroid, ovary, uterus and in pre-natal compared 

to post-natal brain structures (Fig. 1C and fig. S1D).  

Chromatin immunoprecipitation- sequencing (ChIP-seq) of H1 hESCs overexpressing HA-

tagged versions of ZNF417 and ZNF587 identified 321 and 451 peaks, respectively, including 

171 in common. About 85% mapped to primate-restricted LTR/ERVK, SVAs and LTR/ERV1 

(Fig. 1D and fig. S2, A to C), amongst which 12 human-specific LTR/ERVK, and 4 out of 8 

HML-2 HERVK previously noted to be polymorphic in the population (11) (table S1). KAP1, 

which binds both KZFPs (fig. S2D), and H3K9me3, the repressive mark instated by the KAP1-

associated histone methyltransferase SETDB1, were enriched at the PBS-coding sequence of 

ZNF417/ZNF587-bound LTR/ERVKs in hESCs (fig. S2E). Most bound ERV sequences 

correspond to the PBSLys1.2-coding region, and a highly homologous motif is found in SVA-D 

integrants (Fig. 1E). Furthermore, SMILE-seq (12) revealed that ZNF417 and ZNF587 had a 

higher affinity for methylated than unmethylated versions of this sequence (fig. S2F). 

Correspondingly, these KZFPs inefficiently repressed the HERVK-R-PGK-GFP LV in hESCs 

depleted for the de novo DNA methyltransferases DNMT3A and 3B, although this might also 

reflect indirect effects (fig. S2G).   

The knockdown (KD) of ZNF417/ZNF587 in hESC resulted in upregulating (fold change>2, 

FDR<0.05) 857 TEs, most notably members of the LTR/ERV1, LTR/ERVL-MalR, SVA 

(P<0.001, hypergeometric test) and LTR/ERVK (P=0.055) subgroups, many of which 
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harbored a ZNF417/ZNF587 binding motif (Fig. 2A, left) and were normally bound by KAP1 

(Fig. 2A middle) (P<0.001, one-sided Fisher’s exact test). Correspondingly, TEs normally 

bound by these KZFPs lost H3K9me3 and gained H3K4me1 and H3K27ac and were more 

expressed than their unbound counterparts in knockdown ESC (Fig. 2B, top). Expression of 

854 genes was also altered (Fig. 2A, right, and table S2), a majority upregulated (fold 

change>2, FDR< 0.05), some (P=0.039, one-sided Fisher’s exact test) with a ZNF417/587 peak 

within 100kb of the transcription start site (TSS). Those within 20kb of a ZNF417/587-bound 

TE lost H3K9me3 and gained H4K4me1 at the TSS upon KZFP KD, but rarely displayed 

higher levels of H3K27Ac and transcription, consistent with a poised promoter state (Fig. 2B, 

middle). In contrast, the TSS of genes induced in this setting displayed on average increased 

levels of H3K4me1 and H3K27ac but no change in H3K9me3 (Fig. 2B bottom), probably 

because many of these genes, including 130 interferon-sensitive genes (ISGs) and the putative 

targets of 31 upregulated TFs, were indirectly rather than directly controlled by the KZFPs. 

Using publicly available data, we found that TE integrants bound by ZNF417/ZNF587 in hESC 

were induced during embryonic genome activation (EGA), repressed upon naïve-to-primed 

hESC conversion (Fig. 3A), and that genes controlled by these two KZFPs were relatively 

more expressed during human than macaque EGA (fig. S3A), consistent with our recent 

proposal that KZFPs tame the transcriptional activity of EGA-promoting TE enhancers (8). 

ZNF417/587-targeted TEs were also more expressed in brain and testis than in other tissues 

(fig. S3B), and we found 40% of these loci to overlap with regions classified as brain and spinal 

cord enhancers in the EnhancerAtlas 2.0 (13). Accordingly, several genes normally expressed 

in the brain stood out amongst transcriptional units upregulated in hESC depleted for 

ZNF417/587. For instance, AADAT, the product of which facilitates the synthesis of the 

neuroprotective kynurenic acid (14), and PRODH, a gene highly expressed in the brain where 

it influences GABAergic neurotransmission and previously linked to schizophrenia (15, 16), 
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both harbor ZNF417/587-recruiting HERVKs upstream of their promoters and were markedly 

induced by depletion of these KZFPs (Fig. 3B). Correspondingly, levels of ZNF417/587 

transcripts anti-correlate during development and in many regions of the adult brain with those 

of HERVKs and PRODH (Fig. 3C and fig. S3, C and D).  

To test functionally whether ZNF417/ZNF587-controlled TEeRS act as neuron-specific 

enhancers, we first used an in vitro neuronal differentiation system where the doxycycline-

inducible expression of Neurogenin-1 and -2 in human induced pluripotent stem cells (iPSC) 

triggers their high-efficiency differentiation into bipolar neurons (17) with TEs expression 

tightly regulated during the differentiation process (fig. S4A). We perturbed this system by 

either decreasing (via RNA interference) or increasing (via overexpression) the levels of the 

two KZFPs, or by repressing some of their HERVK and SVA targets with a CRISPR-based 

system (CRISPRi) (18). ZNF417/587-depleted iPSCs displayed a dysregulation of genes and 

TEs very reminiscent of that observed in hESCs (Fig. 4A). Neurons derived therefrom were 

characterized by the aberrant expression of non-neuronal genes (e.g. endothelium) (19) and the 

upregulation of transcripts related to potassium channel activity or to GABAergic 

neurotransmission (e.g. PRODH), whereas by contrast HERVK/SVA-CRISPRi-modified 

neurons displayed an induction of sodium and calcium channel-associated RNAs and a drop in 

GABAergic-related transcripts (Fig. 4, B and C and fig. S4, B and C). Furthermore, amongst 

160 HERVKs predicted to encode for at least fragments of a retroviral envelope protein (ENV) 

recently demonstrated to be neurotoxic in the mouse brain and upregulated in cortical and 

anterior horn neurons of patients with sporadic amyotrophic lateral sclerosis (ALS) (20), we 

found fifteen to be targeted by ZNF417/587 and six of these to be upregulated upon 

ZNF417/587 KD in iPSC-derived neurons (Fig. 4D). While ENV protein could not be easily 

detected in these cells, its induction was verified in NCCIT cells depleted for ZNF417/587 

(Fig. 4E). We also observed an upregulation of the np9 and rec alternative transcripts, which 
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encode for proteins with oncogenic potential and promoting expression of the IFITM1 antiviral 

factor (21–25). As well, KZFP-depleted iN were characterized by the upregulation of IFNγ and 

ISGs such as TNF, IFITMs, APOBEC3B, IRF1, IFIH1 (a.k.a. MDA5), IFI44L, MOV10, 

RTP4, and Bst2 (Fig. 4, F and G and table S3) (26). This phenomenon was only partly 

abrogated by inhibiting the cytoplasmic DNA sensor STING (a.k.a.TMEM173) (fig. S4D), 

suggesting that it was not just due to ERV or SVA reverse transcripts but likely to additional 

TE-derived products as observed in TREX1- or ADAR1-inactivated astrocytes or neuronal 

progenitor cells, respectively, and upon Rec overexpression or treatment with inhibitors of 

DNA methyltransferases (23, 27–31). Reciprocally, levels of several ISG transcripts were 

decreased in HERVK-CRISPRi iN (Fig. 4G) or in ZNF417/587-overepressing iPSCs (fig. 

S4E). Finally, brain organoids derived from ZNF417/587-knockdown hESCs were smaller in 

size and displayed a greater abundance of PAX6-expressing immature cells than controls (Fig. 

4, H and I), as well as increased levels of LTR/ERVK, SVAs and LTR/ERV1 RNA, alterations 

of neurotransmitter expression profiles and an inflammatory response reminiscent of that 

observed in KZFP-depleted pluripotent stem cells and neuron derivatives (Fig. 4, J and K and 

fig. S4F). 

In sum, these results demonstrate that rather than just silencing TE-embedded regulatory 

sequences during early embryogenesis human KZFPs keep controlling their transcriptional 

impact later in development and in adult tissues. They further indicate that the evolutionary 

selection of some KZFP genes was key to the domestication of evolutionarily recent TEeRS 

towards the genesis of transcription networks active in the human brain. They finally imply 

that inter-individual differences in ZNF417, ZNF587 or their target TE-derived loci, many of 

which are species-specific and display some polymorphism in the human population, might 

translate into variations in brain development, function, and disease susceptibility.  
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Fig. 1: Genomic characterization of ZNF417/587. 

(A) Expression from a PGK-GFP cassette cloned downstream of KAP1-restricted (R) or -non 

restricted (NR) HERVK PBS sequences in control (Ctrl) or ZNF417/587 KD hESCs (average 

and s.d. values of duplicates). UnT: untransduced. (B) LoF mutations for ZNF417/587 with 

numbers of most frequent alleles amongst >140’000 individuals (in red homozygous LoF 

mutations). Dark and light purple boxes indicate intact and degenerated ZFs. (C) ZNF417/587 

expression in brain development and substructures according to BrainSpan Atlas of the 

Developing Human Brain. Pcw, post-conception week. FTS: forebrain fetal transient 

structures, D: diencephale, My: myelencephale, Me: metencephale, M1C_S1C: primary motor 

sensory cortex, PCx: parietal cortex, TCx: temporal neocortex, LGE: lateral ganglionic 

eminence, MGE: medial ganglionic eminence, URL: upper rhombic lip, CB: cerebellum, CBC: 

cerebellar cortex. (D) ZNF417/587-bound TEs in hESCs, with histogram representing 

percentage of integrants from each TE subfamily (P values, hypergeometric test) and Venn 

diagram total number of ChIP-Seq peaks. (E) Top: PBS consensus sequences of bound 

LTR/ERVs and SVAs, compared with PBSLys1.2 and R- and NR- HERVK14C sequences. 

Bottom: Predicted binding motifs according to Rsat. 
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Fig. 2: Impact of ZNF417/587 depletion in pluripotent stem cells. 

(A) Dot-plots of RNAseq from ZNF417/587 KD vs. control hESCs, outlining differentially 

expressed (DE) TEs and genes (fold change>2, FDR<0.05). TEs with predicted ZNF417 

(yellow), ZNF587 (green) or both (pink) binding motifs (left panel) or bound by KAP1 in hESC 

(middle panel) or genes with a TSS closer than 100kb from a ZNF binding site (right panel) 

are highlighted. (B) Bar plots depicting loss of H3K9me3 or gain in H3K4me1 or H3K27ac at 

indicated loci. Upper panel: ZNF417/587-bound vs. -unbound TEs; middle panel: TSS of 

coding genes close to (<20kb) vs. distant from a KZFP peak; lower panel: TSS of coding DE 

genes vs. all genes (P values, hypergeometric test). Right: fold change in expression in KD vs. 

WT hESC of loci illustrated on left (P values, Wilcoxon test). 
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Fig. 3: ZNF417/587-mediated repression of TEeRs and neuron-specific genes. 

(A) Expression of TEs bound or not bound at indicated stages of human development using 

single-cell (left panel) or in naïve versus primed (right panel) hESC RNAseq data. (B) IGV 

screenshots of independent RNAseq replicates from control (Ctrl) and KZFP KD hESCs with 

boxed ZNF417/587 peaks at HERVK integrants upstream of AADAT (upper panel) and 

PRODH (lower panel). (C) Spatial representation of ZNF417, HERVK and PRODH expression 

in early prenatal and childhood brains, using RNAseqs from the Brain Span Atlas of the 

Developing Human Brain. Pre-natal brain is depicted as anatomically adult for consistency.  
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Fig. 4: Impact of ZNF417/587 on neuronal differentiation, function and homeostasis. 

(A) Number of DE elements in ZNF417/587 KD hESCs (light blue) and in common between 

hESCs+hiPSCs (dark blue). (B) Fold change in expression in KZFPs KD (left panels) or 

HERVK-silenced (right panels) vs. control induced neurons (iN) of genes related to each 

indicated category (as defined in Allen Brain Atlas GOs) compared to same number of random 

genes in each case. (C) Examples of genes DE in KZFPs KD and HERVK-CRISPRi iN and 

related to GABA-ergic pathway. (D) IGV screenshot of a region encompassing a full length 

HERVK encoding a consensus envelope with (top) RNAseq duplicates of control vs. KZFPs 

KD and control vs. HERVK-CRISPRi iN, and (bottom) ZNF417 and ZNF587 ChIPseq 

triplicates in H1 hESCs. (E) Western blot of independent duplicates of NCCIT-control or -

KZFPs depleted cells lysates probed with HERVK anti-ENV antibody. Actin is used as loading 

control. (F) Dot-plot depicting expression of IFN-responsive genes (at least upregulated 5 

times by IFN treatment in normal tissues or cells in Interferome database) in KZFPs KD vs. 

control iN. DE genes (Fc>2, FDR< 0.05) are highlighted in red. Venn diagram indicates 

number of DE genes stimulated by IFNs Type I, II or III. (G) Fold change expression of 

antiviral IFN-responsive genes in KZFPs KD and HERVK-CRISPRi vs. control iN (ND: not 

detected). (H) Brain organoids obtained 43 days post-differentiation of control or KZFPs KD 

hESCs, with size quantification below (Mann Whitney U-Test). (I) PAX6 immunostaining and 

quantification by RT-qPCR of indicated genes in organoids at 20 days post-induction of 

differentiation of indicated hESCs (two tailed T-test). (J) Fold change expression of neuronal 

function-related genes in KZFPs KD vs. control 20-days organoids. (K) Fold change 

expression of IFN-responsive genes in KZFPs KD vs. control 20-days organoids. For panels 

C, G, J, K, the average fold change of independent RNA-seq duplicates is shown 

(***FDR<0.001, **FDR<0.01, *FDR<0.05). 
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