
1

Combining electrophysiology with MRI
enhances learning of surrogate-biomarkers
Denis Alexander Engemann1,* Oleh Kozynets1 David Sabbagh1,2,3 Guillaume
Lemaitre1 Gaël Varoquaux1 Franziskus Liem4 Alexandre Gramfort1

1Université Paris-Saclay, Inria, CEA, Palaiseau, France
2Inserm, UMRS-942, Paris Diderot University, Paris, France
3Department of Anaesthesiology and Critical Care, Lariboisière Hospital, Assistance Publique
Hôpitaux de Paris, Paris, France
4University Research Priority Program Dynamics of Healthy Aging, University of Zurich,
Switzerland

*correspondence: denis-alexander.engemann@inria.fr

Abstract

Electrophysiological methods, i.e., M/EEG provide unique views into brain health. Yet,
when building predictive models from brain data, it is often unclear how electrophysi-
ology should be combined with other neuroimaging methods. Information can be re-
dundant, useful common representations of multimodal data may not be obvious and
multimodal data collection can be medically contraindicated, which reduces applicabil-
ity. Here, we propose a multimodal model to robustly combine MEG, MRI and fMRI for
prediction. We focus on age prediction as surrogate biomarker in 674 subjects from the
Cam-CAN. Strikingly, MEG, fMRI and MRI showed additive effects supporting distinct
brain-behavior associations. Moreover, the contribution of MEG was best explained by
source-topography of power spectra between 8 and 30 Hz. Finally, we demonstrate that
themodel maintains benefits of stacking when data is missing. The proposed framework
hence enables multimodal learning for a wide range of biomarkers from diverse types
of brain signals.

Introduction

Non-invasive electrophysiology assumes a unique role in clinical neuroscience. Magneto-
and electophencephalography (M/EEG) have an unparalleled capacity for capturing
brain rhythms without penetrating the skull. EEG can be readily operated in a wide array
of peculiar situations, such as surgery (Baker et al., 1975), flying an aircraft (Skov and
Simons, 1965) or sleeping (Agnew Jr et al., 1966). Compared to EEG, MEG captures a
more selective set of brain sources with greater spectral and spatial definition (Ahlfors
et al., 2010; Hari et al., 2000). Yet, neither of them is optimal for isolating anatomi-
cal detail. Clinical practice in neurology and psychiatry therefore relies on additional
neuroimaging modalities with enhanced spatial resolution such as magnetic resonance
imaging (MRI), functional MRI (fMRI) or positron emission tomography (PET). Recently,
machine learning has received significant interest in clinical neuroscience for its po-
tential to predict from such heterogeneous multimodal brain data (Woo et al., 2017).
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Unfortunately, the effectiveness of machine learning in psychiatry and neurology is con-
strained by the lack of large high-quality datasets (Woo et al., 2017; Varoquaux, 2017;
Bzdok and Yeo, 2017; Engemann et al., 2018) and comparably limited understanding
about the data generating mechanisms (Jonas and Kording, 2017). This, potentially,
limits the advantage of complex learning strategies proven successful in purely somatic
problems (Esteva et al., 2017; Yoo et al., 2019; Ran et al., 2019).

In clinical neuroscience, prediction can therefore be pragmatically approached with
classical machine learning algorithms (Dadi et al., 2019), expert-based feature engi-
neering and increasing emphasis on surrogate tasks. Such tasks attempt to learn on
abundant high-quality data an outcome that is not primarily interesting, to then exploit
its correlation with the actual outcome of interest in small datasets. This can be seen
as transfer learning problem (Pan and Yang, 2009) which, in its simplest form, is imple-
mented by reusing predictions from a surrogate-marker model as predictors in the small
dataset. Over the past years, predicting the age of a person from its brain data has crys-
talized as a surrogate-learning paradigm in neurology and psychiatry (Dosenbach et al.,
2010). First results suggest that the prediction error of models trained to learn age from
brain data of healthy populations provides clinically relevant information (Cole et al.,
2018; Ronan et al., 2016; Cole et al., 2015) related to neurodegenerative anomalies,
physical and cognitive decline (Kaufmann et al., 2019). For simplicity, this characteris-
tic prediction error is often referred to as the brain age delta or Δ (Smith et al., 2019).
Can learning of such a surrogate biomarker be enhanced by combining expert-features
from M/EEG, fMRI and MRI?

Research on aging has suggested important neurological group-level differences be-
tween young and elderly people: Studies have found alterations in grey matter density
and volume, cortical thickness and fMRI-based functional connectivity, potentially index-
ing brain atrophy (Kalpouzos et al., 2012) and decline-related compensatory strategies.
Peak frequency and power drop in the alpha band (8-12Hz), assessed by EEG, has been
linked to aging-related slowing of cognitive processes, such as the putative speed of at-
tention (Clark et al., 2004; Babiloni et al., 2006). Increased anteriorization of beta band
power (15-30Hz) has been associated with effortful compensatory mechanisms (Gola
et al., 2013) in response to intensified levels of neural noise, i.e., decreased temporal
autocorrelation of the EEG signal as revealed by flatter 1/f slopes (Voytek et al., 2015).
Importantly, age-related variability in fMRI and EEG seems to be independent to a sub-
stantial degree (Kumral et al., 2019).

The challenge of predicting at the single-subject level from such heterogenous neu-
roimaging modalities governed by distinct data-generating mechanisms has been re-
cently addressed with model-stacking techniques. Rahim et al. (2015) enhanced classi-
fication in Alzheimer’s disease by combined fMRI with PET prediction stacking (Wolpert,
1992), however, such that the stackedmodels reflected input data frommodalities. Liem
et al. (2017) have then applied this approach to age-prediction and found that combining
anatomical MRI with fMRI significantly helped reduce errors while facilitating detection of
cognitive impairment. This suggests that stacked prediction might also enable combin-
ing MRI with electrophysiology. Yet, this idea faces one important obstacle related to the
clinical reality of data collection. It is often not practical to do multimodal assessments
for all patients. Scanners may be overbooked, patients may not be in the condition to
undergo MRI and acute demand in intensive care units may dominate priorities. Incom-
plete and missing data is therefore inevitable and has to be handled to unleash the full
potential of multimodal predictive models.

To tackle this challenge, we developed a stacking model to predict age from elec-
trophysiology and MRI including any case for which there was the opportunity to see
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Figure 1. Opportunistic stacking approach. The proposed method allows to learn from any case for
which at least one modality is available. The stacking model first generates, separately for each modality,
linear predictions of age for held-out data. 10-fold cross-validation with 10 repeats is used. This step
based on ridge regression helps reduce the dimensionality of the data by finding the major directions of
variance within each modality. The predicted age is then used as derived set of features in the following
steps. First, missing value are handled by a coding-scheme that duplicates the second-level data and
substitutes missing values with arbitrary small and large numbers. A random forest model is then trained
with the missing-value coded age-predictions from each ridge model as features to predict the actual age,
potentially improving the prediction performance by combining additive information and correcting the bias
of the linear model on a lower-dimensional representation.

at least one modality. We therefore call it opportunistic stacking model. For valida-
tion, we chose the currently largest public multimodal imaging and electrophysiology
resource: The Cam-CAN dataset contains rich neuropsychological data, magnetic res-
onance imaging as well as non-invasive high-resolution electrophysiology in the form of
magnetoencephalography (MEG) for more than 650 healthy subjects between 17 and
90 years (Shafto et al., 2014; Taylor et al., 2017). The choice of MEG has the advan-
tage of improved spatial and frequency resolution. This should help identify robust and
translatable electrophysiology markers potentially suitable for clinical EEG. Therefore,
our study focuses on the following questions: 1) Can MRI-based prediction of age be
enhanced with electrophysiology? 2) Do fMRI and MEG carry non-redundant clinically
relevant information? 3) What are the most informative electrophysiological markers of
aging? 4) Can potential advantages of multimodal learning be maintained in the pres-
ence of missing values?

Results

Opportunistic prediction-stacking approach

We begin by summarizing the proposed method. To build a model for predicting age
from electrophysiology, functional MRI and anatomical MRI, we employed prediction-
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stacking (Wolpert, 1992). As in Liem et al. (2017), here, the stacked models referred to
different input data instead of alternative models on the same data. We used ridge re-
gression (Hoerl and Kennard, 1970) to linearly predict age from high-dimensional inputs
of each modality. Linear predictions were based on distinct features from anatomical
MRI, fMRI and MEG that have been commonly associated with aging. For MEG, we ex-
tracted evoked response latencies, alpha band peak frequency, 1/f slope topographies,
source-level spectral power topographies and bivariate functional connectivity. For MRI
we included cortical thickness, cortical surface area and subcortical volume. For fMRI
we computed functional connectivity from the time-series. For detailed description of the
features, see Table 3, section Feature extraction in materials and methods. To correct
for the necessarily biased linear model, we then used non-linear random forest regres-
sor with age predictions from the linear model as lower-dimensional input features.

Thereby, we made sure to use consistent cross-validation splits for all layers and
automatically selected central tuning-parameters of the linear model and the random
forest with nested cross-validation. Our stacked models handle missing values by treat-
ing missing value as data, provided there is an opportunity to see at least one modal-
ity (Josse et al., 2019). We therefore call it opportunistic stacking model. Concretely, the
procedure duplicated all variables and inserted once a small value and once a very large
value where data was initially missing. We chose biologically implausible age values of
-1000 and 1000, respectively. For an illustration of the proposed model architecture, see
Fig. 1 and section Stacked-Prediction Model for Opportunistic Learning in materials and
methods for a detailed description of the model.

fMRI and MEG non-redundantly enhance anatomy-based prediction

MEG and fMRI both measure neuronal activity and convey information at smaller time-
scales than anatomical MRI. How would they add to the prediction of brain age when
combined with anatomical MRI? Fig. 2A depicts a model comparison in which anatomi-
cal MRI served as baseline and which tracked changes in performance as fMRI, MEG
were both added through stacking (black boxplot). Anatomical MRI scored an expected
error of about 6 years, which was on average reduced by almost one year when adding
either MEG or fMRI to the model. The performance gain was more than one year when
adding both MEG and fMRI to the model with an expected average error about 4.7 years.
The uncertainty intervals suggest that these differences were systematic and can be ex-
pected to generalize. The final drop in prediction error also suggests that MEG and
fMRI carry independent information as, otherwise, the random forest would have simply
picked the best of the two inputs without showing further improvement. Indeed, when
comparing the prediction errors of MEG-based and fMRI-based models Fig. 2B, one
can see that the errors are largely uncorrelated. Interestingly, fMRI, sometimes makes
extreme errors for cases better predicted by MEG in younger people, whereas MEG
makes errors in distinct cases from young and old age groups. When adding anatomi-
cal MRI to each model, the errors become somewhat more dependent but still showed
no tight correlation.

This additive component should become apparent when considering predictive simu-
lations on how the model actually combined MEG, fMRI and MRI. Figure 2 supplement
1 depicts a two-dimensional partial dependency analysis (Hastie et al., 2005, chap-
ter 10.13.2). Intuitively, for our model, this analysis shows how stacked predictions
change as the input predictions from different modalities into the stacking layer change,
two at a time. The results show that additive patterns dominate where the final age
output increases equally as both input predictions increase. It is, however, notewor-
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Figure 2. Multimodal age-prediction with MRI, fMRI and MEG. (A) Distribution of paired differences
across cross-validation splits between stacking with anatomical MRI (blue) functional modalities, i.e., fMRI
(yellow) and MEG (green) and complete stacking (black). Boxplot whiskers indicate the area including 95
percent of the values. fMRI and MEG show similar improvements over purely anatomical MRI around 0.8
years of error. Combining all modalities reduced the error by more than one year on average. (B) Rela-
tionship between prediction errors from fMRI and MEG. Left: unimodal models. Right: models including
anatomy. Each point shows the score for one subject averaged across splits. The actual age of the sub-
ject is represented by the color and size of the dots. MEG and fMRI errors were not obviously associated.
When anatomy was excluded, extreme errors occurred in different age groups. The findings suggest that
fMRI and MEG convey non-redundant information. For supporting results, see Figure 2 supplement 1-2.

thy that the range of output ages was somewhat wider when the age input fMRI was
manipulated, suggesting that the model trusted fMRI more than MEG.

Finally, it is worthwhile to inspect the predictions errors in a continuous fashion across
age Figure 2 supplement 2. To better understand the impact of stacking we also in-
cluded the other single-modality models (top-row). It is striking that all models show
the typical brain age bias reported in the literature consisting in underfitting very old or
young sub-populations (Smith et al., 2019). However, one can see how the bias is some-
what mitigated when combining multiple modalities (bottom-row). One can also see that
multimodal stacking helped avoid extreme errors beyond 20 years, hence, seemed to
mitigate the impact of outliers. These findings demonstrate that MEG and fMRI both
add non-redundant information to an MRI-based age-prediction model. This raises the
question if this additive information also implies non-redundant associations with neu-
ropsychological assessments.

Brain age Δ learnt fromMEG and fRMI indexes distinct cognitive functions

The brain-ageΔ has been interpreted as indicator of health where positive Δ has been
linked to reduced fitness or health-outcomes (Cole et al., 2015, 2018). Does improved
performance through stacking strengthen the effect-sizes? Do MEG and fMRI detect
non-redundant associations? Fig. 3 summarizes linear correlations between the brain
age 𝛿 and the 38 neuropsychological scores after projecting out the effect of age (see Anal-
ysis of brain-behavior correlation and Table 4 for a detailed overview). As effect sizes
can be expected to be small in the curated and healthy population of the Cam-CAN
dataset, we considered classical hypothesis testing for characterizing associations. Tra-
ditional significance testing (panel A) suggests that the best stacking models supported
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Figure 3. Residual correlation between brain ageΔ and neuropsycholgical assessment. (A) Man-
hattan plot for linear fits of 38 neuropsychology scores against brain ageΔ from different models (see
Table 4 for overview). Y-axis: −𝑙𝑜𝑔10(𝑝). X-axis: individual scores, grouped and colored by stacking
model. Arbitrary jitter is added along the x-axis to avoid overplotting. For convenience, we labelled the
top scores arbitrarily thresholded by the uncorrected 5% significance level, indicated by pyramids. For ori-
entation, traditional 5%, 1% and 0.1% significance levels are indicated by solid, dashed and dotted lines,
respectively. (B) Corresponding standardized coefficients of each linear model (y-axis). Identical labelling
as in A. One can see that, stacking often improves effect sizes for many neuropsychological scores and
that different input modalities show complementary associations. For supporting results, see Figure 3
supplement 1-3.

discoveries for between 20% (7) and 25% (9) of the scores. Dominating associations
concerned fluid intelligence, depression, sleep quality (PSQI), systolic and diastolic
blood pressure (cardiac features 1,2), cognitive impairment (MMSE) and different types
ofmemory performance (VSTM, PicturePriming, FamousFaces, EmotionalMemory). The
model coefficients in panel B depict the strength and direction of association. One can
see that stacking models not only tended to suggest more discoveries as their perfor-
mance improves but also led to stronger effect sizes. However, the trend is not strict as
fMRI seemed to support unique discoveries that disappeared when including the other
modalities. Similarly, some effect sizes are even slightly stronger in sub-models, e.g.,
for fluid intelligence in MRI & MEG. A priori, the full model enjoys priority over the sub-
models as its expected generalization estimated with cross-validation was lower. This
would imply that some of the discoveries suggested by fMRI may suffer from overfit-
ting, but are finally corrected by the full model. Nevertheless, many of the remaining
associations were found by multiple methods (e.g. fluid intelligence) whereas others
were uniquely contributed by fMRI (e.g. depression) or MEG (visual short term mem-
ory) or only appear when combining all methods (sleep quality assessed by PSQI). It
is also noteworthy that the directions of the effects are consistent with the predominant
interpretation of the brain age Δ as indicator of mental or physical fitness (note that high
PSQI score indicate sleeping difficulties whereas lower MMSE scores indicate cognitive
decline) and directly confirm previous findings (Liem et al., 2017; Smith et al., 2019).

These findings suggest that brain ageΔ learnt from fMRI orMEG carries non-redundant
information on clinically relevant markers of cognitive health and that combining both
fMRI and MEG with anatomy can help detect health-related issues in the first place.
This raises the question of what aspect of the MEG signal contributes most.
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Figure 4. MEG-based age-prediction. (A) Error distributions for stacking models selected from five
families of linear inputs: sensor space (sky blue), source power (dark orange), source connectivity (blue),
source power and connectivity combined (light orange) and the full model based on all linear inputs. Best
results were obtained when combining source power with connectivity. (B) Importance of linear-inputs
during stacking. X-axis: mean importance (1000 permutations). Y-axis: corresponding performance of
linear model. Model family is indicated by color, variants by shape. Power and covariance features were
extracted for source power and envelopes. Sensor-space features encompassed 1/f and peak variants
(See Table 3). Top-performing age-predictors are labeled for convenience (P = power, E = envelope,
cat = concatenated across frequencies, greek letters indicate the frequency band). Some age-inputs
were useful to the Random Forest despite not making strong stand-alone models. For supporting results,
see Figure 4 supplement 1-2.

MEG-based age-prediction is explained by source-topography of power
spectra

Whether MEGor EEG-based assessment is practical in the clinical context also depends
on what types of signatures are most predictive and how easily they can be combined.
We therefore additionally considered purely MEG-based age prediction with the stack-
ing method to address the following questions. Can the stacking method also be helpful
to combine MEG-specific features? Are certain frequency bands of dominating impor-
tance? Is information encoded in topographic patterns or more related to interactions
between brain regions? Fig. 4 A compares alternative MEG-based models that stacked
different blocks of MEG-features. All stackingmodels performed consistently better than
chance as assessed by the error obtained when predicting the average age from the
training data. Sensor space features showed the lowest performance with an expected
mean absolute error around 11 years. All source space models performed markedly bet-
ter with expected errors between 8 and 6.5 years. Interestingly, models based on power
spectra (‘power’) only performed somewhat better than models based on bivariate con-
nectivity (‘connectivity’), while best results were obtained when combining power with
connectivity (‘combined’). Adding sensor space features did not lead to any visible im-
provements (‘full’). This suggests that regional changes in power spectra contain most
information while connectivity adds another portion of independent information but is
otherwise redundant with power. A similar picture emerges when inspecting the full
model in terms of permutation-based variable importance Fig. 4 B. Sensor space fea-
tures were least influential, whereas top contributing features were all related to power
and connectivity, which, upon permutation, increased the error by up to one year. The
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Figure 5. Opportunistic learning performance. (A) Comparisons between opportunistically trained
model and models restricted to common available cases. Opportunistic versus restricted model with
different combinations scored on all 536 common cases (circles). Same analysis extended to include
extra common cases available for sub-models (squares). Fully opportunistic stacking model (all cases, all
modalities) versus reduced non-opportunistic sub-models (fewer modalities) on the cases available to the
given sub-model (diamonds). One can see that multimodal stacking is generally of advantage whenever
multiple modalities are available and does not impact performance compared to restricted analysis on
modality-complete data. (B) Performance for opportunistically trained model for subgroups defined by
different combinations of available input modalities, ordered by average error. Points depict single-case
prediction errors. Boxplot-whiskers show the 5% and 95% uncertainty intervals. When performance was
degraded, important modalities were absent or the number of cases was small.

most informative input to the stacking model were ridge regression models based on ei-
ther signal power or Hilbert analytic signal power concatenated across frequency bands
Pcat, Ecat. Additional contributions were related to power envelope connectivity (without
source leakage correction) as well as source power in the beta (15-30Hz) and alpha (8-
15Hz) band frequency range. The results suggest that regional cross-frequency effects
are best summarized with a single linear model but additional non-linear additive effects
exist in specific frequency bands.

To explore how the stacking model combined the different prediction inputs, we con-
sidered a partial-dependency analysis (Hastie et al., 2005, chapter 10.13.2) in Figure 4
supplement 1. For our model, this amounts to simulating how final stacked predictions
change as age predictions from the first layer linear models increase. Results revealed a
staircase pattern suggesting dominant monotonic but not non-linear relationship. More-
over, the analysis revealed that more important input models had wider ranges of age
predictions and were, on average, less strongly corrected by shrinkage toward the mean
age. This provides some insight on how the stacking model actually improves over the
linear model, that is, by pulling implausible extreme predictions towards the mean pre-
diction. Importantly, the best stacked models scored lower errors than the best linear
models (Figure 4 supplement 2), suggesting that stacking achieved more than mere
variable selection and instead extracted non-redundant information from the inputs.

These findings show that MEG-based prediction of age, is enabled by features that
can be relatively easily accessed in terms of computation and data processing. More-
over, the stacking approach applied to MEG data helped to improve beyond the linear
model.
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Advantages ofmultimodal stacking can bemaintained on populations with
incomplete data

One important obstacle for combining signals from multiple modalities in clinical set-
tings is that not all modalities are available for all cases. So far we have restricted the
analysis to 536 cases for which all modalities were present. Can the advantage of mul-
timodal stacking be maintained in the absence of complete data or will missing values
mitigate prediction performance? To investigate this question, we trained our stacked
model on all 674 cases for which we had the opportunity to extract at least one feature
on any modality, hence, we termed it opportunistic stacking (see 1 and Table 1 in sec-
tion Sample in materials and methods). We first compared the opportunistic model with
the restricted model on the cases with complete data Fig. 5A. Across stacking models,
performance was virtually identical, even when extending the comparison to the cases
available to the sub-model with fewer modalities, e.g., MRI & fMRI. We then scored the
fully opportunistic model trained on all cases and all modalities and compared it to dif-
ferent non-opportunistic sub-models on restricted cases (Fig. 5A, squares). The fully
opportunistic model always out-performed the sub-model. This raises the question of
how the remaining cases would be predicted for which fewer modalities were available.
Fig. 5B shows the performance of the opportunistic split by sub-groups defined by dif-
ferent combinations of input modalities available. As expected, performance degraded
considerably on sub-groups for which important features (as delineated by the previous
results) were not available. See for example the sub-group for which only sensor-space
MEG was available. This is not surprising, as prediction has to be based on data and is
necessarily compromised if features important at train-time are not available at predict-
time. Importantly however, this finding suggests that the opportunistic model operates
conservatively: The performance on the sub-groups reflects the quality of the features
available, hence, enables learning from the entire data.

Discussion

We have demonstrated improved learning of surrogate biomarkers by combining elec-
trophysiology, functional and anatomical MRI. Here, we have focused on the example
of age-prediction by multimodal modeling on 674 subjects from the Cam-CAN dataset,
the currently largest publicly available collection of MEG, fMRI and MRI data. Our re-
sults suggest that MEG and fMRI both substantially improved age-prediction when com-
bined with anatomical MRI. We have then explored potential implications of the ensuing
brain-age Δ as a surrogate-biomarker for cognitive and physical health. Our results
suggest that MEG and fMRI convey non-redundant information on cognitive functioning
and health, e.g., fluid intelligence, memory, sleep quality, cognitive decline and depres-
sion. Moreover, combining all modalities has led to lower prediction errors. Inspection
of the MEG-based models suggested unique information on aging is conveyed by re-
gional distribution of power in the 𝛼 (8-12Hz) and 𝛽 (15-30Hz) frequency bands, in line
with the notion of spectral finger prints (Keitel and Gross, 2016). When applied in clini-
cal settings, multimodal approaches should make it more likely to detect brain-behavior
associations. We have, therefore, addressed the issue of missing values, which is an
important obstacle for multimodal learning approaches in clinical settings. Our stacking
model, trained on the entire data with an opportunistic strategy, performed equivalently
to the restricted model on common subsets of the data and helped exploiting multimodal
information to the extent available. This suggests, that the advantages of multimodal
prediction can be maintained in practice.
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fMRI and MEG reveal complementary information on cognitive aging

Our results have revealed complementary effects of anatomy and neurophysiology in
age-prediction. When adding either MEG or fMRI to the anatomy-based stacking model,
the prediction error markedly dropped (Fig. 2 A). Both, MEG and fMRI helped gain
almost one year of error compared to purely anatomy-based prediction. This finding
suggests that both modalities access equivalent information. This is in line with a recent
literature on correspondence of MEGwith fMRI in resting state networks, highlighting the
importance of spatially correlated slow fluctuations in brain oscillations (Hipp and Siegel,
2015; Hipp et al., 2012; Brookes et al., 2011) and, more specifically, a recent finding
suggesting that age-related variability in fMRI and EEG is independent to a substantial
degree (Kumral et al., 2019).

Interestingly, the prediction errors of models with MEG and models with fMRI were
not systematically correlated (Fig. 2B, left panel). In some subpopulations, they even
seemed anti-correlated, such that predictions from MEG or fMRI, for the same cases,
were either accurate or extremely inaccurate. This additional finding would actually
suggest that the improvements of MEG and fMRI over anatomical MRI are not due
to shared information but due to their access to complementary information that helps
predicting distinct cases. Indeed, when we combined MEG and fMRI in one common
stacking model together with anatomy, performance, improved on average by 1.3 years
over the purely anatomical model, which is almost half a year more precise than the
previous MEG-based and fMRI-based models.

The results strongly suggest the presence of an additive component, in line with the
common intuition that MEG and fMRI are complementary with regard to spatial and
temporal resolution. In this context, our results on performance decomposition in MEG
(Fig.4) delivers one potentially interesting hint. The source topography of power spectral
density, especially in the 𝛼(8−15𝐻𝑧) and 𝛽(15−26𝐻𝑧) range turned out to be the single
most contributing type of feature (Fig. 4A).

However, connectivity features, in general, and power-envelope connectivity, in par-
ticular, contributed substantively but rather weakly (Fig; 4B, Figure 4 supplement). In-
terestingly, applying orthogonalization (Hipp et al., 2012; Hipp and Siegel, 2015) for
removing source leakage did not visibly improve performance (Figure 4 supplement 2).
Against the background of MEG-fMRI correspondence, which has highlighted the im-
portance of slow fluctuations of brain rhythms (Hipp and Siegel, 2015; Brookes et al.,
2011), this finding suggests that what renders MEG non-redundant with regard to fMRI
are regional differences in the balance of fast brain-rhythms, in particular in the 𝛼 − 𝛽
range. If this turned out to be true, one could expect that electrophysiology will make a
true additive contribution to prediction problems in which fast brain rhythms are strongly
statistically related to the target.

Brain age Δ as sensitive index of normative aging

In this study we have conducted an exploratory analysis on what might be the cogni-
tive and health-related implications of our prediction models. Our findings suggest the
brain age Δ shows substantive associations with about 20-25% of all neuropsychologi-
cal measures included. The overall big-picture is congruent with the brain age literature
(see discussion in Smith et al. 2019 for an overview) and supports the interpretation of
the brain age Δ as index of decline of physical health, well-being and cognitive fitness.
In this sample, larger values of the Δ were globally associated with elevated depres-
sion scores, higher blood pressure, lower sleep quality, lower fluid intelligence, lower
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scores in neurological assessment and lower memory performance. Most strikingly, we
found that fMRI and MEG contribute unique discoveries, even when combined (Fig. 3).
For example, the association with depression appeared first when predicting age from
fMRI. On the other hand, visual short term memory appears first in MEG-based models.
Moreover, the association with fluid intelligence only manifested itself when including
MEG. Finally, sleep quality emerged once all modalities were combined. This extends
the previous discussion in suggesting that MEG and fMRI are not only complementary
for prediction but also with regard to characterizing brain-behavior mappings. More-
over, it is enticing to speculate that the regional power of fast-paced 𝛼 and 𝛽 band brain
rhythms allows one to capture fast-paced components of cognitive processes such as
attentional sampling or adaptive attention (Gola et al., 2013; Clark et al., 2004), which,
in turn might explain unique variance in certain cognitive facets, such as fluid intelli-
gence (Ouyang et al., 2019) or visual short-term memory (Tallon-Baudry et al., 2001).
On the other hand, functional connectivity between cortical areas and subcortical struc-
tures, in particular the hippocampus, may be key for depression and is well captured
with fMRI (Stockmeier et al., 2004; Sheline et al., 2009; Rocca et al., 2015). Unfortu-
nately, modeling such mediation effects exceeds the scope of the current work, although
it would be worth being tested in an independent study with a dedicated design.

However, it is important to appreciate these findings carefully. One could argue that
the overall effect sizes were too low to be considered practically interesting. Indeed, the
strength of linear association was below 0.5 in units of standard deviations of the nor-
malized predictors and the target. On the other hand, it is important to consider that the
Cam-CAN sample consists of healthy individuals only. It appears, thus, as rather striking
that systematic and neuropsychologically plausible effects can be detected. The find-
ing, therefore, argues in favor of the brain age Δ being a sensitive marker of normative
aging. The effects are expected to be far more pronounced when applying the method
in clinical settings, i.e., in patients suffering from mild cognitive impairment, depression,
neurodevelopmental or neurodegenerative disorders. This suggests that brain age Δ
might be used as a screening tool for a wide array of clinical settings for which the
Cam-CAN dataset could serve as a normative sample.

Translation to the clinical setting

One critical factor for application of our approach in the clinic is the problem of incomplete
availability of medical imaging and physiological measurements. Here, we addressed
this issue by applying an opportunistic learning approach which enables learning from
the data available at hand. Our analysis of opportunistic learning applied to age pre-
diction revealed viable practical alternatives to confining the analysis to cases for which
all measurements are available. In fact, adding extra cases with incomplete measure-
ments never harmed prediction of the cases with complete data and the full multimodal
stacking always outperformed sub-models with fewer modalities (Fig. 5A). Moreover,
the approach allowed maintaining and extending the performance to new cases with in-
complete modalities (Fig. 5B). Importantly, performance on such subsets was explained
by the performance of a reduced model with the remaining modalities. Put differently,
opportunistic stacking performed as good as a model restricted to data with all modal-
ities. Practically speaking, the approach allows one to improve predictions case-wise
by including electrophysiology next to MRI or MRI next to electrophysiology, whenever
there is the opportunity to do so.

A second critical factor for translating our findings into the clinic is that most of the
time, it is not high-density MEG that is available but low-density EEG. In this context,
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our finding that the source-topography power spectrum was the most important feature
is of clear practical interest. This is because it suggests that a rather simple statistical
object accounts for the bulk of the performance of MEG. The topography of power spec-
tra can be computed on any multichannel EEG device in a few steps and only yields,
per frequency band, as many variables as there are channels. Moreover, from a sta-
tistical standpoint, computing the power spectrum amounts to estimating the marginal
expectation of the signal variance, which can be thought of as main effect. On the other
hand, connectivity is often operationalized as bivariate interaction, which gives rise to
a more complex statistical object of higher dimensionality whose precise, reproducible
estimation may require far more samples. Moreover, as is the case for power envelope
connectivity estimation, additional processing steps each of which may add researcher
degrees of freedom (Simmons et al., 2011), such as the choice between Hilbert (Brookes
et al., 2011) versusWavelet filtering (Hipp et al., 2012), types of orthogonalization (Baker
et al., 2014), and potentially thresholding for topological analysis (Khan et al., 2018).
This nourishes the hope that our findings will generalize and similar performance can
be unlocked on simpler EEG devices with fewer channels. While clinical EEG may not
well resolve functional connectivity it may be good enough to resolve changes in the
source geometry of the power spectrum. On the other hand, source localization may be
critical in this context as linear field spread actually results in a non-linear transformwhen
considering the power of a source (Sabbagh et al., 2019a,b). Indeed, our model has
strongly favored source-level features. However, in practice, it may be hard to conduct
high-fidelity source localization on the basis of low-density EEG and frequently absent
information on the individual anatomy. It will therefore be critical to benchmark and
improve learning from power topographies in clinical settings (Sabbagh et al., 2019a).

Finally, it is worthwhile to highlight that here we have focused on age, in the more spe-
cific context of the brain age Δ as surrogate biomarker in order to be able to benefit from
a relatively large benchmark dataset. However, the proposed approach is fully compat-
ible with any target of interest and may be easily applied directly to clinical end points,
e.g., drug dosage, survival or diagnosis. Moreover, the approach presented here can
be easily adapted to work with classification problems, for instance, by exchanging ridge
regression with logistic regression and using a random forest classifier in the stacking
layer. We have provided all materials from our study in form of publicly available version-
controlled code with the hope to help other teams of biomedical researchers to adapt
our method to their prediction problem.

Materials and Methods

Sample

Here, we includedMEG (task & rest), fMRI (rest), MRI and neuropsychological data (cog-
nitive tests, home-interview, questionnaires) from the CAM-Can dataset (Shafto et al.,
2014). Our sample comprised 674 (340 female) healthy individuals between 18 (female
= 18) to 88 (female = 87) years with an average of 54.2 (female = 53.7) and a standard
deviation of 18.7 (female = 18.8) years. We included data according to availability and
did not apply an explicit criterion for exclusion. When automated processing resulted
in errors, we did not manually repair the computation. This induced additional missing
data for some cases. A summary of available cases by input modality is reported in
Table 1 in the appendix. For technical details regarding the MEG, fMRI, and MRI data
acquisition, please consider the Cam-CAN reference publications (Shafto et al., 2014;
Taylor et al., 2017).
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Table 1. Available cases by input modality

modality MEG sensor MEG source MRI fMRI common cases

cases 589 600 621 626 536

Note. MEG sensor space cases reflect separate task-related recordings. MEG source space cases are based on the

resting state recordings.

Feature extraction

For MEG, we analyzed sensor space features related to timing, peak frequency and
temporal autocorrelation, and source space features related to the regional power in
nine frequency bands, power envelopes and bivariate interactions. The definition of fre-
quency bands (see Table 2) was adopted from the Human Connectome Project (Larson-
Prior et al., 2013). In general, the selection of features was guided by the literature on
aging-related EEG and MEG signatures. More specifically, we wanted to enable more
targeted comparisons between MEG and fMRI by including power envelopes, i.e., the
slow fluctuations of power and their bivariate correlations between them. These have
been shown repeatedly to give rise to spatial patterns that correspond to fMRI resting
state networks. On the other hand, we wanted to exploit the potentially unique capac-
ity of the MEG to access topographic information induced by fast-paced brain rhythms
emerging from regional sources. We therefore included source power and covariance
among the features. To mitigate distortions of the non-linear source power through the
individual anatomy (forward model) we used source localization. For MRI and fMRI, we
adapted the approach established by Liem et al. (2017) and focused on cortical thick-
ness, cortical surface area and subcortical volumes. For fMRI, we computed bivariate
functional connectivity estimates. An overview on all features used is presented in Ta-
ble 3. In the following, we describe computation details.

MEG features

peak evoked latency Sensory processingmay slow down in the course of aging (Price
et al., 2017). Here, we assessed the evoked response latency during auditory, visual
and simultaneous audiovisual stimulation (index 1,Table 3). For each of the conditions,
we first computed the evoked response. Then, we computed the root-mean-square
across gradiometers and looked up the time of the maximum. This yielded in total three
latency values.

𝛼-band peak frequency Research suggests that the alpha-band frequency may be
lower in older people. Here, we computed the resting-state power spectrum using a
Welch estimator (index 2,Table 3). Then, we estimated the peak frequency between
6 and 15 Hz on occipito-parietal magnetometers after removing the 1/f trend using a
polynomial regression (degree = 15) by computing the maximum power across sensors
and looking up the frequency bin. This yielded one peak value per subject.

1/f slope Long-range auto-correlation in neural time-series gives rise to the character-
istic 1/f decay of power on a logarithmic scale. Increases of neural noise during aging
are thought to lead to reduced autocorrelation, hence amore shallow slope (Voytek et al.,
2015). We computed the 1/f slope from the Welch power spectral estimates above on
all magnetometers using linear regression (index 3,Table 3). The slope is given by the
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̂𝛽 of the linear fit with the logarithm of the frequencies as predictor and the log power as
target. We obtained one estimate for each of the 102 magnetometers, resulting in a 1/f
topography. No further reduction was applied.

source power and connectivity The cortical generators of the brain-rhythms domi-
nating the power spectrum change across life-span. To mitigate geometrical distortions
through individual anatomy, we used source-localization to estimate the topography of
power. We used a subdivision of the Desikan-Killiany atlas (Desikan et al., 2006) that
comprised 448 ROIs (Khan et al., 2018). We bandpass-filtered signals into frequency
bands (see Table2), computed minimum norm source-estimates and then summarized
the source-time courses ROI-wise by the first principal components. We then computed
the covariance matrix and used as power estimates the 448 diagonal entries (index 4 Ta-
ble3). The off-diagonal entries served as connectivity estimates. Covariance matrices
live in a non-Euclidean curved space. To avoid model violations at subsequent modeling
stages, we used tangent space projection (Varoquaux et al., 2010) to vectorize the lower
triangle of the covariance matrix. This projection allows one to treat entries of the corre-
lation matrix as regular Euclidean objects. This yielded 448×448/2−(448/2) = 100, 128
connectivity values (index 6 Table 3).

source power envelopes and connectivity Brain-rhythms are not constant in time
but fluctuate in intensity. These slow fluctuations are technically referred to as power en-
velopes and may show characteristic patterns of spatial correlation. To estimate power
envelopes, for each frequency band, we computed the analytic signal using the Hilbert
transform. We applied the same procedure as for source power (paragraph above) to
estimate the source power of the envelopes (index 5, Table 3) and their connectivity.
In the MEG literature, envelope correlation is a well established research topic. We
therefore also computed, beyond the covariance, the commonly used normalized Pear-
son correlations and orthogonalized Pearson correlations which are designed to miti-
gate source leakage (index 7-9, Table 3). However, as a result of orthogonalization,
the resulting matrix is not any longer positive definite, hence, cannot be projected to
the tangent space. We therefore used Fisher’s Z- transform (Silver and Dunlap, 1987)
to convert the correlation matrix into a set of standard-normal variables. The trans-
form is defined as the inverse hyperbolic tangent function of the correlation coefficient:
𝑧 = arctanh(𝑟) = 1

2 log(1+𝑟
1−𝑟). This yielded 448 power envelope power estimates and

100,128 connectivity values per estimator.

fMRI features

functional connectivity Large-scale neuronal interactions between distinct brain net-
works has been repeatedly shown to change during healthy aging. To estimate macro-
scopic functional connectivity, we used the MODL atlas with 256 functional ROI (Mensch
et al., 2016). We then computed bivariate amplitude interactions using Pearson corre-
lations from the ROI-wise average time-series (index 10, Table. 3). Again, we used
tangent space projection (Varoquaux et al., 2010) to vectorize the correlation matrices.
This yielded 32,640 connectivity values from the lower triangle of eachmatrix. No further
reduction was applied.
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Table 2. Frequency band definitions

name low 𝛿 𝜃 𝛼 𝛽1 𝛽2 𝛾1 𝛾2 𝛾3
range (Hz) 0.1 − 1.5 1.5 − 4 4 − 8 8 − 15 15 − 26 26 − 35 35 − 50 50 − 74 76 − 120

Table 3. Summary of extracted features.

# Modality Feature Reduction Variants Family

1 MEG peak evoked latency max aud, vis, audvis sensor
2 … 𝛼 peak max …
3 … 1/f slope channels low, 𝛾 …
4 … power 448 ROIs low,𝛿,𝜃,𝛼,𝛽1,2, 𝛾1,2,3 power
5 … power envelope … … …
6 … covariance (cov.) … … connectivity
7 … envelope (env.) cov. … … …
8 … env. correlation (corr.) … … …
9 … env. corr. adjusted … … …
10 fMRI correlation 256 ROIs …
11 MRI cortical (cort.) thickness 5124 vertices anatomy
12 … cort. surface area 5124 vertices …
13 … subcortical volumes 66 ROIs …

MRI features

cortical thickness Aging-related brain atrophy has been related to thinning of the
cortical tissue, e.g., (Thambisetty et al., 2010). Here, we extracted cortical thickness
estimates on from the Freesurfer (Fischl, 2012) segmentation on a grid of 5,124 vertices
in fsaverage4 space obtained from the mris_preproc script (index 11, Table 3). No
further reduction was computed.

cortical surface area Aging is also reflected in shrinkage of the cortical surface itself,
e.g., (Lemaitre et al., 2012). Hence, we also extracted cortical surface area estimates
on from the Freesurfer segmentation on a grid of 5,124 vertices in fsaverage4 space
obtained from the mris_preproc script (index 12, Table 3). No further reduction was
computed.

subcortical volumes The volume of subcortical structures has been linked to ag-
ing (Murphy et al., 1992). Here, we used the asegstats2table to obtain estimates
of the subcortical volumes and global volume, yielding 66 values for each subject with
no further reductions (index 13, Table 3).

Stacked-Prediction Model for Opportunistic Learning

We used the stacked-prediction framework (Wolpert, 1992) to build our predictive model.
However, we made the important specification that input models were regularized linear
models trained on different blocks of variables and block-wise stacking of predictions
was achieved by a local, non-linear regression model. Our model can be intuitively
denoted as follows:

𝑦 = 𝑓([𝑋1𝛽1 … 𝑋𝑚𝛽𝑚]),
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Here, each 𝑋𝑗𝛽𝑗 is the vector of predictions ̂𝑦𝑗 of the target vector 𝑦 from the j𝑡ℎ model
fitted using input data 𝑋𝑗:

{𝑦 = 𝑋1𝛽1 + 𝜖1, … , 𝑦 = 𝑋𝑚𝛽𝑚 + 𝜖𝑚}

Here, we used ridge regression as input model and a random forest regressor as
general function approximator 𝑓 [Chp. 15.4.3](Hastie et al., 2005). A visual illustration
of the model is presented in Fig. 1.

Input Layer: RidgeRegression Results from statistical decision theory suggests that,
for linear models, the expected out-of-sample error increases only linearly with the num-
ber of variables included in a prediction problem (Hastie et al., 2005, chapter 2), not ex-
ponentially. In practice, biased (or penalized) linear models with Gaussian priors on the
coefficients, i.e., ridge regression (or logistic regression for classification) with ℓ2-penalty
(squared ℓ2 norm) are hard to outperform in neuroimaging settings (Dadi et al., 2019).
Ridge regression can be seen as extension of ordinary least squares (OLS) where the
solution is biased such that the coefficients estimated from the data are conservatively
pushed towards zero:

̂𝛽𝑟𝑖𝑑𝑔𝑒 = (𝑋⊤𝑋 + 𝜆𝐼)−1𝑋⊤𝑦,
The estimated coefficients approach zero as the penalty term 𝜆 grows, and the solution
approaches the OLS fit as 𝜆 gets closer to zero. This is the same as assuming that the
coefficient vector comes from a Gaussian distribution centered around zero [chapter
7.3](Efron and Hastie, 2016):

𝛽 ∼ 𝑁 (0, 𝜎2

𝜆 𝐼)

In practice, reasonable priors are often unknown, hence, 𝜆 is chosen in a data-driven
fashion such that one improves the expected out-of-sample error, e.g., tuned using
cross-validation. We tuned the 𝜆 using generalized cross-validation (Golub et al., 1979)
and considered 100 candidate values on a logarithmic scale between 10−3 and 105.

Stacking Layer: RandomForest Regression However, the performance of the ridge
model in high dimensions comes at the price of increased bias. The stacking model tries
to alleviate this issue by reducing the dimensionality in creating a derived data set of lin-
ear predictions, which can then be forwarded to a more flexible local regression model.
Here, we chose the random forest algorithm (Breiman, 2001) which can be seen as a
general function approximator and has been interpreted as adaptive nearest neighbors
algorithm (Hastie et al., 2005, chapter 15.4.3). Random forests can learn a wide range
of functions and are capable of automatically detecting non-linear interaction effects with
little tuning of hyper-parameters. They are based on two principles: regression trees and
bagging (bootstrapping and aggregating). Regression trees are non-parametric meth-
ods and recursively subdivide the input data by finding combinations of thresholds that
relate value ranges of the input variables to the target. The principle is illustrated at the
right bottom of Fig. 1. For a fully grown tree, each sample falls into one leaf of the tree
which is defined by its unique path through combinations of input-variable thresholds
through the tree. However, regression trees tend to easily overfit. This is counteracted
by randomly generating alternative trees from bootstrap replica of the dataset and ran-
domly selecting subset of variables for each tree. Importantly, thresholds are by default
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optimized with regard to a so-called impurity criterion such as entropy or mutual informa-
tion. Predictions are then averaged, which mitigates overfitting and also explains how
thresholds can lead to continuous predictions.

In practice, it is common to use a generous number of trees as performance plateaus
once a certain number is reached, whichmay lay between hundreds or thousands. Here,
we used 1000 trees. Moreover, limiting the overall depth of the trees can increase
bias and mitigate overfitting at the expense of model complexity. An intuitive way of
conceptualizing this step is to think of the tree-depth in terms of orders interaction effects.
A tree with three nodes enables learning three-way interactions. Here, we tuned the
model to choose between depth-values of 4, 6, or 8 or the option of not constraining
the depth. Finally, the total number of features sampled at each node determines the
degree to which the individual trees are independent or correlated. Small number of
variables decorrelate the trees but make it harder to find important variables as the
number of input variables increases. On the other hand, using more variables at once
leads to more exhaustive search of good thresholds, but may increase overfitting. As
our stacking models had to deal with different number of input variables, we had to tune
this parameter and let the model select between √𝑝, log(𝑝) and all 𝑝 input variables.
We implemented selection of tuning-parameters by grid search as (nested) 5-fold cross-
validation. For performance quantification, we used the mean absolute error.

Stacked cross-validation We used a 10-fold cross-validation scheme. To mitigate
bias due to the actual order of the data, we repeated the procedure 10 times while
reshuffling the data at each repeat. We then generated age-predictions from each Input-
layer model on the left-out folds, such that we had for each case one age-prediction per
repeat. We then stored the indices for each fold to make sure the random forest was
trained on left-out predictions for the ridge models. This ensured that the input-layer
train-test splits where carried forward to the stacking-layer and that the stacking model
was always evaluated on left-out folds in which the input ages are actual predictions and
the targets have not been seen by the model.

Here, we customized the stacking procedure to be able to unbox and analyze the
input-age predictions and implement opportunistic handling of missing values.

Variable importance Regression trees are often inspected by estimating the impact
of each variable on the prediction. This is commonly achieved by computing the so-
called variable importance. The idea is to track and sum across all trees the reduction
of impurity each time a given variable is used to split. However, it has been shown
that in correlated trees, variable importance can be biased and lead to masking effects,
i.e., fail to detect important variables (Louppe et al., 2013) or suggest noise-variables
to be important. One potential remedy is to increase the randomness of the trees, e.g.,
by selecting randomly a single variable for splitting and using extremely randomized
trees (Geurts et al., 2006; Engemann et al., 2018), as it can be mathematically guar-
anteed that in fully randomized trees only actually important variables are assigned im-
portance (Louppe et al., 2013). However, such measures may mitigate performance.
Here, we used an alternative, model-agnostic approach, which consists in permuting
randomly one variable at a time and measuring the drop in performance at the scale of
the scoring. This is approach is closely related to the method described in the original
random forest paper (Breiman, 2001), with the difference that we used cross-validation
instead of out-of-bag estimates. This procedure has the known disadvantage, that it
does not take into account the conditional nature of variable importance. For example,
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a variable may not be so important in itself but its interaction with other variables makes
it an important predictor. On the other hand, the permutation importance approach has
the advantage that importance is intuitively expressed in units of the error scoring and
that it avoids masking.

Opportunistic Learning with Missing Values An important option for our stacking
model concerns handling missing values. Here, we implemented the double-coding ap-
proach (Josse et al., 2019) which duplicates the features and once assigns the missing
value a very small and once a very large number (see also illustration Fig. 1). As our
stacked input data consisted of age predictions from the ridge models, we used bio-
logically but also statistically implausible values of −1000 and 1000, respectively. This
amounts to turning missing values into features and let the stacking-model potentially
learn from the missing values, as the reason for the missing value may contain informa-
tion on the target. For example, an elderly patient may not be in the best conditions for
an MRI scan, but nevertheless qualifies for electrophysiological assessment.

To implement opportunistic stacking, we considered the full dataset with missing val-
ues and then kept track of missing data while training the input-layer. This yielded the
stacking-data consisting of the age-predictions and missing values. Stacking was then
performed after applying the feature-coding of missing values. This procedure made
sure that all training and test splits were defined with regard to the full cases and, hence,
the stacking model could be applied to all cases after feature-coding of missing values.

Analysis of brain-behavior correlation

To explore the cognitive implications of the brain age Δ, we computed correlations with
the neurobehavioral score from the Cam-CAN dataset. Table 4 lists the scores we con-
sidered. The measures fall into three broad classes: neuropsychology, physiology and
questionnaires (‘Type’ columns in Table 4). Extraction of neuropsychological scores
sometimes required additional computation, which followed the description in Shafto
et al. 2014, (see also ‘Variables’ column in Table 4). For some neuropsychological tasks,
the Cam-CAN dataset provided multiple scores and sometimes the final score of interest
as described in Shafto et al. 2014, had yet to be computed. At times, this amounted to
computing ratios, averages or differences between different scores. In other scores, it
was not obvious how to aggregatemultiple interrelated sub-scores, hence, we computed
summaries by extracting the first principal component. In total, we included 38 variables.
All neuropsychology and physiology scores (up to #17) were the scores available in the
‘cc770-scored’ folder from release 001 of the Cam-CAN dataset. We selected the addi-
tional questionnaire scores (#18-23) on theoretical grounds to provide an assessment
of clinically relevant individual differences in cognitive functioning. The brain age Δ was
defined as the difference between predicted and actual age of the person

âge − age ,

such that positive values quantify overestimation and negative value underestimation.
A common problem in establishing brain-behavior correlations for brain age is spurious
correlations due to shared age-related variance in the brain age Δ and the neurobehav-
ioral score (Smith et al., 2019). To mitigate confounding effects of age, we computed
the age residuals as

score𝑐 − ŝcore𝑐 ,
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Table 4. Summary of neurobehavioral scores
# Name Type Variables (=38)

1 Benton faces neuropsychology total score (1)
2 Emotional expression recognition … PC1 of RT (1)
3 Emotional memory … PC1 by memory type (3)
4 Emotion regulation … positive & negative reactivity, regulation (3)
5 Famous faces … mean familiar details ratio (1)
6 Fluid intelligence … total score (1)
7 Force matching … Finger- & slider-overcompensation (2)
7 Hotel task … time(1)
9 Motor learning … M & SD of trajectory error (2)
10 Picture priming … baseline RT, baseline ACC (4)
… … … M prime RT contrast, M target RT contrast
11 Proverb comprehension … score (1)
12 RT choice … M RT (1)
13 RT simple … M RT (1)
14 Sentence comprehension … unacceptable error, M RT (2)
15 Tip-of-the-tounge task … ratio (1)
16 Visual short term memory … K (M,precision,doubt,MSE) (4)
17 Cardio markers physiology pulse, systolic & diastolic pressure (3)
18 PSQI questionnaire total score (1)
19 Hours slept … total score (1)
20 HADS (Depression) … total score (1)
21 HADS (Anxiety) … total score (1)
22 ACE-R … total score (1)
23 MMSE … total score (1)

Note. M = mean, SD = standard deviation, RT = reaction time, PC = principal component, ACC = accuracy,
PSQI = Pittsburgh Sleep Quality Index HADS = Hospital Anxiety and Depression Scale,
ACE-R = Addenbrookes Cognitive Examination Revised, MMSE = Mini-Mental State Examination.
Numbers in parentheses indicate how many variables were extracted.

where 𝑠𝑐𝑜𝑟𝑒𝑐 is the current score and the predicted score ̂𝑠𝑐𝑜𝑟𝑒𝑐 is obtained from the
following polynomial regression:

score𝑐 = age 𝛽1 + age2𝛽2 + age3𝛽3 + 𝜖 .
To obtain comparable coefficients across scores, we standardized both the age and the
scores.

MEG data processing

Data Acquisition

MEG recorded at a single site using a 306 VectorView system (Elekta Neuromag, Helsinki).
This system is equipped with 102 magnetometers and 204 orthogonal planar gradiome-
ters is placed light magnetically shielded room. During acquisition, an online filter was
applied between around 0.03 Hz and 1000Hz. To support offline artifact correction, verti-
cal and horizontal electrooculogram (VEOG, HEOG) aswell as electrocardiogram (ECG)
signal was concomitantly recorded. Four Head-Position Indicator (HPI) coils were used
to track head motion. All types of recordings, i.e., resting-state, passive stimulation and
the active task lasted about 8 minutes. For additional details on MEG acquisition, please
consider the reference publications of the CAM-Can (Taylor et al., 2017; Shafto et al.,
2014). The following sections will describe the custom data processing conducted in
our study.
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Artifact Removal

Environmental artifacts To mitigate contamination of the MEG signal with artifacts
produced by environmental magnetic sources, we applied temporal signal-space-separation
(tSSS) (Taulu and Kajola, 2005). The method uses spherical harmonic decomposition to
separate spatial patterns produced by sources inside the head from patterns produced
by external sources. We used the default settings with eight components the harmonic
decomposition of the internal sources, and three for the external sources on a ten sec-
onds sliding window. We used a correlation threshold of 98% to ignore segments in
which inner and outer signal components are poorly distinguishable. We performed no
movement compensation, since there were no continuous head monitoring data avail-
able at the time of our study. The origin of internal and external multipolar moment
space was estimated based on the head-digitization. We computed tSSS using the
MNE maxwell_filter function (Gramfort et al., 2013) but relied on the SSS processing
logfiles from Cam-CAN for defining bad channels.

Physiological artifacts To mitigate signal distortions caused by eye-movements and
heart-beats we used signal space projection (SSP) (Uusitalo and Ilmoniemi, 1997). This
method learns principal components on contaminated data-segments and then projects
the signal into the sub-space that is not correlated with the artifact. To obtain clean esti-
mates, we excluded bad data segments from the EOG/ECG channels using the ‘global’
option from autoreject (Jas et al., 2017). We then averaged the artefact-evoked signal
(see ‘average’ option in mne.preprocessing.compute_proj_ecg) to enhance subspace
estimation and only considered one single projection vector to preserve as much signal
as possible.

Rejection of residual artifacts To avoid contamination with artifacts that were not
removed by SSS or SSP, we used the ‘global’ option from autoreject (Jas et al., 2017).
This yielded a data-driven selection of the amplitude range above which data segments
were excluded from the analysis.

Temporal Filtering To study band-limited brain dynamics, we applied bandpass-filtering
using the frequency band definitions in Table 2. We used default filter settings from the
MNE software (development version 0.19) with a windowed time-domain design (firwin)
and Hamming taper. Filter length and transition band-width was set using the ‘auto’
option and depended on the data.

Epoching For the active and passive tasks, we considered time windows between
-200 to 700 milliseconds around stimulus-onset and decimated the signal by retaining
every eighth time sample. Baseline correction was applied based on the time window
between -200 to 0 milliseconds. For resting-state, we considered sliding windows of
5 seconds duration with no overlap and no baseline correction. To reduce computa-
tion time, we retained the first 5 minutes of the recording and decimated the signal by
retaining every fifth time sample.

Channel selection It is important to highlight that after SSS, the magnetometer and
gradiometer data are reprojected from a common lower dimensional SSS coordinate
system that typically spans between 64 and 80 dimensions. As a result, both sensor
types contain highly similar information, which alsomodifies the inter-channel correlation
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structure (Garcés et al., 2017). The MNE software, by default, treats them as a single
sensor type in many of the analyses that follow and uses as degrees of freedom the
number of underlying SSS dimensions. To simplify computation, we constrained the
analysis to magnetometers. For some aspects of feature engineering in sensor space,
i.e., extraction of peak latency, we used the gradiometers as they tend to yield a cleaner
view on the signal.

Covariance Modeling To control the risk of overfitting in covariance modeling (Enge-
mann and Gramfort, 2015), we used a penalized maximum-likelihood estimator imple-
menting James-Stein shrinkage (James and Stein, 1992) of the form

Σ̂biased = (1 − 𝛼)Σ̂ + 𝛼Trace(Σ̂)
𝑝 + 𝐼,

where 𝛼 is the regularization strength, Σ̂ is the unbiased maximum-likelihood estima-
tor and 𝑝 is the number of features. This, intuitively, amounts to pushing the covari-
ance towards the identity matrix. Here, we used the Oracle Approximation Shrinkage
(OAS) (Chen et al., 2010) to compute the shrinkage factor 𝛼 mathematically.

Source Localization To estimate cortical generators of the MEG signal, we employed
the cortically constraint Minimum-Norm-Estimates (Hämäläinen and Ilmoniemi, 1994)
based on individual anatomy of the subjects. If no additional preprocessing is applied,
the resulting projection operator depends exclusively on the anatomy of the subject and
can be expressed as

𝑊MNE = 𝐺⊤(𝐺𝐺⊤ + 𝜆𝐼𝑃 )−1.
Here 𝐺 ∈ ℝ𝑃×𝑄 denotes the forward model quantifying the spread from sources to
M/EEG observations and 𝜆 a regularization parameter that controls the spatial complex-
ity of the model. The forward model is obtained by numerically solving Maxwell’s equa-
tions based on the estimated head geometry, which we obtained from the Freesurfer
brain segmentation. We estimated the source amplitudes on a grid of 8,196 equally
spaced candidate dipole locations. We used spatial whitening to approximate the model
assumption of Gaussian noise. The whitening operator was based on the empty room
noise covariance and applied to the MEG signal and the forward model. We applied
no noise normalization and used the default depth weighting (Lin et al., 2006) as im-
plemented in the MNE software (Gramfort et al., 2014) with weighting factor of 0.8 (Lin
et al., 2006) and a loose-constraint of 0.2. The regularization parameter 𝜆2 was ex-
pressed with regard to the signal-to-noise ratio and kept at the default value of 1

SNR2

with SNR = 3.

MRI data processing

Data acquisition

For additional details on data acquisition, please consider the reference publications
of the CAM-Can (Taylor et al., 2017; Shafto et al., 2014). The following sections will
describe the custom data processing conducted in our study.
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structural MRI

For preprocessing of structural MRI data we used the FreeSurfer software (http://
surfer.nmr.mgh.harvard.edu/)) (Fischl, 2012). Reconstruction included the follow-
ing steps (adapted from themethods citation recommended by the authors of FreeSurfer):
motion correction and average of multiple volumetric T1-weighted images (Reuter et al.,
2010), removal of non-brain tissue (Segonne et al., 2004), automated Talairach transfor-
mation, segmentation of the subcortical white matter and deep gray matter volumetric
structures (Fischl et al., 2002, 2004) intensity normalization (Sled et al., 1998), tessella-
tion of the gray-matter / white-matter boundary, automated topology correction (Fischl
et al., 2001; Segonne et al., 2004), and surface deformation following intensity gradi-
ents (Dale et al., 1999; Fischl and Dale, 2000). Once cortical were computed, so-called
deformable procedures were applied including surface inflation (Fischl et al., 1999), reg-
istration to a spherical atlas (Fischl et al., 1999) and cortical parcellation (Desikan et al.,
2006).

fMRI

The available fMRI data were visually inspected. The volumes were excluded from the
study provided they had severe imaging artifacts or head movements with amplitude
larger than 2 mm. After the rejection of corrupted data we obtained a subset of 626 sub-
jects for further investigation. The fMRI volumes underwent slice timing correction and
motion correction to the mean volume. Following that, co-registration between anatomi-
cal and function volumes was done for every subject. Finally, brain tissue segmentation
was done for every volume and the output data were morphed to the MNI space.

Scientific Computation and Software

Computing environment For preprocessing and feature-extraction of MEG, MRI and
fMRI we used a high-performance Linux server (72 cores, 376GB RAM) running Ubuntu
Linux 18.04.1 LTS. For subsequent statistical modeling, we used an Apple MacBook 12’́
(early 2016) running MacOS Mojave (8GB RAM). General purpose computation was
carried out using the Python (3.7.3) language and the scientific Python stack including
NumPy, SciPy, Pandas, and Matplotlib. For embarrassingly parallel processing we used
the joblib library.

MEG processing For MEG processing, we used the MNE-Python software (Gramfort
et al., 2014, 2013) (version 0.19 dev). All custom analysis code was scripted in Python
and is shared in a dedicated repository including a small library and scripts (see section
Code Availability).

MRI & fMRI processing For anatomical reconstruction we used the shell-script based
FreeSurfer software Fischl et al. (2002). We used the pypreprocess package, which
reimplements parts of the SPM12 software for the analysis of brain images (The Well-
come Centre for Human Neuroimaging, 2018), complemented by the Python-Matlab
interface from Nipype (Gorgolewski et al., 2011). For feature extraction and processing
related to predictive modeling with MRI and fMRI, we used the NiLearn package (Abra-
ham et al., 2014).
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Statistical modeling For predictive modeling, we used the scikit-learn package (Pe-
dregosa et al., 2011) (version 0.21). We used the R (3.5.3) language and its graphi-
cal ecosystem (R Core Team, 2019; Wickham, 2016; Slowikowski, 2019; Clarke and
Sherrill-Mix, 2017; Canty and Ripley, 2017) for statistical visualization of data.

Code Availability We share all code used for this publication. The code resources
for different components can be freely accessed on GitHub in two repositories, one for
data processing, feature extraction and predictive modeling1, one for statistical analysis
and visualization 2.

Acknowledgments

This work was partly supported by a 2018 ‘médecine numérique’ (for digital medicine)
thesis grant issued by Inserm (French national institute of health and medical research)
and Inria (French national research institute for the digital sciences). It was also partly
supported by the European Research Council Starting Grant SLAB ERC-YStG-676943.

References

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gram-
fort, A., Thirion, B., and Varoquaux, G. (2014). Machine learning for neuroimaging with
scikit-learn. Frontiers in neuroinformatics, 8(February):14.

Agnew Jr, H., Webb, W. B., and Williams, R. L. (1966). The first night effect: an EEG
study of sleep. Psychophysiology, 2(3):263–266.

Ahlfors, S. P., Han, J., Belliveau, J. W., and Hämäläinen, M. S. (2010). Sensitivity of
MEG and EEG to source orientation. Brain topography, 23(3):227–232.

Babiloni, C., Binetti, G., Cassarino, A., Dal Forno, G., Del Percio, C., Ferreri, F., Ferri,
R., Frisoni, G., Galderisi, S., Hirata, K., et al. (2006). Sources of cortical rhythms in
adults during physiological aging: a multicentric EEG study. Human brain mapping,
27(2):162–172.

Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Smith, P. J. P., and
Woolrich, M. (2014). Fast transient networks in spontaneous human brain activity.
Elife, 3:e01867.

Baker, J. D., Gluecklich, B., Watson, C. W., Marcus, E., Kamat, V., and Callow,
A. D. (1975). An evaluation of electroencephalographic monitoring for carotid study.
Surgery, 78(6):787–794.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C.,
Barnes, G. R., Smith, S. M., and Morris, P. G. (2011). Investigating the electrophysio-
logical basis of resting state networks using magnetoencephalography. Proceedings
of the National Academy of Sciences, 108(40):16783–16788.
1https://github.com/OlehKSS/camcan_analysis
2https://github.com/dengemann/paper-multimodal-stacking-figures/

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/856336doi: bioRxiv preprint 

https://github.com/OlehKSS/camcan_analysis
https://github.com/dengemann/paper-multimodal-stacking-figures/
https://doi.org/10.1101/856336
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

Bzdok, D. and Yeo, B. T. (2017). Inference in the age of big data: Future perspectives
on neuroscience. NeuroImage, 155:549 – 564.

Canty, A. and Ripley, B. D. (2017). boot: Bootstrap R (S-Plus) Functions. R package
version 1.3-20.

Chen, Y., Wiesel, A., Eldar, Y. C., and Hero, A. O. (2010). Shrinkage algorithms for mmse
covariance estimation. IEEE Transactions on Signal Processing, 58(10):5016–5029.

Clark, C. R., Veltmeyer, M. D., Hamilton, R. J., Simms, E., Paul, R., Hermens, D., and
Gordon, E. (2004). Spontaneous alpha peak frequency predicts working memory per-
formance across the age span. International Journal of Psychophysiology, 53(1):1–9.

Clarke, E. and Sherrill-Mix, S. (2017). ggbeeswarm: Categorical Scatter (Violin Point)
Plots. R package version 0.6.0.

Cole, J. H., Leech, R., Sharp, D. J., and Initiative, A. D. N. (2015). Prediction of brain
age suggests accelerated atrophy after traumatic brain injury. Annals of neurology,
77(4):571–581.

Cole, J. H., Ritchie, S. J., Bastin, M. E., Hernández, M. V., Maniega, S. M., Royle, N.,
Corley, J., Pattie, A., Harris, S. E., Zhang, Q., et al. (2018). Brain age predicts mortality.
Molecular psychiatry, 23(5):1385.

Dadi, K., Rahim, M., Abraham, A., Chyzhyk, D., Milham, M., Thirion, B., Varoquaux,
G., Initiative, A. D. N., et al. (2019). Benchmarking functional connectome-based
predictive models for resting-state fmri. Neuroimage, 192:115–134.

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis. seg-
mentation and surface reconstruction. NeuroImage, 9:179–194.

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D.,
Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., et al. (2006). An automated
labeling system for subdividing the human cerebral cortex on mri scans into gyral
based regions of interest. Neuroimage, 31(3):968–980.

Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nel-
son, S. M., Wig, G. S., Vogel, A. C., Lessov-Schlaggar, C. N., et al. (2010). Prediction
of individual brain maturity using fMRI. Science, 329(5997):1358–1361.

Efron, B. and Hastie, T. (2016). Computer age statistical inference, volume 5. Cam-
bridge University Press.

Engemann, D. A. and Gramfort, A. (2015). Automated model selection in covariance
estimation and spatial whitening of MEG and EEG signals. NeuroImage, 108:328–
342.

Engemann, D. A., Raimondo, F., King, J.-R., Rohaut, B., Louppe, G., Faugeras, F.,
Annen, J., Cassol, H., Gosseries, O., Fernandez-Slezak, D., Laureys, S., Naccache,
L., Dehaene, S., and Sitt, J. D. (2018). Robust EEG-based cross-site and cross-
protocol classification of states of consciousness. Brain, 141(11):3179–3192.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S.
(2017). Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/856336doi: bioRxiv preprint 

https://doi.org/10.1101/856336
http://creativecommons.org/licenses/by-nc-nd/4.0/


25

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2):774–781.

Fischl, B. and Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex
from magnetic resonance images. Proceedings of the National Academy of Sciences
of the United States of America, 97(20):11050–11055.

Fischl, B., Liu, A., and Dale, A. M. (2001). Automated manifold surgery: constructing
geometrically accurate and topologically correct models of the human cerebral cortex.
IEEE Medical Imaging, 20(1):70–80.

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der
Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen,
B., and Dale, A. M. (2002). Whole Brain Segmentation. Neuron, 33(3):341–355.

Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., and
Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance
images. NeuroImage, 23(Supplement 1):S69 – S84. Mathematics in Brain Imaging.

Fischl, B., Sereno, M. I., and Dale, A. M. (1999). Cortical surface-based analysis: Ii:
Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2):195 –
207.

Garcés, P., López-Sanz, D., Maestú, F., and Pereda, E. (2017). Choice of magnetome-
ters and gradiometers after signal space separation. Sensors, 17(12):2926.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine
learning, 63(1):3–42.

Gola, M., Magnuski, M., Szumska, I., and Wróbel, A. (2013). EEG beta band activ-
ity is related to attention and attentional deficits in the visual performance of elderly
subjects. International Journal of Psychophysiology, 89(3):334–341.

Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a
method for choosing a good ridge parameter. Technometrics, 21(2):215–223.

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L.,
and Ghosh, S. S. (2011). Nipype: A Flexible, Lightweight and Extensible Neuroimag-
ing Data Processing Framework in Python. Frontiers in Neuroinformatics, 5(August).

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
Goj, R., Jas, M., Brooks, T., Parkkonen, L., and Hämäläinen, M. (2013). MEG and
EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267).

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C.,
Parkkonen, L., and Hämäläinen, M. S. (2014). MNE software for processing MEG
and EEG data. NeuroImage, 86:446 – 460.

Hämäläinen, M. S. and Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain:
minimum norm estimates. Medical & biological engineering & computing, 32(1):35–
42.

Hari, R., Levänen, S., and Raij, T. (2000). Timing of human cortical functions during
cognition: role of MEG. Trends in cognitive sciences, 4(12):455–462.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/856336doi: bioRxiv preprint 

https://doi.org/10.1101/856336
http://creativecommons.org/licenses/by-nc-nd/4.0/


26

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. (2005). The elements of statis-
tical learning: data mining, inference and prediction. The Mathematical Intelligencer,
27(2):83–85.

Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M., and Engel, A. K. (2012). Large-
scale cortical correlation structure of spontaneous oscillatory activity. Nature Neuro-
science, 15(6):884–890.

Hipp, J. F. and Siegel, M. (2015). BOLD fMRI correlation reflects frequency-specific
neuronal correlation. Current Biology, 25(10):1368–1374.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67.

James, W. and Stein, C. (1992). Estimation with quadratic loss. In Breakthroughs in
statistics, pages 443–460. Springer.

Jas, M., Engemann, D. A., Bekhti, Y., Raimondo, F., and Gramfort, A. (2017). Autoreject:
Automated artifact rejection for MEG and EEG data. NeuroImage, 159:417–429.

Jonas, E. and Kording, K. P. (2017). Could a neuroscientist understand a microproces-
sor? PLoS computational biology, 13(1):e1005268.

Josse, J., Prost, N., Scornet, E., and Varoquaux, G. (2019). On the consistency of
supervised learning with missing values. ArXiv Preprint 1902.06931.

Kalpouzos, G., Persson, J., and Nyberg, L. (2012). Local brain atrophy accounts for
functional activity differences in normal aging. Neurobiology of aging, 33(3):623–e1.

Kaufmann, T., van der Meer, D., Doan, N. T., Schwarz, E., Lund, M. J., Agartz, I., Al-
næs, D., Barch, D. M., Baur-Streubel, R., Bertolino, A., et al. (2019). Common brain
disorders are associated with heritable patterns of apparent aging of the brain. Nature
neuroscience, 22(10):1617–1623.

Keitel, A. and Gross, J. (2016). Individual human brain areas can be identified from their
characteristic spectral activation fingerprints. PLoS biology, 14(6):e1002498.

Khan, S., Hashmi, J. A., Mamashli, F., Michmizos, K., Kitzbichler, M. G., Bharadwaj, H.,
Bekhti, Y., Ganesan, S., Garel, K.-L. A., Whitfield-Gabrieli, S., et al. (2018). Maturation
trajectories of cortical resting-state networks depend on themediating frequency band.
NeuroImage, 174:57–68.

Kumral, D., Sansal, F., Cesnaite, E., Mahjoory, K., Al, E., Gaebler, M., Nikulin, V., and
Villringer, A. (2019). Bold and eeg signal variability at rest differently relate to aging
in the human brain. NeuroImage, page 116373.

Larson-Prior, L. J., Oostenveld, R., Della Penna, S., Michalareas, G., Prior, F., Babajani-
Feremi, A., Schoffelen, J.-M., Marzetti, L., de Pasquale, F., Di Pompeo, F., et al.
(2013). Adding dynamics to the Human Connectome Project with MEG. Neuroimage,
80:190–201.

Lemaitre, H., Goldman, A. L., Sambataro, F., Verchinski, B. A., Meyer-Lindenberg, A.,
Weinberger, D. R., and Mattay, V. S. (2012). Normal age-related brain morphome-
tric changes: nonuniformity across cortical thickness, surface area and gray matter
volume? Neurobiology of aging, 33(3):617–e1.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/856336doi: bioRxiv preprint 

https://doi.org/10.1101/856336
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg, J. M.,
Lampe, L., Rahim, M., Abraham, A., Craddock, R. C., et al. (2017). Predicting
brain-age from multimodal imaging data captures cognitive impairment. NeuroImage,
148:179–188.

Lin, F.-H., Witzel, T., Ahlfors, S. P., Stufflebeam, S. M., Belliveau, J. W., and Hämäläi-
nen, M. S. (2006). Assessing and improving the spatial accuracy in MEG source
localization by depth-weighted minimum-norm estimates. Neuroimage, 31(1):160–
171.

Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). Understanding variable
importances in forests of randomized trees. In Advances in neural information pro-
cessing systems, pages 431–439.

Mensch, A., Mairal, J., Thirion, B., and Varoquaux, G. (2016). Dictionary Learning for
Massive Matrix Factorization. In Balcan, M. F. and Weinberger, K. Q., editors, Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1737–1746, New York, New York,
USA. PMLR.

Murphy, D. G., DeCarli, C., Schapiro, M. B., Rapoport, S. I., and Horwitz, B. (1992). Age-
related differences in volumes of subcortical nuclei, brain matter, and cerebrospinal
fluid in healthy men as measured with magnetic resonance imaging. Archives of
Neurology, 49(8):839–845.

Ouyang, G., Hildebrandt, A., Schmitz, F., and Herrmann, C. S. (2019). Decomposing
alpha and 1/f brain activities reveals their differential associations with cognitive pro-
cessing speed. NeuroImage, page 116304.

Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, É. (2011). Scikit-learn: Machine Learning
in Python. J. Mach. Learn. Res., 12:2825–2830.

Price, D., Tyler, L. K., Henriques, R. N., Campbell, K., Williams, N., Treder, M., Taylor, J.,
Brayne, C., Bullmore, E. T., Calder, A. C., et al. (2017). Age-related delay in visual and
auditory evoked responses is mediated by white-and grey-matter differences. Nature
communications, 8:15671.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rahim, M., Thirion, B., Abraham, A., Eickenberg, M., Dohmatob, E., Comtat, C., and
Varoquaux, G. (2015). Integrating multimodal priors in predictive models for the func-
tional characterization of Alzheimer’s disease. In Navab, N., Hornegger, J., Wells,
W. M., and Frangi, A., editors, Medical Image Computing and Computer-Assisted In-
tervention – MICCAI 2015, pages 207–214, Cham. Springer International Publishing.

Ran, A. R., Cheung, C. Y., Wang, X., Chen, H., Luo, L.-y., Chan, P. P., Wong, M. O.,
Chang, R. T., Mannil, S. S., Young, A. L., et al. (2019). Detection of glaucomatous
optic neuropathy with spectral-domain optical coherence tomography: a retrospective

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/856336doi: bioRxiv preprint 

https://doi.org/10.1101/856336
http://creativecommons.org/licenses/by-nc-nd/4.0/


28

training and validation deep-learning analysis. The Lancet Digital Health, 1(4):e172–
e182.

Reuter, M., Rosas, H. D., and Fischl, B. (2010). Highly accurate inverse consistent
registration: A robust approach. NeuroImage, 53(4):1181–1196.

Rocca, M. A., Pravatà, E., Valsasina, P., Radaelli, M., Colombo, B., Vacchi, L., Gobbi, C.,
Comi, G., Falini, A., and Filippi, M. (2015). Hippocampal-DMN disconnectivity in MS
is related to WM lesions and depression. Human brain mapping, 36(12):5051–5063.

Ronan, L., Alexander-Bloch, A. F., Wagstyl, K., Farooqi, S., Brayne, C., Tyler, L. K.,
Fletcher, P. C., et al. (2016). Obesity associated with increased brain age from midlife.
Neurobiology of aging, 47:63–70.

Sabbagh, D., Ablin, P., Varoquaux, G., Gramfort, A., and Engeman, D. A. (2019a).
Manifold-regression to predict from MEG/EEG brain signals without source modeling.
In Advances in Neural Information Processing Systems (NeurIPS).

Sabbagh, D., Ablin, P., Varoquaux, G., Gramfort, A., and Engemann, D. A. (2019b). Pre-
dictive regression modeling with meg/eeg: from source power to signals and cognitive
states. bioRxiv.

Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., and Fischl,
B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage,
22(3):1060 – 1075.

Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., Calder,
A. J., Marslen-Wilson, W. D., Duncan, J., Dalgleish, T., Henson, R. N., Brayne, C.,
and Matthews, F. E. (2014). The Cambridge Centre for Ageing and Neuroscience
(Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination
of healthy cognitive ageing. BMC Neurology, 14(1):1–25.

Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z.,
Mintun, M. A., Wang, S., Coalson, R. S., and Raichle, M. E. (2009). The default mode
network and self-referential processes in depression. Proceedings of the National
Academy of Sciences, 106(6):1942–1947.

Silver, N. C. and Dunlap, W. P. (1987). Averaging correlation coefficients: should
Fisher’s z transformation be used? Journal of Applied Psychology, 72(1):146.

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2011). False-positive psychology:
Undisclosed flexibility in data collection and analysis allows presenting anything as
significant. Psychological science, 22(11):1359–1366.

Skov, E. R. and Simons, D. G. (1965). EEG electrodes for in-flight monitoring. Psy-
chophysiology, 2(2):161–167.

Sled, J., Zijdenbos, A., and Evans, A. (1998). A nonparametric method for automatic
correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging, 17:87–97.

Slowikowski, K. (2019). ggrepel: Automatically Position Non-Overlapping Text Labels
with ’ggplot2’. R package version 0.8.1.

Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E., and Miller, K. L. (2019).
Estimation of brain age delta from brain imaging. NeuroImage, 200:528 – 539.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/856336doi: bioRxiv preprint 

https://doi.org/10.1101/856336
http://creativecommons.org/licenses/by-nc-nd/4.0/


29

Stockmeier, C. A., Mahajan, G. J., Konick, L. C., Overholser, J. C., Jurjus, G. J., Meltzer,
H. Y., Uylings, H. B., Friedman, L., and Rajkowska, G. (2004). Cellular changes in the
postmortem hippocampus in major depression. Biological psychiatry, 56(9):640–650.

Tallon-Baudry, C., Bertrand, O., and Fischer, C. (2001). Oscillatory synchrony between
human extrastriate areas during visual short-term memory maintenance. Journal of
Neuroscience, 21(20):RC177–RC177.

Taulu, S. and Kajola, M. (2005). Presentation of electromagnetic multichannel data: The
signal space separation method. Journal of Applied Physics, 97(12).

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon, M., Tyler, L. K.,
Henson, R. N., et al. (2017). The Cambridge Centre for Ageing and Neuroscience
(Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data
from a cross-sectional adult lifespan sample. Neuroimage, 144:262–269.

Thambisetty, M., Wan, J., Carass, A., An, Y., Prince, J. L., and Resnick, S. M. (2010).
Longitudinal changes in cortical thickness associated with normal aging. Neuroimage,
52(4):1215–1223.

The Wellcome Centre for Human Neuroimaging (2018). SPM - Statistical Parametric
Mapping.

Uusitalo, M. A. and Ilmoniemi, R. J. (1997). Signal-space projection method for sepa-
rating MEG or EEG into components. Medical and Biological Engineering and Com-
puting, 35(2):135–140.

Varoquaux, G. (2017). Cross-validation failure: small sample sizes lead to large error
bars. Neuroimage.

Varoquaux, G., Baronnet, F., Kleinschmidt, A., Fillard, P., and Thirion, B. (2010). Detec-
tion of Brain Functional-Connectivity Difference in Post-stroke Patients Using Group-
Level Covariance Modeling. In Jiang, T., Navab, N., Pluim, J. P. W., and Viergever,
M. A., editors, Medical Image Computing and Computer-Assisted Intervention – MIC-
CAI 2010, pages 200–208, Berlin, Heidelberg. Springer Berlin Heidelberg.

Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., and
Gazzaley, A. (2015). Age-related changes in 1/f neural electrophysiological noise.
Journal of Neuroscience, 35(38):13257–13265.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York.

Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2):241–259.

Woo, C.-W., Chang, L. J., Lindquist, M. A., and Wager, T. D. (2017). Building bet-
ter biomarkers: brain models in translational neuroimaging. Nature neuroscience,
20(3):365.

Yoo, T. K., Ryu, I. H., Lee, G., Kim, Y., Kim, J. K., Lee, I. S., Kim, J. S., and Rim, T. H.
(2019). Adopting machine learning to automatically identify candidate patients for
corneal refractive surgery. npj Digital Medicine, 2(1):59.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/856336doi: bioRxiv preprint 

https://doi.org/10.1101/856336
http://creativecommons.org/licenses/by-nc-nd/4.0/


30

Supporting Information

Figure 2 supplement
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Fig. 2 – supplement 1. Two-dimensional partial-dependency analysis for top-important
stacking inputs. The x and y axes depict the empirical value range of the age inputs. The
color and contours show the resulting output prediction of the stacking model. Additive
patterns dominating, suggesting independent contributions of MEG and fMRI with little
evidence for interaction effects.
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Fig. 2 – supplement 2. Breakdown of prediction error across age by stacking model.
The upper row shows unimodal models, the lower row multimodal ones. Extreme error,
especially in young and old subjects was mitigated by stacking.
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Figure 3 supplement
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Fig. 3 – supplement 1. Coefficients of deconfounded linear models predicting neu-
ropsychological scores from brain ageΔ
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Fig. 3 – supplement 2. Neuropsychological scores across lifespan after residualizing
for age.
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Fig. 3 – supplement 3. Residual correlation between brain age Δ and neuropsycholgi-
cal assessment. The x-axis depicts the coefficients from univariate regression models.
Uncertainty estimates are obtained from non-parametric bootstrap estimates with itera-
tions.
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Figure 4 supplement
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Fig. 4 – supplement 1. Distribution of prediction errors across 62 first-level linear
models (green) and 9 second-level stacking models (black) based on random forests.
One can see that stacking mitigates prediction error.
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Fig. 4 – supplement 2. Partial dependence between top age-inputs and the final
stacked age-prediction. One can see that extreme input-predictions are pulled toward
the mean, following a non-linear step-pattern.
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