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Abstract

Hypoxia-activated prodrugs (HAPs) present a conceptually elegant approach to not only

overcome, but better yet, exploit intra-tumoural hypoxia. Despite being successful in

vitro and in vivo, HAPs are yet to achieve successful results in clinical settings. It has

been hypothesised that this lack of clinical success can, in part, be explained by the

insufficiently stringent clinical screening selection of determining which tumours are

suitable for HAP treatments.

Taking a mathematical modelling approach, we investigate how tumour properties

and HAP-radiation scheduling influence treatment outcomes in simulated tumours. The

following key results are demonstrated in silico: (i) HAP and ionising radiation (IR)

monotherapies may attack tumours in dissimilar, and complementary, ways. (ii)

HAP-IR scheduling may impact treatment efficacy. (iii) HAPs may function as IR

treatment intensifiers. (iv) The spatio-temporal intra-tumoural oxygen landscape may
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impact HAP efficacy. Our in silico framework is based on an on-lattice, hybrid,

multiscale cellular automaton spanning three spatial dimensions. The mathematical

model for tumour spheroid growth is parameterised by multicellular tumour spheroid

(MCTS) data.

Author Summary

When cancer patients present with solid tumours, the tumours often contain regions

that are oxygen-deprived or, in other words, hypoxic. Hypoxic cancer cells are more

resistant to conventional anti-cancer therapies, such as chemotherapy and radiotherapy,

and therefore tumour hypoxia may complicate treatments. Hypoxia-activated prodrugs

constitute a conceptually elegant approach to not only overcome, but better yet, exploit

tumour hypoxia. Hypoxia-activated prodrugs are drugs that act as Trojan horses, they

are theoretically harmless vehicles that are converted into warheads when they reach

their targets: hypoxic tumour cells. Despite being conceptually clever and successful in

experimental settings, hypoxia-activated prodrugs are yet to achieve successful results in

clinical trials. It has been hypothesised that this lack of clinical success can, in part, be

explained by an insufficiently stringent clinical screening selection of determining which

tumours are suitable for hypoxia-activated prodrug treatments.

In this article, we investigate how simulated tumours with different oxygen

landscapes respond to anti-cancer treatments that include hypoxia-activated prodrugs,

either alone or in combination with radiotherapy. Our simulation framework is based on

a mathematical model that describes how individual cancer cells in a tumour divide and

respond to treatments. We demonstrate that the efficacy of hypoxia-activated prodrugs

depends on both the treatment scheduling, and on the oxygen landscape of the specific,

simulated tumour.

Introduction

Oxygen concentrations vary across solid tumours and, although tumours present with

high diversity across patients [1], hypoxic regions are prevalent tumour features,

commonly provoked by inadequate oxygen supply and high tumour growth rates [2–11].
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Hypoxia significantly impacts tumour dynamics, treatment responses and, by extension,

clinical outcomes [6, 9, 12]. Hypoxia may alter cellular expressions of genomes, proteins

and epigenetic traits [2], and such hypoxia-induced alterations may cause hypoxic

cancer cells to become more resistant to apoptosis [13]. Hypoxia may also alter the

metabolism of cells [13], promote angiogenesis by activating associated genes [14] and

upregulate efflux systems [15]. Thus hypoxia may both protect and progresses solid

tumours [12,13] and, accordingly, severe tumour hypoxia is associated with tumours

that are difficult to treat and, by extension, poor prognoses for patients [2, 7]. It is well

established that hypoxic regions in solid tumours express reduced sensitivity to

radiotherapy and a plethora of chemotherapeutic drugs [2, 6–9,11,13,14,16–18].

Hypoxic cancer cells in a solid tumour are naturally located far away from active oxygen

sources, i.e. blood vessels [7], and therefore drug molecules that are of large size or

tightly bound to cell components may not reach hypoxic tumour cells at all [14].

Moreover, genes associated with chemo-resistance may be upregulated by hypoxia [19].

Hypoxia is also regarded to be one of the main factors contributing to radiotherapy

failure [14] and radiation-induced DNA damage, especially in the form of double strand

breaks, is more easily self-repaired by cells under hypoxic conditions [20].

Due to their severe impact on conventional anti-cancer therapies, such as

chemotherapy and radiotherapy, hypoxic cancer cells, and their central mediators [2],

have for the last decades been considered to be important treatment-targets [1, 14]. In

treatment scenarios in which rapid tumour re-oxygenation does not occur, hypoxic

tumour regions can, instead, be more directly targeted. In fact, multiple ways to handle

tumour hypoxia have been explored. One approach to combating intra-tumoural

hypoxia is to increase the tumour oxygenation as part of a neoadjuvant treatment [19].

A second approach to overcome hypoxia is to selectively target hypoxic cancer cells for

treatment-sensitising or eradication [4]. A third and conceptually elegant approach to

not only overcome, but better yet, exploit intra-tumoural hypoxia is realised by

hypoxia-activated prodrugs (HAPs) [14]. HAPs are bioreductive prodrugs that reduce,

and thus convert, into cytotoxic agents upon reaching hypoxic (tumour) regions [13, 18].

Theoretically, they act as Trojan horses, ideally being essentially harmless until they are

converted into warheads in targets, i.e. hypoxic (tumour) regions. The

tumour-targeting ability of HAPs is based on the premise that oxygen concentrations in
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hypoxic tumour regions reach exceptionally low levels, and that such low oxygen levels

are much more prevalent in tumours, than in the body tissue that locally surrounds the

tumours [13]. Indeed physoxia (the term commonly used to describe oxygen levels found

in several types of normal tissue), ranges between 10 and 80 mmHg, and a cancer cell is

commonly classified as hypoxic if it has a partial pressure of oxygen (pO2) value of 10

mmHg or less [5]. Solid tumours commonly display regions that are even more hypoxic,

where pO2 values may drop below 5 mmHg [5]. Consequently, HAPs theoretically

constitute a means to effectively target hypoxic tumour regions whilst keeping toxic

effects localised to tumours, in great part sparing the remaining host system from

harmful toxicity and unwanted side effects.

HAPs transform into activated drugs (AHAPs) via reductive metabolism in

sufficiently hypoxic environments [3, 14], and the AHAPs can in turn achieve cytotoxic

effects in cells [21]. Freely available molecular oxygen may inhibit this bioreduction, and

thus HAPs remain (for the most part) more intact, and by extension less toxic, in

well-oxygenated environments [13]. Once activated, certain AHAPs may diffuse into

their local surroundings. Thus, via bystander effects, for certain HAP drugs, AHAPs

may infer damage to cells in which the HAP-to-AHAP bioreduction did not occur.

However, a few recent studies dispute the impact of these bystander effects on the

overall treatment outcome [22]. In the mathematical model utilised in this study, the

dispersion of HAPs and AHAPs obey mechanistic diffusion equations, and the reach of

AHAPs can easily be modified by altering coefficients in the AHAP diffusion equation.

Thus the influence of bystander effects on the treatment outcome is allowed to range

from negligible to highly influential in our mathematical model.

Multiple HAPs have been evaluated for their clinical potential, both as

monotherapies and as part of combination therapies [2,8]. Class I HAPs are activated in

moderately hypoxic environments whilst Class II HAPs require more severe hypoxia to

undergo the HAP to AHAP bioreduction [23]. One such Class II HAP is evofosfamide,

or TH-302, which has been tested in clinical Phase I-III trials [2, 19]. TH-302 bioreduces

to its activated form, bromo-isophosphoramide mustard (Br-IPM), in hypoxic tumour

regions, and Br-IPM is a DNA-crosslinking agent [22]. Multiple in vitro and in vivo

studies have validated this prodrug’s preclincal success and, by extension, its clinical

feasibility [6, 7, 9, 10,12,17,21,24–28]. Multimodality treatment strategies combining
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HAPs, particularly Class II HAPs, with ionising radiation (IR) may be particularly

promising [8, 9, 27–29] as the two therapies conceptually complement each other: HAPs

target hypoxic tumour regions whilst radiotherapy is most effective against

well-oxygenated tumour regions. Thus, in principal, HAP-IR combination treatments

have the ability to produce multifaceted attacks on tumours.

Despite HAPs being conceptually promising and successful in laboratories, their

success has not yet been mirrored in clinical trials [1, 2, 19]. It is hypothesised that this

unsuccessful Bench-to-Bedside translation is partly due to an insufficiently stringent

clinical screening practice of selecting tumours that are suitable for HAP

treatments [19]. It is likely that some of the tumours enrolled in clinical trials have been

insufficiently hypoxic to benefit from treatment plans involving HAPs [1]. To

investigate this hypothesis, we here propose a mathematical modelling angle to simulate

how spatio-temporal tumour features may impact HAP efficacy and how scheduling

influences the outcome of multimodality HAP-IR treatments in silico.

Today, mathematical modelling constitutes an indispensable complement to

traditional cancer research [30]. Models provide an opportunity to study biological

phenomena in silico that may not be empirically observable and, moreover, in silico

experiments are fast and cheap to run, easy to reproduce and not directly associated

with any ethical concerns. Previous mathematical studies have already contributed to

the overall understanding of HAPs, quantified key mechanisms associated to them and

illustrated their clinical feasibility. Foehrenbacher et al. [31] deployed a Green’s function

method, in customised form, and pharmacokinetic/pharmacodynamic (PK/PD)

modelling to quantify anti-cancer bystander effects elicited by the HAP PR-104 in a

simulated, three-dimensional tumour comprising a microvascular network. Another

concurrent article used similar mathematical concepts to compare Class I HAPs to

Class II HAPs and, furthermore, to determine optimal properties for Class II HAPs [23].

Lindsay et al. [32] developed a stochastic model to study monotherapies and

combination therapies involving HAPs, specifically TH-302, and erlotinib. Amongst

other findings, they concluded that a combination therapy of the two drugs impedes the

uprising of drug resistance. Since HAPs bioreduce to their activated form under hypoxic

conditions it follows that AHAP activity increases with intra-tumoural hypoxia.

Accordingly, a previous study by Wojtkowiak et al. [33] conceptually validated the
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strategy of amplifying TH-302 activity by deliberately exacerbating intra-tumoural

hypoxia using exogenous pyruvate. Their study combined mathematical modelling with

metabolic profiling and EPR (electron paramagnetic resonance) imaging. HAP

dynamics were modelled using reaction-diffusion/convection equations coupled with

fluid-structure interactions. In line with these previous mathematical studies, the aim of

this in silico study is to contribute HAP-related insights gained by mathematical

modelling, according to a Blackboard-to-Bedside [34] approach.

Model

An on-lattice, hybrid, multiscale cellular automaton (CA) is here used to model solid

tumours subjected to HAP and IR monotherapies, as well as HAP-IR combination

therapies. Tumour growth and HAP responses are parameterised by published data

from an in vitro study performed by Voissiere et al. [35], in which multicellular tumour

spheroids (MCTSs) where grown and exposed to HAPs. Specifically, we use their data

for human chondrosarcoma HEMC-SS cells exposed to the hypoxia-activated prodrug

TH-302. Our mathematical model is thereafter extended to simulate in vivo drug

dynamics in order to investigate scheduling aspects of HAP-IR combination therapies.

The parameters used in this paper can be modified in order to simulate specific

cell-lines and drugs, and model rules can be altered in order to simulate both in vitro

and in vivo cancer cell populations, MCTSs or tumours. Thus, upon the availability of

appropriate data, various tumour scenarios and treatment schedules and doses can be

investigated in silico. Hence the mathematical model presented here constitutes a

valuable and versatile complement to both in vitro and in vivo experiments. The model

used in this study is an extension of a previous, well-established model presented by

Powathil et al. [36]. All parameters used in the model are motivated from experiments

and literature, as described throughout this section, and are summarised Table 1.

Mathematical Framework: A Cellular Automaton (CA)

The CA used in this model allows for spatio-temporal dynamics and intra-tumoural

heterogeneity including variations in cell-cycle progressions, oxygen levels, drug

concentrations and treatment responses amongst cancer cells [34, 36–38]. The model is
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multiscale and integrates both intracellular and extracellular regulations. In vitro

experiments have demonstrated that MCTSs are more HAP-sensitive than are

monolayers. This increase in sensitivity has been attributed to the microenvironment

correlated to multilayer cultures [17]. Aspiring to achieve an in silico model that is as

clinically relevant as possible, we here let the CA lattice extend in three spatial

dimensions. The lattice is specifically a square lattice containing 1003 lattice points,

simulating a physical environment of (2mm)3. Thus each voxel in the lattice spans a

volume of (20µm)3 and each lattice point may be occupied by either one cancer cell or

extracellular space. These dimensions agree with previous mathematical studies [36],

and reported cell population densities in the MCTSs that are used to calibrate the

model [35]. The time step used for the temporal progression of the CA is ∆t = 10−3

hours, by appropriate non-dimensionalisation of oxygen dynamics [36].

Cell-Cycle Progression

On an intracellular scale, sub-cellular mechanisms are modelled individually for each cell

in order to allow for variations amongst cancer cells. Cell-cycle progression is one such

intracellular process, and it is here governed by an intrinsic cell-cycle clock attributed to

each individual cell. In order to account for cell-cycle asynchronicity amongst cells, each

cell i is assigned an individual, stochastic doubling-time τi which corresponds to the

time it takes for a cell to complete one cell-cycle, and double by producing a daughter

cell, under well-oxygenated conditions. Here, τi is picked from a normal distribution [37]

with a mean value µ and a standard deviation σ, which are picked to match cell

population growth-rates reported from Voissiere et al. [35], as demonstrated in Figure 1.

As sensitivity to radiotherapy is cell-cycle dependent [20], it is important to track

cell-cycle phase progression in the model. Thus each cell in the model follows a

cell-cycle typical to that of eukaryotic cells and, in particular, a cell is defined to be in

the gap 1 (G1), synthesis (S), gap 2 (G2) or mitosis (M) phase of the cell-cycle. Under

well-oxygenated conditions, the fraction of time spent in each of the four distinct

cell-cycle phases are ΘG1, ΘS , ΘG2 and ΘM for the cell-cycle phases G1, S, G2, M

respectively, where the Θ-fractions sum up to one so that
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Fig 1. Cell count over time for tumour spheroids. The in silico data is based on 10
simulations runs, the mean (black line) shows the average value and the gray ribbon
shows standard deviation. In vitro data (red error bars) are extracted from plots
produced by Voissiere et al. [35] using a Java program (DataThief III [39]).

ΘG1 + ΘS + ΘG2 + ΘM = 1. (1)

The four theta values are picked from literature in order to match typical cell-cycle

phase lengths of rapidly cycling human cells with a doubling time of roughly 24

hours [40]. Specifically, we set the G1, S, G2 and M phase to respectively occupy

11/24:ths, 8/24:ths, 4/24:ths and 1/24:th of a cell’s individual doubling time. These

values can be amended upon availability of cell-line specific data. Thus the time spent

in each of the four distinct cell-cycle phases, for a well-oxygenated cell i with a doubling

time τi, is here ΘG1τi, ΘSτi, ΘG2τi and ΘMτi for the cell-cycle phases G1, S, G2 and M

respectively so that

ΘG1τi + ΘSτi + ΘG2τi + ΘMτi = τi. (2)

However, low cellular oxygen levels have been shown to delay cell-cycle progression

by inducing arrest in particularly the G1 phase of the cell-cycle [41]. Mathematically,

the cell-cycle can be modelled in various ways. For example, in mechanistic cell-cycle

models derived by Tyson and Novak [42], the cell-cycle is governed by a regulatory

molecular network that can be described by a system of ordinary differential equations.

By incorporating hypoxia-induced factors in the system of equations, the G1 phase can

be inherently elongated under hypoxic conditions [36]. In this study, however, cell-cycle
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progression is merely modelled using a phenomenological clock, instead of a more

detailed Tyson-Novak type of model. As a result of this, there is no mechanistic

functionality driving G1-arrest under hypoxic conditions in our model. To remedy this

fact, we here introduce an additional function to achieve an oxygen-dependent

elongation of the G1-phase. We name this function the G1 Delay Factor (G1DF ) such

that,

G1DF (K̂(x, t)) =


2 if 0 mmHg ≤ K̂(x, t) < 1 mmHg ,

a1 + a2
a3+K̂(x,t)

if K̂(x, t) ≤ 10.5 mmHg ,

1 otherwise,

(3)

where K̂(x, t) denotes the oxygenation (in units of mmHg) of a cell in point x at

time t. The G1DF, which is illustrated in Figure 2, is an approximation for how much

the G1 phase is expanded in time as a function of oxygen pressure, here measured in

units of mmHg. The G1DF is matched to fit data points extracted from a previous

mathematical study by Alarcon et al. [41], in which a Tyson-Novak cell-cycle model is

extended to incorporate the action of p27, a protein that is upregulated under hypoxia

and delays cell-cycle progression. Thus here the time spent in the G1 phase, τG1, is

given by

τG1 = G1DF (K̂(x, t)) ·ΘG1τi, (4)

where G1DF (K̂(x, t)) = 1 for normoxic cells. The lengths of other cell-cycle phases

are approximated as non-oxygen dependent in the model.

Tumour Growth

In the model, a tumour is grown from one seeding cancer cell which divides and gives

rise to a heterogeneous MCTS. Each cell that is placed on the lattice commences its first

cell-cycle in the G1 phase and once a viable, i.e. undamaged, cell has completed the

mitosis (M) phase of the cell-cycle, a secondary cell, namely a daughter cell, is produced

and placed in the neighbourhood of its mother cell. In the model, cell-division occurs
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Fig 2. The G1 Delay Factor (G1DF) is incorporated in the model to achieve
oxygen-dependent G1 arrest. The G1DF (dark line) is extrapolated from in vitro data
(red crosses) from a previous mathematical study by Alarcon et al. [41].

provided that free space is available on the lattice in the νth order neighbourhood of the

mother cell, where the value for ν is fitted form experimental data [35]. This constraint

simulates a scenario in which cell-division is inhibited by some lack of resources such as

space or nutrients. (By setting ν =∞, the model can be adapted to disregard these

spatial cell-division constraints [37]). If no free space is available in the νth order

neighbourhood of a mother cell that is ready to divide, no daughter cell is produced,

and instead the mother cell assumes a state in which it progresses through the cell-cycle

very slowly (simulating an in vitro spheroid case, in which inner cancer cells

experimentally have shown a reduced proliferation rate [35]), or not at all (simulating

an in vivo case in which cells may enter a quiescent G0 phase [36]). Should

neighbourhood space be made available again, as a result of cells getting removed from

the lattice in response to anti-cancer treatments, such slow-cycling or resting cells may

re-assume an actively cycling state. When cell-division occurs, a daughter cell is placed

on a random lattice point in the neighbourhood of the mother cell, where up to ν

spherical neighbourhoods are regarded and lower order neighbourhood are occupied

first. To accomplish spherical-like tumour growth the model stochastically alternates
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Fig 3. Top: Images from in vitro experiments performed by Voissiere et al. [35], in
which cell nuclei are stained blue and proliferative cells are stained green by the
proliferation marker Ki-67. Bottom: Images from in silico experiments performed in
this study, where proliferative (cycling) cells are coloured green and inner (slow-cycling
or non-proliferative) cells are coloured blue.

between deploying Moore and von Neumann neighbourhoods [36] for daughter

cell-placements. In order to agree with the MCTS data [35] used to calibrate the model,

we here pick ν = 3, as illustrated in Figure 3, and thus a daughter cell may be placed up

to three neighbourhoods away from its mother cell. Note that, in the work presented by

this paper, neither necrotic nor apoptotic tumour cells are included in the pre-treatment

tumour growth model, and instead we make the simplifying modelling assumption that

the density of viable cells is constant (one cancer cell per lattice point) within the

simulated MCTSs before any treatment is given. However, CA are easily adaptable and

thus, if appropriate, modelling rules concerning necrotic and/or apoptotic cells can be

included in the mathematical framework. The in vitro experiment produced and

reported by Voissiere et al. [35] does detect apoptotic cells in the MCTSs, where these

are primarily located towards the center of the spheroids.

Oxygen Distribution and Hypoxia

Oxygen is assumed to be readily available outside the tumour and, therefore, lattice

points outside the tumour are oxygen source points in the model. Viable (i.e.
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non-damaged) cells are modelled as oxygen sinks as they consume oxygen in order to

function. The distribution of oxygen across the lattice is modelled by a mechanistic

partial differential equation (PDE), specifically a reaction-diffusion equation such that

∂K(x, t)

∂t
= ∇ · (DK(x, t)∇K(x, t)) + rKm(x, t)− φKK(x, t)cell(x, t), (5)

coupled with no-flux boundary conditions. Here K(x, t) denotes the oxygen level in

lattice point x at time t. DK(x, t) is the diffusion coefficient, which is higher in lattice

points occupied by cells compared to unoccupied lattice points, so that oxygen diffuses

slower over cancer cells than in extracellular space in the model [36]. The binary

function cell(x, t) is equal to one if the lattice point is occupied by a viable cancer cell,

and zero otherwise. Similarly, the binary function m(x, t) is one if the lattice point is

outside the tumour and zero otherwise, i.e. m(x, t) = 1 if the lattice point in (x, t) is

neither occupied, nor enclosed, by cancer cell(s). The oxygen production rate is denoted

by rK and the cellular oxygen consumption rate is φK . Thus the first term in the Eq 5

describes oxygen diffusion, the second term describes oxygen sources and the final term

describes cellular oxygen consumption. In the model, the diffusion coefficient for oxygen

is gathered from literature but the production and consumption rates are calibrated in

silico to match in vitro data from Voissiere et al. [35], specifically to achieve appropriate

oxygen gradients. Note that the no-flux boundary condition causes the total amount of

oxygen on the lattice to increase over time. To express oxygenation levels on the lattice

in scaled form, a scaled oxygen variable K̂(x, t) is introduced which is obtained by

K̂(x, t) =
K(x, t)

maxnK(n, t)
· h, (6)

where maxnK(n, t) denotes the maximal K(x, t)-value (of all n lattice points) at

time t [43]. The scaling-factor, h, (with unit mmHg), is incorporated in order to

calibrate the model to fit MCTS data [35], as illustrated in Figure 4. Note that an

alternative way of incorporating oxygen distribution in the model (without having to

re-scale the oxygen concentration) is by using an oxygen source term that is

proportional to the difference between some reference oxygen concentration Kv

(measured inside oxygen sources e.g. vessels) and the oxygen concentration in the rest of

the domain. In the model, a cell is defined to be hypoxic if it has a scaled oxygen value

May 25, 2020 12/47

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2020. ; https://doi.org/10.1101/856443doi: bioRxiv preprint 

https://doi.org/10.1101/856443
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 4. Top: Images from in vitro experiments performed by Voissiere et al. [35], in
which hypoxic cells are stained green by pimonidazole and normoxic cells are stained
blue. Bottom: Images from in silico experiments performed in this study, where hypoxic
cells (pO2 ≤ 10 mmHg) are coloured green and normoxic cells (pO2 > 10 mmHg) are
coloured blue.

such that K̂(x, t) ≤ 10 mmHg [36] and the K̂(x, t)-value influences G1-arrest (Figure 2),

radio-sensitivity (Figure 7) and HAP-AHAP bioreduction rates (Figure 5).

Hypoxia-Activated Prodrugs

Anti-cancer prodrugs constitute relatively harmless compounds in their inactivated form

with the potential to bioreduce, or transform, into cytotoxic species [21]. Specifically for

HAPs, this bioreduction occurs in hypoxic conditions and thus HAPs are able to

selectively target hypoxic tumour regions [21]. The oxygen dependent bioreduction is

here modelled by the function fHAP→AHAP (K̂(x, t)), where

fHAP→AHAP (x, t) = b ·BRF (K̂(x, t)), (7)

where b is a time-scaling factor with and BRF is a bioreduction factor as illustrated

in Figure 5 and

BRF (K̂(x, t)) =
[pO2]50

[pO2]50 + K̂(x, t)
. (8)

Here [pO2]50 denotes the oxygen value yielding 50% bioreduction (in one hour),
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Fig 5. The bioreduction factor, BRF , expresses the fraction of HAP compound that
reduces to AHAP compound within one hour as a function of oxygenation (in mmHg).

chosen to be 0.2 mmHg, for evofosfamide, as is done in a previous mathematical model

by Hong et al. [44]. As illustrated in Figure 5, the BRF value rapidly decreases for pO2

values (i.e. K̂(x, t) values) between 0 and 10 mmHg.

The mechanistic reaction-diffusion equations governing the distribution of HAPs and

AHAPs across the lattice are respectively given by [45]

∂[HAP ](x, t)

∂t
= ∇ · (D[HAP ](x, t)∇[HAP ](x, t)) + r[HAP ](x, t)m(x, t)

− fHAP→AHAP (x, t)[HAP ](x, t)− η[HAP ][HAP ](x, t),

(9)

∂[AHAP ](x, t)

∂t
= ∇ · (D[AHAP ](x, t)∇[AHAP ](x, t))

+ fHAP→AHAP (x, t)[HAP ](x, t)− η[AHAP ][AHAP ](x, t),

(10)
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where [HAP ](x, t) denotes the concentration of HAPs and [AHAP ](x, t) denotes the

concentration of AHAPs in point x at time t. D[HAP ](x, t) and D[AHAP ](x, t) denote

the respective diffusion coefficients, r[HAP ](x, t) denotes the HAP production rate,

η[HAP ] and η[AHAP ] denote the corresponding decay rates. AHAPs are harmful agents

which are here assumed to inflict damage that is cell-cycle non-specific. Consequently,

cells that are in any cell-cycle phase (G1, S, G2, M), including cells that are in a slow or

non-cycling state in the centre of the MCTS, are susceptible to AHAP-inflicted damage

in the model. A cell in point x at time t is damaged by the cytotoxic AHAPs if

[AHAP ](x, t) ≥ Ψ, where Ψ is the lethal AHAP concentration threshold. Note that

using a threshold value to determine cell fate (death) is a model approximation and, in

reality (in vitro/in vivo), cellular drug responses will depend on several drug

(pharmacokinetic/pharmacodynamic) factors, as well as specific cell/tumour details.

When a cell dies, it reduces to a membrane-enclosed cell-corpse which is (in vivo)

digested by macrophages [46]. In the model, the time it takes between a cell is declared

dying and it is removed from the lattice is denoted TL→R (L for lethal event, R for

removal). Three cases for this time span TL→R are investigated in this study: (i) the

first extreme case in which a dead cell is never removed from the lattice (simulating an

in vitro environment), (ii) the other extreme case in which a cell is instantaneously

removed from the lattice upon receiving lethal damage, and (iii) a mid-way case in

which a cell is removed from the lattice after a time-period corresponding to its

doubling time has passed, i.e. TL→R,i = τi. Results using the first case are included in

the main text of this manuscript, and results for cases (ii) and (iii) are provided in the

supplementary material in which we demonstrate that, within the scope of the

performed in silico experiments, this choice of TL→R value does not affect our

qualitative findings.

Parameters

In our mathematical model, extracellular space (i.e. lattice points outside the tumour)

are HAP source points, and from there HAPs are quickly distributed across the lattice.

Drug transportation of HAPs from source points to cells is mediated only by the

diffusion terms in Eq 9 and similarly AHAP transportation is mediated only by the

diffusion term in Eq 10. Consequently, the drug diffusion coefficients D[HAP ] and
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D[AHAP ] represent all biophysical drug transportation across the lattice in silico. HAPs

must possess certain appropriate attributes in order to produce desired effects [17]. For

example, HAPs should be able to travel relatively long distances without being

metabolised, specifically distances longer than that of which oxygen travels, in order to

reach hypoxic tumour regions. As oxygen is consumed by the cells, whilst HAPs require

certain micro-environmental conditions to be met in order to metabolise, HAPs may

reach regions located relatively far away from blood vessels, that oxygen can not reach.

It has, indeed, been demonstrated in vivo that TH-302 has the ability to reach hypoxic

regions, where it is activated [47]. Conversely, AHAPs should ideally travel relatively

short distances in order to localise AHAP activity to tumour regions only, and thus to

minimise unwanted extra-tumoural toxicity. The diffusion length of oxygen is reported

in literature to be approximately 100 µm [36] however, to our knowledge, no diffusion

length of neither TH-302 nor Br-IPM has been explicitly reported. However, the

diffusion length of the HAP/AHAP pair AQ4N/AQ4 has been shown to be reach

roughly 1.5 times that of oxygen (or 150µm) in xenografts [48]. With this motivation,

we here approximate the diffusion coefficient of TH-302 to be twice that of oxygen.

(This according to the relationship L =
√
D/Φ, where L is the diffusion length scale, Φ

is the compound uptake and the diffusion coefficient of a certain compound, D, is

proportional to L2, neglecting details of compound uptake [36]. Thus here we make the

simplified approximation that L[HAP ](x, t) =
√

2 ·DK(x, t) ∼ 1.5 ·DK(x, t).) Similar to

previous procedure, the diffusion length of AHAPs is approximated to be half that of

oxygen from which it follows that D[AHAP ](x, t) = (1/4) ·DK(x, t). These parameter

estimations suffice to conceptually, and qualitatively, describe the nature of HAPs and

AHAPs, but can be amended upon the availability of new data. By adjusting the

diffusion coefficients D[HAP ] and D[AHAP ], the influence of bystander effects are

allowed to range from negligible to highly influential in our mathematical framework.

The half-life times of TH-302 and Br-IPM have been reported to be 0.81h and 0.70h

respectively in a clinical trial [11], these values are used to determine the decay rates

η[HAP ] and η[AHAP ]. This half-life time of TH-302 is in accordance with preclinical

predictions obtained from allometric scaling [26]. Note that the drug decay coefficients,

η[HAP ] and η[AHAP ] in Eq 9 and Eq 10 respectively, simulate all drug clearance from

the system, i.e. both metabolic clearance and excretion.
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Radiotherapy

Cellular responses to radiotherapy are dependent on oxygenation status [4], cell-cycle

phase [49,50], and cell-line characteristics. Cellular radiotherapy responses are here

modelled using an appropriate CA adaptation of the widely accepted Linear-Quadratic

(LQ) model. In the traditional LQ model, the survival fraction of a cell population is

given by S(d) = e−nd(α+βd), where d is the radiation dosage, n is the number of

administered radiation fractions and α and β are cell-line specific sensitivity

parameters [51]. In order to include cell-cycle sensitivity, α and β are here cell-cycle

dependent and the oxygen modification factor (OMF) is incorporated to include oxygen

sensitivity [52], such that

OMF =
OER(K̂(x, t))

OERm
, (11)

where

OER(K̂(x, t)) =
OERm · K̂(x, t) +Km

K̂(x, t) +Km

. (12)

Here, OERm = 3 is the maximum value under well-oxygenated conditions and

Km = 3 mmHg is the pO2 value achieving half of the maximum ratio [43]. The OER

and OMF functions are illustrated in Figure 6.

The survival probability of a cell in point x at time t is here given by

S(x, t) = e−d([OMF ]α(x,t)+d[OMF ]2β(x,t)), (13)

where the cell-cycle phase specific α and β values are gathered from a previous study

by Kempf et al. [53], and are listed in Table 1. Cellular responses to a 2Gy IR dose for a

generic cancer cell-line, as a function of oxygenation and cell-cycle phase details, are

illustrated in Figure 7.

Parameters

In this study we attempt to replicate the nature of generic eukaryotic cell-lines, the

HAP evofosfamide (TH-302) and its corresponding AHAP, Br-IPM. The parameters,

which are listed in Table 1, are chosen accordingly but can be adapted to represent
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Fig 6. The Oxygen Enhancement Ratio (OER) and the Oxygen Modification Factor
(OMF) are incorporated in the mathematical model to quantify the influence of oxygen
on radiotherapy responses. Cells are the least radiosensitive for low pO2 values. The
OER and OMF curves have steep gradients between the oxygen values 0 and 10 mmHg,
after which they respectively asymptote to the values 3 and 1 for higher oxygen values.
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Fig 7. The probability that a cell, in the mathematical model, exposed to a
radiotherapy dose of 2 Gy survives. The survival probability S(x, t) is function of a
cell’s current cell-cycle phase and oxygenation value. Cells are the most likely to survive
radiotherapy when hypoxic.
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Equation Parameter Value
Cellular Automaton
N/A ∆x1 = ∆x2 = ∆x3 (spacing) 20 µm

∆t 0.001 hours
Cell-cycle and proliferation
N/A µ, σ 40 hours, 4 hours

θG1, θS , θG2, θM
11
24

, 8
24

, 4
24

, 1
24

a1, a2, a3 0.9209, 0.8200, -0.2389
ν 3

Oxygen

5 DK(x, t) =

{
DK/1.5 if cell in (x, t)

DK otherwise
DK = 2.5 × 10−5 cm2s−1

cell(x, t) =

{
1 if viable cell in (x, t)

0 otherwise

m(x, t) =

{
1 if (x, t) outside MCTS

0 otherwise

6 h 0.5 mmHg
11 OERm 3
12 Km 3 mmHg
Drugs
7 b (hour)−1

8 [pO2]50 0.2 mmHg
9 and 10 DHAP , DAHAP 2 ×DK(x, t), 1

4
×DK(x, t)

ηHAP , ηAHAP picked from half-life times:
t1/2,HAP =0.81 hours,
t1/2,AHAP =0.70 hours

9 TL→R (for the no removal in vitro case) Infinity
Radiotherapy
13 α(G1), β(G1) 0.351, 0.04

α(S), β(S) 0.1235, 0.04
α(G2), β(G2) 0.793, 0
α(M), β(M) 0.793, 0
α(G0), β(G0) α(G1)/1.5, β(G1)/(1.52)

Table 1. A summary of model parameters used in the mathematical framework.

other specific cell-lines or drugs upon data becoming readily available.

Implementation and in silico Framework

The mathematical model is implemented in an in-house computational framework

written in C++ deploying high-performance computing techniques. The PDEs

describing oxygen and drug distribution across the lattice are solved using explicit finite

difference methods with no-flux boundary conditions. Maps of cancer cells and the

microenvironment are visualised in ParaView [54]. Using this computational framework,

various experimental in vitro and in vivo scenarios are formulated and simulated in

silico. In order to grow an in silico MCTS, one seeding cancer cell is placed on the

lattice, this cell divides and gives rise to a MCTS that is heterogeneous in nature, as

in-built model stochasticity creates cell-cycle asyncronosity amongst tumour cells [55],

and oxygen levels vary across the MCTS. Such virtual spheroids are thereafter subjected
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to various treatments comprising HAPs and/or IR. Treatment commence when MCTSs

consist of, in the order of, 100,000 cancer cells or ‘agents’ in our agent-based model. Due

to the high number of agents, and the fact that the intrinsic model stochasticity only

involves a few events during the simulated treatment time (specifically 0-3 cell divisions

and potentially one response to radiotherapy) the quantitative results do not differ

much between in silico runs. Performing the same in silico experiment 10 times yields a

standard deviation that can be regarded as negligible (as the standard deviations

obtained in this study are less than 0.5% of the mean values). From this we argue that

basing our results on mean values from 10 simulation runs per experiment is enough to

mitigate intrinsic model stochasticity to a sufficient level for this qualitative study.

Results and Discussion

In the following sections, we compare treatment responses in two different in silico

tumour spheroids, specifically a ‘Large’ and more hypoxic MCTS and a ‘Small’, less

hypoxic MCTS. The ‘Small’ MCTS corresponds to the 20 day-old MCTS in Figures 3

and 4, that is calibrated by in vitro data from Voissiere et al. [35]. The ‘Large’ MCTS is

extrapolated by letting the ‘Small’ MCTS grow for yet another 10 days in silico, until it

reaches an age of 30 days. The ‘Small’ and ‘Large’ MCTSs are illustrated in Figure 8.

The simulated IR dose is chosen to be 2 Gy, and to allow for intuitive comparisons

between the two different monotherapies, the HAP dose (DoseHAP ) is here qualitatively

chosen, and calibrated to yield the a similar in silico response as the 2 Gy IR dose (in

terms of cell survival) in the ‘Large’ MCTS. Quantitative drug doses can be specified

and implemented upon the availability of data.

HAP and IR monotherapies attack tumours in different ways

In this initial in silico experiment, a MCTS is subjected to a monotherapy of either one

dose of HAPs or one dose of IR. Our in silico results demonstrate that HAP and IR

monotherapies attack the MCTS in different ways. This can be understood by

regarding the treatment responses in Figure 9 and Figure 10. Figure 9 shows cell-cycle

phase specific survival data, in terms of cell count over time, when the ‘Small’ or ‘Large’

MCTS is subjected to a HAP or IR monotherapy. Similarly, Figure 10 shows the
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Fig 8. The ‘Small’ (20 day old) MCTS and the ‘Large’ (30 day old) MCTS are used to
allow for comparisons in treatment responses between tumours with different
oxygenation levels. Top: Simulation snapshots of the MCTSs at the time point T0 when
treatments commence (A1: Small MCTS, B1: Large MCTS). Hypoxic cells (pO2 ≤ 10
mmHg) are green whilst normoxic cells are blue. Middle: Oxygen histograms at time T0,
in which hypoxic cell counts are shown in green and normoxic cell counts are shown in
blue (A2: Small MCTS, B2: Large MCTS). Bottom: Cell-cycle phase histograms at
time T0 (A3: Small MCTS, B3: Large MCTS). The slow/non-proliferative, inner cancer
cells are labeled S/N-P.

composition of cells, in terms of their cell-cycle phase, in response to a HAP or IR

monotherapy dose. Our results demonstrate that for the ‘Small’, well-oxygenated

MCTS, HAPs have negligible effect on the cell count (see Figure 9) and, by extension,

on the cell-cycle phase composition (see Figure 10). This shows that, by design, HAP

treatments have little effect on tumours that are not hypoxic enough to cause significant
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HAP-to-AHAP bioreduction. For the ‘Large’ MCTS, however, HAPs successfully

eliminate cells, particularly the inner cells of the MCTS, labeled ‘slow/non-proliferative’

(see Figure 9). This causes a change in the cell-cycle phase composition in favour of the

proliferative cells in the outer shell of the MCTS (see Figure 10). Our results further

show that, for both the ‘Small’ and the ‘Large’ MCTSs, IR eliminates cells of all

cell-cycle states (see Figure 9), but alters the cell-cycle phase composition in favour of

the inner, hypoxic cells as these are less sensitive to radiotherapy (see Figure 10). These

opposing effects on the cell-cycle phase composition achieved by HAPs and IR in the

‘Large’ MCTS indicate that, for tumours that are hypoxic enough for HAPs to have an

effect, HAP-IR combination treatments have the potential of producing multifaceted

attacks on tumours.

Since radiation responses are enhanced by the presence of molecular oxygen, we

investigated which monotherapy (i.e. HAP or IR) best eliminates hypoxic cells and

re-oxygenates MCTSs after one single treatment dose. To demonstrate the overall

change of oxygenation levels in the MCTSs, as a result of the monotherapies, Figure 11

provides histograms for cellular oxygenation levels at time T0 (the time of therapy

administration) and at time T0 + 4 hours. From this figure we can see that for the

‘Small’ MCTS, HAPs do not alter the overall intra-tumoural oxygenation but IR does,

since HAPs are not efferctive but IR is. For the ‘Large’ MCTS, on the other hand, both

HAPs and IR alter the overall intra-tumoural oxygenation but only HAPs manage to

eliminate the most hypoxic cells, and thus shift the oxygen histogram away from the

most severe levels of hypoxia. This indicates that administering HAPs as a neoadjuvant

therapy prior to radiotherapy may enhance the effect of radiotherapy in tumours that

are sufficiently hypoxic for HAPs to be effective.

HAP-IR treatment scheduling impacts HAP efficacy in

sufficiently hypoxic tumours

In order to study the optimal treatment scheduling of HAP-IR combination therapies,

simulated MCTSs are here given one dose of HAPs and one dose of IR, using different

schedules. Figure 12 shows the cell count over time when one dose of HAPs and one

dose of IR are administered with various schedules. Specifically, either HAPs are given
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Fig 9. Treatment responses for HAP (left) and IR (right) monotherapies for the ‘Small’
(top) and ‘Large’ (bottom) MCTS. The monotherapy is given at T0 = 0 hours. Graphs
demonstrate cell-cycle specific cell count (i.e. number of viable, undamaged cells) over
time. The slow/non-proliferative, inner cancer cells are labeled S/N-P. Solid lines show
mean values, and the height of ‘+’ markers show standard deviations for 10 in silico
runs.
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Fig 10. Treatment responses for HAPs (left) and IR (right) monotherapies for the
‘Small’ (top) and ‘Large’ (bottom) MCTS. The monotherapy is given at T0 = 0 hours.
Graphs demonstrate cell-cycle specific composition (of viable, undamaged cells) over
time. The slow/non-proliferative, inner cancer cells are labeled S/N-P. Solid lines show
mean values for 10 in silico runs (standard deviations are negligible hence not shown).
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Fig 11. Treatment responses for HAPs (left) and IR (right) monotherapies for the
‘Small’ (top) and ‘Large’ (bottom) MCTS. Histograms over cellular oxygenation levels
at time T0 (monotherapy administration time) and 4 hours later are shown. Results are
based on mean values from 10 in silico runs.
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Fig 12. Treatment responses (in terms of cell count) for HAP-IR combination therapies
in the ‘Small’ MCTS (left) and the ‘Large’ MCTS (right). One dose of HAPs and one
dose of IR are administered at various schedules. Solid and dashed lines show mean
values, and the height of the ‘+’ markers show standard deviations for 10 in silico runs.

at 0 hours (followed by IR at 0, 12, 24 or 48 hours) or IR is given at 0 hours (followed

by HAPs at 12, 24 or 48 hours). The results in Figure 12 demonstrate that for the

‘Small’ MCTS, scheduling does not impact the overall treatment outcome, as HAPs

with the chosen [pO2]50 value are not effective. For the ‘Large’ MCTS however, it is

here more effective to give HAPs before IR, than to give IR before HAPs. This

indicates that, in tumours that are hypoxic enough for HAPs (with certain [pO2]50

values) to be effective, the HAP-IR treatment scheduling impacts the efficacy of the

combination treatment. Note that, as is demonstrated in the supplementary material,

the [pO2]50 value will affect the impact and importance of treatment scheduling.
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HAPs enhance radiotherapy effects in sufficiently hypoxic

tumours

To investigate if and when HAPs enhance the effect of radiotherapy, simulated MCTSs

are subjected to either IR monotherapies or HAP-IR combination therapies. In the

combination therapy case, HAPs are administered at time T0 and IR is administered at

time T0 + 48 hours. In the monotherapy case, radiotherapy is administered at time

T0 + 48 hours. For a thorough investigation, the oxygen-levels of the ‘Large’ and ‘Small’

tumours are further scaled by multiplication with a factor 1, 1/2 or 1/4 so that we have

6 different tumours on which to test if neoadjuvant HAPs enhances radiotherapy

efficacy. Figure 13 shows IR treatment responses in form of survival data (both in terms

of number of surviving cells and fraction of surviving cells). From these plots we see

that for very hypoxic MCTSs, the administration of neoadjuvant HAPs does increase

the effect of radiotherapy. However, for well-oxygenated MCTS, neoadjuvant HAPs do

not increase the effect of radiotherapy.

The intra-tumoural oxygen landscape impacts HAP efficacy

Above, we have demonstrated various ways that the intra-tumoral oxygenation level

impacts HAP and IR monotherapies and combination therapies. Further, in order to

investigate if the spatio-temporal intra-tumoral oxygen landscape impacts HAP efficacy,

two MCTSs with different oxygen landscapes are here compared. Omitting details of

oxygen dynamics and vessel structure, hypoxic regions are here manually assigned in the

MCTSs so that every cancer cell is set to be either severely hypoxic (pO2 = 1 mmHg) or

very well-oxygenated (pO2 = 100 mmHg). Both MCTSs, named MCTS A and MCTS B,

are assigned the same number of severely hypoxic and well-oxygenated cancer cells at

the time-point when treatment commences. In MCTS A, the hypoxic region is made up

of one concentric sphere in the core of the MCTS, whilst in MCTS B, the hypoxic

regions consist of multiple spheres, evenly spread out across the MCTS. MCTS A and

MCTS B are illustrated in Figure 14. The severely hypoxic cancer cells are here called

activator cells, as the prodrug bioreduction (or activation) is maximal in severly hypoxic

environments. The well-oxygenated cells are here referred to as bystander cells, as the

bioreduction is minimal in well-oxygenated environments. Thus any lethal AHAP
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Fig 13. Treatment responses of radiotherapy in various MCTSs when either (1) an IR
monotherapy dose is administered at T0+48 hours or (2) IR is given at T0+48 hours
following a prior HAP dose at time T0. Note that only explicit IR responses (not HAP
responses) are shown. The oxygen-levels of the ‘Small’ (left) and ‘Large’ (right) tumours
are scaled by a factor of 1 (least hypoxic), 1/2 or 1/4 (most hypoxic). The value
calibrated from in vitro experiments [35] correspond to a scaling with factor 1. Orange
+ blue bars show number of viable cells (instantaneously) before IR administration, blue
bars show the number of viable cells (instantaneously) post IR. Red bars show how
many cells (as a fraction) survived the IR attack.
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A: Simulation (MCTS A) B: Simulation (MCTS B)

Fig 14. MCTS A and B prior to treatment commencing. The MCTSs are visualised in
both opaque and transparent formats. Hypoxic activator cells are shown in green and
normoxic bystander cells are shown in blue. Activator and bystander cells are manually
set so that MCTSs A and B contain the same number of activator and bystander cells
before treatment commences.

concentration occurring in a bystander cell is a result of HAP-to-AHAP bioreduction

occurring outside the bystander cells.

From Figure 15 it is clear that the bystander effects are higher in MCTS B than in

MCTS A, although all activator cells are eliminated in both MCTSs. When the

activator cells are spread out across the spheroid, as in MCTS B, there are more

interfaces in which bystander cells experience significant bystander effects. Although the

oxygen landscape in MCTS B is highly synthetic, this in silico experiment shows that

the intra-tumoural oxygen landscape does impact the efficacy of HAPs. In the

supplementary material, more MCTSs with distinct oxygen landscapes, subjected to

HAP monotherapies are explored.

Conclusion

Previous in vitro and in vivo studies have validated the successfulness of HAPs in

laboratory settings, however, this preclinical success has not yet been reflected in

clinical trials. In an attempt to elucidate the unsatisfactory results from clinical HAP

trials, we in this study investigate how oxygen-related tumour features and treatment

scheduling impact the efficacy of HAP monotherapies and HAP-IR combination
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Fig 15. Treatment responses in MCTS A and MCTS B when HAPs are administered
at 0 T0 = 0 hours. The number of viable (undamaged) cells are plotted over time for
MCTS A and MCTS B. Cell counts for activator cells (pO2 = 1 mmHg) are shown in
dashed lines and bystander cell counts (pO2 = 100 mmHg) are shown in solid lines.
Results demonstrate mean values for 10 in silico runs.

therapies in silico. To this end, we have developed a mathematical model capturing the

spatio-temporal dynamics of tumours subjected to multimodality treatments comprising

HAPs and IR. A set of key results (i to iv) relating to (Class II) HAP efficacy in silico

have here been demonstrated.

i HAPs and IR attack tumours in different, complementary, ways. Whilst IR

provides a highly effective way to kill cancer cells, tumour regions containing

hypoxic and resting cells are significantly more resistant to IR than are tumour

regions with well-oxygenated and actively cycling cells. HAPs, however, are

alkylating agents which bioreduce in (primarily) hypoxic areas, hence HAPs

mainly inflict damage in hypoxic tumour regions. Consequently, HAP-IR

combination treatments have the potential to produce multifaceted attacks on

tumours with heterogeneous oxygen landscapes.

ii HAP-IR treatment scheduling may impact treatment efficacy. The impact of

scheduling is apparent in tumours that contain regions that are hypoxic enough

for IR to be ineffective (when the HAP bioreduction is, in most part, restricted to

occur in those regions).
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iii HAPs may function as IR treatment intensifiers in tumours that contain hypoxic

regions in which IR is ineffective.

iv Not only the overall intra-tumoural oxygenation levels, but also the

intra-tumoural oxygen landscape, impacts the efficacy of HAP monotherapies.

In this study, we qualitatively investigated various aspects of HAP-IR treatment

schedules using a multiscale mathematical framework. Upon the availability of in vitro

and in vivo data, this mathematical framework can be calibrated in order to serve as an

in silico testbed for predicting HAP-IR treatment scenarios. As a result of

interdisciplinary collaborations, the mathematical framework used in this study has

previously been validated in vitro and in vivo for applications other than HAP-IR

combination treatments [37,56]. The multiscale nature of the framework enables

integration of data from various scales, be it from the subcellular scale, the cellular scale

or the tissue scale. As an example of useful data, the multi cellular tumour spheroid

data previously produced by Voissiere et al. [35] provided our framework with

calibration data for tumour growth and spatio-temporal oxygen dynamics. Using

existing experimental data to create data-driven mathematical models is a resourceful

step involved in the advancement of mathematical oncology [57].

In a recent publication, Spiegelberg et al. [19], claim that the (lack of) clinical

progress with HAP-treatments can, in great part, be attributed to the omission of

hypoxia-based patient selection. Our in silico study demonstrates that whilst (class II)

HAPs are effective treatment intensifiers for sufficiently hypoxic tumours, they have

negligible effect on more well-oxygenated tumours. In simple terms: some tumours are

suitable to be paired with treatment plans involving HAPs whilst others are not. In line

with Spiegelberg et al.’s claims [19], our in silico results indicate that a personalised

medicine approach is preferable if treatments involving HAPs (that are similar to

TH-302) are to achieve their maximum potential in clinical settings, where

intra-tumoural oxygenation status can be assessed in multiple ways: By inserting oxygen

electrodes into tumours, pO2 values can directly be measured, but this measuring

technique is invasive and does not distinguish between hypoxic and necrotic tumour

regions [19]. Alternatively, less invasive imaging techniques, such as positron emission

(PET-scans) and oxygen-enhanced magnetic resonance (MRIs), can be used to evaluate
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oxygen levels in tumours [2, 19]. Moreover, there now exist several hypoxia gene

expression signatures that may be used to characterise hypoxia-related tumour features,

and some of these signatures have been conferred with poor clinical prognoses [19].

Avoiding a tumour biopsy, by measuring hypoxia secreted markers in the blood, would,

furthermore, constitute a more expeditious way to assess tumour hypoxia [19]. Without

further discussing the advantages and disadvantages of various hypoxia assessment

methods, the above discussion illustrates that it is, indeed, feasible to invoke stricter

selection regimes when deciding whether or not to pair tumours with HAP treatments

in clinical trials [19], in line with a personalised medicine approach.
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Supplementary Material

SM1a: Complement to Figure 12 – HAP-IR treatment scheduling impacts HAP efficacy

in sufficiently hypoxic tumours.

SM1b: Complement to Figure 12 – The [pO2]50 value influences scheduling outcomes.

SM2: Complement to Figure 13 – HAPs enhance radiotherapy effects in sufficiently

hypoxic tumours.

SM3: Complement to Figure 15 – The intra-tumoural oxygen landscape impacts HAP

efficacy.

SM4: Pseudo-code flowchart.
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SM1a: Complement to Figure 12

Figures 16 and 17 show that the scheduling-experiment, with results provided in Figure

12 in the main manuscript, are qualitatively the same if a damaged cell is instantly

removed from the lattice (Figure 16) or if a damaged cell is moved from the lattice after

a time period corresponding to its doubling time (Figure 17).
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Fig 16. Scheduling of HAP-IR combination treatments, complement to Figure 12 in
the main manuscript. Cells are removed from the lattice instantaneously after the lethal
event occurred.
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Fig 17. Scheduling of HAP-IR combination treatments, complement to Figure 12 in
the main manuscript. Cells are removed from the lattice after a time corresponding to
their doubling time (τi) post the lethal event.

SM1b: The [pO2]50 value influences scheduling outcomes

The [pO2]50 parameter value, denoting the oxygen value yielding 50% HAP-to-AHAP

hourly bioreduction (see Figure 5), impacts the efficacy of various HAP-IR combination

therapy schedules. To demonstrate this, Figures 18 (left) and 18 (right) respectively

show the cell count over time when the ‘Small’ and ‘Large’ tumour (illustrated in Figure

8) are subjected to various HAP-IR schedules. In Figure 18, the [pO2]50 value has been

increased by a factor of 5 from its original value used in the in silico experiments

described in the manuscript (see Figure 12).
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Fig 18. Scheduling of HAP-IR combination treatments, Complement to Figure 12.
The [pO2]50 value is 5 times larger than in the original in silico experiments described in
the manuscript.
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SM2: Complement to Figure 13

Figures 19 and 20 show that the experiment that investigates if HAPs act as

radiotherapy enhancers, with results provided in Figure 13, are qualitatively the same if

a damaged cell is instantly removed from the lattice (Figure 19) or if a damaged cell is

moved from the lattice after a time period corresponding to its doubling time (Figure

20).

Fig 19. Treatment responses of radiotherapy in various MCTSs when either (1) an IR
monotherapy dose is administered at T0+48 hours or (2) IR is given at T0+48 hours
following a prior HAP dose at time T0. Complement to Figure 13. Cells are removed
from the lattice instantaneously after the lethal event occurred.
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Fig 20. Treatment responses of radiotherapy in various MCTSs when either (1) an IR
monotherapy dose is administered at T0+48 hours or (2) IR is given at T0+48 hours
following a prior HAP dose at time T0. Complement to Figure 13. Cells are removed
from the lattice after a time corresponding to their doubling time (τi) post the lethal
event occurred.

SM3: Complement to Figure 15

As a complement to Figure 15, and the investigation concerning how the intra-tumoural

oxygen landscape impacts HAP efficacy, we here introduce three more in silico tumour

spheroids: MCTS C, D and E, in addition to MCTS A and B introduced in Figure 14 in

the manuscript. The MCTSs are visualised in Figure 21, where all MCTSs contain the

same number of hypoxic (oxygen level: 1 mmHg) and well-oxygenated (oxygen level:

100 mmHg) cells before treatment commences. The cell count over time when each of

the MCTSs are subjected to a HAP dose at zero hours is available in Figure 22, which

illustrates that the oxygen landscape impacts how many cells survive the HAP

treatment.
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Fig 21. MCTSs A-E all comprise the same number of hypoxic and well-oxygenated
cells, but the hypoxic cells are clustered in different ways in the various MCTSs. Green
cells are hypoxic (oxygen level: 1 mmHg) and blue cells are well-oxygenated (oxygen
level: 100 mmHg).

May 25, 2020 45/47

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2020. ; https://doi.org/10.1101/856443doi: bioRxiv preprint 

https://doi.org/10.1101/856443
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 22. Cell count over time when MCTSs A-E are subjected to a HAP dose at zero
(0) hours. Mean values, based on 10 in silico runs, are shown. The resulting standard
deviations are less than 0.5% of the means and hence not visible in the plot.
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SM4: Pseudo-code flowchart

A diagrammatic representation of the code used in this study is provided in Figure 23.

Fig 23. A pseudo-code flowchart describing the basic structure of the in silico
experiments. An in-house C++ code is used for model implementation.

May 25, 2020 47/47

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 26, 2020. ; https://doi.org/10.1101/856443doi: bioRxiv preprint 

https://doi.org/10.1101/856443
http://creativecommons.org/licenses/by-nc-nd/4.0/

