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Abstract 
It is thought that the brain’s judicious allocation and reuse of computation underlies our ability to plan 
flexibly, but also failures to do so as in habits and compulsion. Yet we lack a complete, realistic account of 
either. Building on control engineering, we introduce a new model for decision making in the brain that 
reuses a temporally abstracted map of future events to enable biologically-realistic, flexible choice at the 
expense of specific, quantifiable biases. It replaces the classic nonlinear, model-based optimization with 
a linear approximation that softly maximizes around (and is weakly biased toward) a learned default 
policy. This solution exposes connections between seemingly disparate phenomena across behavioral 
neuroscience, notably flexible replanning with biases and cognitive control. It also gives new insight into 
how the brain can represent maps of long-distance contingencies stably and componentially, as in 
entorhinal response fields, and exploit them to guide choice even under changing goals. 
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Introduction 
A key insight from reinforcement learning models is that humans’ ability flexibly to plan new actions – and 
also our failures sometimes to do so in healthy habits and disorders of compulsion – can be understood 
in terms of the brain’s ability to reuse previous computations(Daw and Dayan, 2014; Daw et al., 2005; 
Keramati et al., 2011; Russek et al., 2017; Stachenfeld et al., 2017). Exhaustive, “model-based” 
computation of action values is time-consuming; thus, it is deployed only selectively (such as early in 
learning a new task), and when possible, the brain instead bases choices on previously learned (“cached,” 
“model-free”) decision variables(Daw et al., 2005; Keramati et al., 2011). This strategy saves computation, 
but gives rise to slips of action when cached values are out-of-date. 

However, while the basic concept of adaptive recomputation seems promising, this class of models – even 
augmented with refinements such as prioritized replay, partial evaluation, and the successor 
representation – has so far failed fully to account either for the brain’s flexibility or its 
inflexibility(Momennejad et al., 2017; Russek et al., 2017). For flexibility, we still lack a tractable and 
neurally plausible account how the brain accomplishes the behaviors associated with model-based 
planning. Conversely, the reuse of completely formed action preferences can explain extreme examples 
of habits (such as a rat persistently working for food it doesn’t want), but fails fully to explain how and 
when these tendencies can be overridden, and also many subtler, graded or probabilistic response 
tendencies, such as Pavlovian biases or varying error rates in cognitive control tasks.  

Here, we introduce a new model that more nimbly reuses precursors of decision variables, so as to enable 
a flexible, tractable approximation to planning that is also characterized by specific, graded biases. The 
model’s flexibility and inflexibility (and its ability to explain a number of other hitherto separate issues in 
decision neuroscience) are all rooted in a new approach to a core issue in choice. In particular, we argue 
that the central computational challenge in sequential decision tasks is that the optimal decision at every 
timepoint depends on the optimal decision at the next timepoint, and so on. In a maze, for instance, the 
value of going left or right now depends on which turn you make at the subsequent junction, and similarly 
thereafter; so, figuring out what is the best action now requires, simultaneously, also figuring out what 
are the best choices at all possible steps down the line. This interdependence between actions is a direct 
consequence of the natural definition of the objective function in this setting (i.e., the Bellman 
equation(Bellman, 1957)), and this greatly complicates planning, replanning, task transfer, and temporal 
abstraction in both artificial intelligence and biological settings(Sutton and Barto, 2018).  

How, then, can the brain produce flexible behavior? Humans and animals can solve certain replanning 
tasks, such as reward devaluation and shortcuts, which require generating new action plans on the fly 
(Behrens et al., 2018; Dickinson and Balleine, 2002; Momennejad et al., 2017; Tolman, 1948; Wimmer and 
Shohamy, 2012). It has been argued that the brain does so by some variant of model-based planning; that 
is, solving the Bellman equation directly by iterative search(Daw et al., 2005; Keramati et al., 2011). 
However, we lack a biologically realistic account how this is implemented in the brain(Daw and Dayan, 
2014); indeed, because of the interdependence of optimal actions, exhaustive search (e.g., implemented 
by neural replay(Mattar and Daw, 2018)) seems infeasible for most real-world tasks due to the 
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exponentially growing number of future actions that must each be, iteratively and nonlinearly optimized. 
It has thus also been suggested that the brain employs various shortcuts that rely on reusing previously 
computed (“cached”) quantities, notably model-free long-run values(Huys et al., 2015; Keramati et al., 
2016). 

One such proposal, which is perhaps the most promising step toward a neurally realistic planning 
algorithm is the successor representation (SR)(Dayan, 1993), which by leveraging cached expectations 
about which states will be visited in future, can efficiently solve a subset of tasks traditionally associated 
with model-based planning(Momennejad et al., 2017; Russek et al., 2017). However, it simply assumes 
away the key interdependent optimization problem by evaluating actions under a fixed choice policy 
(implied by the stored state expectancies) for future steps. This policy-dependence makes the model 
incapable of explaining how the brain can solve other replanning tasks, in which manipulations also affect 
future choices(Lehnert et al., 2017; Russek et al., 2017). In general, the precomputed information stored 
by the SR is only useful for replanning when the newly replanned policy remains similar to the old one: 
For instance, a change in goals implies a new optimal policy that visits a different set of states, and a 
different SR is then required to compute it. This is just one instance of a general problem that plagues 
attempts to simplify planning by temporal abstraction (e.g., chunking steps(Botvinick et al., 2009; Dezfouli 
and Balleine, 2012)), again due to the interdependence of optimal actions: if my goals change, the optimal 
action at future steps (and, hence, the relevant chunked long-run trajectories) likely also change. 

Here, we adopt and build on recent advances in the field of control engineering(Kappen, 2005; Todorov, 
2007, 2009) to propose a new model for decision making in the brain that can efficiently solve for an 
approximation to the optimal policy, jointly across all choices at once. It does so by relying on a 
precomputed, temporally abstract map of long-run state expectancies similar to the SR, but one which is, 
crucially, stable and useful even under changes in the current goals and the decision policy they imply. 
The model, termed linear RL, provides a common framework for understanding different aspects of 
animals’ cognitive abilities, particularly flexible planning and replanning using these temporally abstract 
maps, but also biases in cognitive control and Pavlovian influences on decision making, which arise directly 
from the strategy of reuse. 

The model is based on a reformulation of the classical decision problem, which makes “soft” assumptions 
about the future policy (in the form of a stochastic action distribution), and introduces an additional cost 
for decision policies which deviate from this baseline. This can be viewed as an approximation to the 
classic problem, where soft, cost-dependent optimization around the default policy stands in for exact 
optimization of the action at each successor state. Crucially, the form of the costs allows the modified 
value function to be solved analytically using inexpensive and biologically plausible linear operations. In 
particular, the optimal value of any state under any set of goals depends on a weighted average of the 
long-run occupancies of future states that are expected under the default policy. Therefore, we propose 
that the brain stores a map of these long-run state expectancies across all states (the default 
representation, or DR), which gives a metric of closeness of states under the default policy. Because the 
DR depends only on the default policy, and can be used to compute a new optimal policy for arbitrary 
goals, the model can solve a large class of replanning tasks, including ones that defeat the SR. 
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Our novel modeling approach also addresses a number of seemingly distinct questions. First, the stability 
of the DR across tasks makes it a candidate for understanding the role in decision-making of multiscale, 
temporally abstract representations in the brain, notably grid cells in the medial entorhinal cortex. These 
cells show regular grid-like firing patterns over space, at a range of frequencies, and have been argued to 
represent something akin to a Fourier-domain map of task space (e.g., the eigenvectors of the SR, 
equivalent to the graph Laplacian(Gustafson and Daw, 2011; Stachenfeld et al., 2017)), and could provide 
some sort of mechanism for spatial(Hafting et al., 2005)  and mental navigation(Behrens et al., 2018; 
Constantinescu et al., 2016; Whittington et al., 2019). However, it has been unclear how this and similar 
long-run temporal abstractions are actually useful for planning or navigation, because as mentioned long-
run (low-frequency) expectancies over task space are not stable across tasks due to the interdependence 
of policy, goals, and trajectories(Mahadevan, 2012; Mahadevan and Maggioni, 2007). For instance, 
because the SR only predicts accurately under the training policy, to be even marginally useful for 
replanning the SR theory predicts grid fields must continually change to reflect updated successor state 
predictions as the animal’s choice policy evolves, which is inconsistent with evidence(Carpenter et al., 
2015; Derdikman et al., 2009; Sanguinetti-Scheck and Brecht, 2019). The linear RL theory clarifies how the 
DR, a stable and globally useful long-run map under a fixed default policy, can serve flexible planning. Our 
theory also provides a new account for updating maps in situations which actually do require modification 
– notably, the introduction of barriers. We show how these give rise to additional, separable basis 
functions in the corresponding DR, which we associate with a distinct class of entorhinal response fields, 
the border cells. This aspect of the work goes some way toward delivering on the promise of such response 
as part of a reusable, componential code for cognitive maps(Behrens et al., 2018; Constantinescu et al., 
2016). 

Finally, linear RL addresses the flip side of how the brain can be so flexible: why, in some cases it is 
inflexible. We suggest that this is simply another aspect of the same mechanisms used to enable flexible 
planning. While it has long been suggested that fully model-free learning in the brain might account for 
extreme cases of goal-inconsistent habits (e.g., animals persistently working for food when not 
hungry(Daw et al., 2005)), there are many other phenomena which appear as more graded or occasional 
biases, such as Stroop effects, Pavlovian tendencies, slips of action(de Wit et al., 2007), and more sporadic 
failures of participants to solve replanning tasks(Momennejad et al., 2017). The default policy and cost 
term introduced to make linear RL tractable offers a natural explanation for these tendencies, quantifies 
in units of common-currency reward how costly it is to overcome them in different circumstances, and 
relatedly offers a novel rationale and explanation for a classic problem in cognitive control: the source of 
the apparent costs of “control-demanding” actions. 

Despite its simplicity, the linear RL model accounts for a diverse range of problems across different areas 
of behavioral neuroscience. In the reminder of this article, we present a series of simulation experiments 
that demonstrate that the theory provides i) a biologically-realistic, efficient and flexible account of 
decision making; ii) a novel understanding of entorhinal grid code that explains its role in flexible planning, 
navigation and inference; iii) an understanding of cognitive control that naturally links it to other aspects 
of decision systems; and iv) a normative understanding of Pavlovian-instrumental transfer (PIT). 
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Results 
The Model 
In Markov decision tasks, like mazes or video games, the agent visits a series of states 𝑠,	and at each they 
receive some reward or punishment 𝑟 and choose among a set of available actions 𝑎, which then affects 
which state they visit next(Sutton and Barto, 2018). The objective in this setting is typically to maximize 
the expected sum of future rewards, called the ‘value’ function. Formally, the optimal value �̅�∗ of some 
state is given by the sum of future rewards, as a series of nested expectations: 

�̅�∗(𝑠*) = 𝑟(𝑠*) + max12
3𝑃(𝑠*56|𝑠*, 𝑎*) 8𝑟(𝑠*56) + max129:

3𝑃(𝑠*5;|𝑠*56, 𝑎*56)[𝑟(𝑠*5;) + ⋯ ]
?29@

A
?29:

 

or equivalently in recursive form by the Bellman equation (Bellman, 1957): 

 �̅�∗(𝑠*) = 𝑟(𝑠*) + max12
3𝑃(𝑠*56|𝑠*, 𝑎*)�̅�∗(𝑠*56)
?29:

 (1) 

Across all states, this results in a set of interdependent optimization problems, which can be solved, for 
instance, by iterative search through the tree of future states, computing the maximizing action at each 
step(Sutton and Barto, 2018). However, in realistic tasks with large state spaces, this iterative, nonlinear 
computation may be intractable.  

Note that prediction can be used for action choice or computing an action selection policy: once we have 
computed �̅�∗ (the optimal future reward available from each state), we can just compare it across actions 
to find the best action in any particular state and form a policy, 𝜋∗; for instance, we can evaluate the max 
in equation (1) for any state, plugging in the optimal values of successor states without further iteration. 
However, note also that this depends on having already found the maximizing action at other states down 
the line, since �̅�∗ depends, recursively, on which actions are taken later, and this in turn depends on the 
assignment of rewards to states (e.g., the agent’s goals). 

If we instead assumed that we were going to follow some given, not necessarily optimal, action selection 
policy 𝜋 at each subsequent state (say, choosing randomly), then equation (1) would be replaced by a 
simple set of linear equations (eliminating the nonlinear function “max” at each step) and relatively easily 
solvable. This observation is the basis of the SR model(Dayan, 1993; Momennejad et al., 2017; Russek et 
al., 2017; Stachenfeld et al., 2017), which computes values as 

 𝐯DE = 𝐒E𝐫, (2) 

where (in matrix-vector form) 𝐯DE is a vector of long-run state values under the policy 𝜋; 𝐫 a vector of state 
rewards; and 𝐒E  a matrix measuring which subsequent states one is likely to visit in the long run following 
a visit to any starting state: importantly, assuming that all choices are made following policy 𝜋. However, 
although this allows us to find the value of following policy 𝜋, this does not directly reveal how to choose 
optimally. For instance, plugging these values into equation (1) won’t produce optimal choices, since 𝐯DE 
(the value of choosing according to 𝜋 in the future) in general does not equal the value, 𝐯D∗, of choosing 
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optimally. The only way to find the latter using equation (2) is by iteratively re-solving the equation to 
repeatedly update 𝜋 and 𝐒 until they eventually converge to 𝜋∗, i.e., the classic policy iteration algorithm. 

It has recently been shown that a change in the formulation of this problem, which we refer to as linear 
RL, greatly simplifies the Bellman equation(Kappen, 2005; Todorov, 2007, 2009). To see this, we first 
assume a one-to-one, deterministic correspondence between actions and successor states (i.e., for every 
state 𝑠H	reachable in one step from some 𝑠, assume there is a corresponding action 𝑎 for which 
𝑃(𝑠H|𝑠, 𝑎) = 1, which is simply denoted by its destination, 𝑠H). This fits many problems with fully 
controllable, deterministic dynamics, such as spatial navigation (where for each adjacent location, there 
is a corresponding action taking you there). Second, linear RL seeks to optimize not a discrete choice of 
successor state (action), but a stochastic probability distribution 𝜋 over it(Todorov, 2007, 2009). Finally, it 
redefines the value function to include not just the one-step rewards 𝑟 but also at each step a new 
penalty(Kappen, 2005; Todorov, 2007, 2009), called a “control cost,” KLL𝜋||𝜋MN, which is increasing in 
the dissimilarity (KL divergence) between the chosen distribution 𝜋 and some default distribution, 𝜋M.  

Linear RL is most naturally a formalism for modeling tasks in which there are some default dynamics (e.g., 
a rocket in a gravitational field) and costly actions to modify them (e.g., firing thrusters burning different 
amounts of fuel). Alternatively, here we view it as an approximation to the original value function, where 
the additional penalty terms modify the original problem to a related one that can be more efficiently 
solved. This is because linear RL deals with the problem of the interdependence of the optimal actions 
across states(Kappen, 2005; Todorov, 2007, 2009): the default policy 𝜋M represents a set of soft 
assumptions about which actions will be taken later, which are optimized into an optimal stochastic 
distribution 𝜋∗ that is approximately representative of the optimal (deterministic) subsequent choices in 
the original problem.  

Efficient solution is possible because, substituting the penalized rewards into the Bellman equation, the 
optimal value function is now given by a non-recursive, linear equation(Todorov, 2007, 2009): 

 exp(𝐯∗) = 𝐌𝐏exp(𝐫), (3) 

such as can be computed by a single layer of a simple, linear neural network. Here, 𝐯∗ is a vector of the 
optimal values (now defined as maximizing cumulative reward minus control cost) for each state; 𝐫 is a 
vector of rewards at a set of “terminal” states (i.e., various possible goals); 𝐏 is a matrix containing the 
probability of reaching each goal state from each other, nonterminal, state; and the key matrix 𝐌, which 
we call the default representation (DR), measures the closeness of each nonterminal state to each other 
nonterminal state (in terms of expected aggregate cost to all future visits) under the default policy. This 
is similar to the SR (𝐒E, equation (2)), except that it is for the optimal values 𝐯∗ (not the on-policy values 
𝐯E), and 𝐯∗ is systematically related to optimal values as defined in the original problem (𝐯D∗, Eq. 1), with 
the difference being the additional penalties for deviation from the default policy. But these exert only a 
soft bias in 𝜋∗ toward 𝜋M, which furthermore vanishes altogether in an appropriate limit (see Methods). 
Thus, while 𝐌 does depend on the default policy 𝜋M, it is stable over changes in goals and independent 
from 𝜋∗ in the sense that it can usefully find optimized policies 𝜋∗	even when these are far from 𝜋M; in 
comparison, 𝐯E (computed from the SR: 𝐒E) is only a useful aproximation to 𝐯∗ (and thus only helpful in 
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finding a new 𝜋∗) when the SR’s learned policy 𝜋 is near the target policy 𝜋∗. Effectively, linear RL works 
by introducing a smooth approximation of the “max” in equation (1), since the log-average-exp (with the 
average here taken with respect to the default distribution, 𝜋M) of a set of values approximates the 
maximum. The control costs, then, simply capture the difference between the original solution and the 
smooth approximate one. 

Model Performance 
The optimized policy in this model balances expected reward with control cost, and is generally stochastic 
rather than deterministic, like a softmax function (Fig 1a-b). We evaluated the performance of linear RL 
as an approximation to exact solution by considering a difficult, 7-level decision tree task in which each 
state has two possible successors, a set of costs are assigned randomly at each state, and the goal is to 
find the cheapest path to the bottom. We conducted a series of simulations, comparing linear RL with a 
set of benchmarks: exact (model-based) solution, and a set of approximate model-based RL 
agents(Keramati et al., 2016) that optimally evaluate the tree up to a certain depth, then “prune” the 
recursion at that leaf by substituting the exact average value over the remaining subtree (Fig 1c; in the 
one-step case this is equivalent to the SR under the random walk policy). For linear RL, the default policy 
was taken as a uniform distribution over possible successor states. Linear RL achieved near-optimal 
average costs (Fig 1d).  

 

Fig 1. The linear RL model. a-b) the model optimizes the decision policy by considering the reward and 
the control cost, which is defined as the KL divergence between the decision policy and a default policy. 
Assuming an unbiased (uniform) distribution as the default policy, the optimal decision policy balances 
the expected reward with the control cost. Although the expected reward is maximum when probability 
of choosing A is close to 1 (and therefore probability of choosing B is about zero), this decision policy 
has maximum control cost due to its substantial deviation from the default policy. The optimal value 
instead maximized expected reward minus the control cost, which here occurs when probability of 
choosing A is 0.73. c-d) The model accurately approximates optimal choice. We compared its 
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performance on a 7-level decision tree task (with random one-step costs at each state) to 6 pruned 
model-based RL algorithms, which evaluate the task to a certain depth (D = 1,..,6; D7 is optimal; D1 is 
equivalent to the successor representation for the random walk policy) and use average values at the 
leaves. Linear RL (LRL) achieved near-optimal average costs (y-axis is additional cost relative to the 
optimum). Local costs of all states were randomly chosen in the range of 0 to 10, and simulations were 
repeated 100 times. Mean and standard error across all simulations are plotted. 

An important aspect of linear RL is that the DR, 𝐌, reflects the structure of the task (including the distances 
between all the nonterminal states under the default policy) in a way that facilitates finding the optimal 
values, but is independent of the goal values 𝐫, and the resulting optimized value and policy (Fig 2). 
Therefore, by computing or learning the DR once, the model is able to re-plan under any change in the 
value of the goals (see below) and also (with some additional computation to efficiently add an additional 
terminal goal state, see Methods), plan toward any new goal with minimal further computation (Fig 2b-
c). In the case of spatial tasks, this corresponds to finding the shortest path from any state to any goal 
state. In fact, our simulation analysis in a maze environment revealed that linear RL efficiently finds the 
shortest path between every two states in the maze (Fig 2d).  

 

Fig 2. Default representation. a) The DR 
corresponding to a three-level decision tree task is 
shown. Each row of the DR represents weighted 
future expectancies starting from the 
corresponding state and following the default 
policy. Therefore, the DR is independent of the 
goals and optimized policy. b-c) The optimized path 
for planning from home (H) to the food (F) state is 
computed based on the DR. The linear RL model is 
efficient because the same DR is sufficient for 
planning towrds a new goal, such as the water (W) 
state. d) The path between every two states in a 10-
by-10 maze environment (d) computed by linear RL 
exactly matches the optimal (shortest) path 
computed by exhaustive search. The DR has been 
computed once and reused (in combination with 
techinuqes from matrix identities) to compute each 
optimal path.  

Replanning 
In both artificial intelligence, and psychology and biology, a key test of efficient decision making is how an 
agent is able to transfer knowledge from one task to another. For instance, many tasks from neuroscience 
test whether organisms are able, without extensive retraining, to adjust their choices following a change 
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in the rewards or goals (“revaluation,” “devaluation,” “latent learning”) or transition map (“shortcut,” 
“detour”) of a previously learned task(Dickinson and Balleine, 2002; Momennejad et al., 2017; Tolman, 
1948; Wimmer and Shohamy, 2012). We explored the ability of linear RL for solving these types of 
replanning problems (Fig 3). Importantly, the model is able to solve one class of these problems – those 
involving revaluation of goals – efficiently, as the DR can be used, unmodified, to solve any new problem. 
This corresponds to simply changing 𝐫 in Eq. 3, and computing new values.  

First, we confirmed that linear RL is able to solve a version of Tolman’s latent learning task (Fig 3a), a 
revaluation task in which rats were first trained to forage freely in a maze with two rewarding end-boxes, 
but then were shocked in one of the end-boxes to reduce its value(Tolman and Gleitman, 1949). This 
manipulation defeats model-free RL algorithms like temporal difference learning, because they must 
experience trajectories leading from the choice to the devalued box to update previously learned long-
run value or policy estimates(Daw et al., 2005). In contrast, rats are able to avoid the path leading to the 
devalued end-box on the first trial after revaluation, even though they had never experienced the 
trajectory following the devaluation. Linear RL is also able to correctly update its plans using the DR 
computed in the learning phase (Fig 3b-c). In particular, during the revaluation phase, the reward 
associated with one of the end-boxes changes but the structure of the environment remains the same: 
the revaluation corresponds to a change in 𝐫 but not 𝐌. Therefore, the agent is able to use the DR 
computed during the learning phase in the test phase and update its policy according to revalued reward 
function.  

The SR is also capable of solving the latent learning task (and similar reward devaluation tasks with only a 
single step of actions widely used in neuroscience(Dickinson and Balleine, 2002)), because the SR, 𝐒E, 
even though learned under the original policy 𝜋, is good enough to compute usable new values from the 
new reward vector(Russek et al., 2017). However, there are many other, structurally similar revaluation 
tasks – in particular, those with several stages of choices – that defeat the SR. We considered a slightly 
different revaluation task, which Russek et al.(Momennejad et al., 2017; Russek et al., 2017) termed 
“policy revaluation” that has this property. Here human subjects were first trained to navigate a three-
stage sequential task leading to one of the three terminal states (Fig 3d(Momennejad et al., 2017)). The 
training phase was followed by a revaluation phase, in which participants experienced the terminal states 
with potentially new reward. In particular, a new large reward was introduced at a previously disfavored 
terminal state. In the final test, participants were often able to change their behavioral policy at the 
starting state of the task, even though they had never experienced the new terminal state contingent on 
their choices in the task(Momennejad et al., 2017). 

Importantly, this is not possible for the SR without relearning or recomputing the successor matrix 𝐒E, 
because under the original training policy, the cached successor matrix does not predict visits to the 
previously low-valued state(Lehnert et al., 2017; Russek et al., 2017). That is, it computes values for the 
top-level state (1 in Fig 3d) under the assumption of outdated choices at the successor state (2), neglecting 
the fact that the new rewards, by occasioning a change in choice policy at 2 also imply a change in choice 
policy at 1. This task then, directly probes the agent’s ability to re-plan respecting the interdependence of 
optimal choices across states. Unlike the SR, linear RL can successfully solve this task using the DR that has 
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been computed in the training phase, because the DR is independent of the decision policy in the learning 
phase (Fig 3e).  

We finally considered a different class of replanning tasks, in which the transition structure of the 
environment changes, for example by placing a barrier onto the maze as to block the previously preferred 
path(Tolman, 1948). These tasks pose a challenge for both the SR and DR, since the environmental 
transition graph is cached inside both 𝐒E  and 𝐌(Momennejad et al., 2017; Russek et al., 2017), and these 
must thus be updated by relearning or recomputation in order to re-plan. However, people are again 
often able to solve this class of revaluations(Momennejad et al., 2017). We introduce an elaboration to 
linear RL to permit efficient solution of these tasks: in particular, we exploit matrix identities that allow us 
to efficiently update 𝐌 in place to take account of local changes in the transition graph, then re-plan as 
before (see Methods). With these in place, the linear RL model can solve this task efficiently and computes 
the modified values and optimized policy using the old DR after updating it with simple operations (Fig 
3h).  

 
Fig 3. Linear RL can explain flexible replanning. a-c) Performance of linear RL on a version of Tolman’s 
latent learning task (a). We simulated the model in a maze representing this task (b) and plotted the 
probability of choosing each end-box during the learning and test phases. The model correctly (c) 
reallocates choices away from the devalued option.  d-e) Performance of linear RL in another reward 
revaluation task (Momennejad et al., 2017), termed policy revaluation (d). Choices from state 1: During 
the learning phase, the prefers to go to state 3 rather than state 2. Revaluation of the bottom level 
state reverses this preference (e) similar to human subjects (Momennejad et al., 2017). f-h) 
Performance of the model in Tolman’s detour task. The structure of the environment changes in this 
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task due the barrier placed into the maze (g), which blocks the straight path. The model is able to 
compute the optimized policy using the old DR (following a single, inexpensive update to it) and 
correctly choose the left path in the test phase (h). 

Grid fields 
The linear RL model also highlights, and resolves, a central puzzle about the neural representation of 
cognitive maps or world models. It has long been argued that the brain represents a task’s structure in 
order to support planning and flexible decision making(Tolman, 1948). This is straightforward for 
maximally local information: e.g., the one-step transition map 𝑃(𝑠*56|𝑠*, 𝑎*) from Eq. 1, might plausibly 
be represented by connections between place fields in hippocampus, and combined with local-state 
reward mappings 𝑟(𝑠*) that could be stored in hippocampal-stratial projections. But using this 
information for planning requires exhaustive evaluation, e.g. by replay(Mattar and Daw, 2018), and 
strongly suggesting a role for map-like representations of longer-scale relationships (aggregating multiple 
steps) to simplify planning(Botvinick et al., 2009; Sutton, 1995).  

Indeed, grid cells in entorhinal cortex represent long-range (low-frequency) periodic relationships over 
space, and theoretical and experimental work has suggested that they play a key role in representation 
of the cognitive map and support navigation in both physical(Hafting et al., 2005) and abstract(Behrens et 
al., 2018; Constantinescu et al., 2016) state spaces. However, the specific computational role of these 
representations in flexible planning is still unclear. A key concept is that they represent a set of basis 
functions for quickly building up other functions over the state space, including future value predictions 
like �̅�∗(Gustafson and Daw, 2011) and also future state occupancy predictions like the SR(Baram et al., 
2018; Stachenfeld et al., 2017). By capturing longer range relationships over the map, such basis functions 
could facilitate estimating or learning these functions(Gustafson and Daw, 2011). In particular, the graph 
Laplacian (given by the eigenvectors of the on-policy, random walk transition matrix or, equivalently the 
eigenvectors of the SR for the random walk policy) generalizes Fourier analysis to an arbitrary state 
transition graph, and produces a set of periodic functions similar to grid fields(Mahadevan and Maggioni, 
2007; Stachenfeld et al., 2017), including potentially useful low-frequency ones.  

The puzzle with this framework is that, as mentioned repeatedly, the long-range transition map is not 
actually stable under changes in goals, since it depends on action choices (“max”) at each step of Eq. 1: in 
effect, the spatial distribution of goals biases what would otherwise be a pure map of space, since those 
affect choice policy, which in turn affects experienced long-run location-location contingencies. 
Conversely, basis functions built on some fixed choice policy (like the SR for a particular 𝜋) are of limited 
utilty for transferring to new tasks(Lehnert et al., 2017; Russek et al., 2017). Accordingly, algorithms 
building on these ideas in computer science (such as “representation policy iteration,”(Mahadevan, 
2012)), iteratively update basis functions to reflect changing policies and values as each new task is 
learned. It has been unclear how or whether representations like this can usefully support more one-shot 
task transfer, as in the experiments discussed in the previous section.  

As shown in the previous section, linear RL resolves this problem, since the DR is similar to the SR but 
stably useful across different reward functions and resulting choice policies. In particular, the comparison 
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between Eqs. 2 and 3 shows that the DR is a stable linear basis for the (approximate) optimal value 
function regardless of the reward function, but the SR is not. Accordingly, we suggest that grid cells encode 
an eigenvector basis for the DR, functions which are also periodic and have grid-like properties in 2D 
environments (Fig 4d). Empirically, because both the SR and DR represent relationships under the 
objective transition graph (e.g., barrier locations in space), both theories that grid fields should be affected 
by changes in the objective transition contingencies of the environment (e.g., barrier locations in space; 
though see the next section for another way to address this). This is indeed the case 
experimentally(Carpenter et al., 2015; Derdikman et al., 2009) (Fig. 4abc). However, the key experimental 
prediction is that grid fields based on the DR should be stable under changes in the choice policy, whereas 
the SR (and its eigenvectors) are strongly policy-dependent, so grid fields based on it should change to 
reflect the animal’s tendency to follow particular trajectories(Stachenfeld et al., 2017). Experimental data 
strongly support the DR’s prediction that grid fields are robust to behavioral changes; for instance, grid 
cells are affected by walls producing a “hairpin maze” but in rats trained to run an equivalent hairpin 
pattern without barriers(Derdikman et al., 2009) (Fig. 4ab); grid cells are also affected by the presence or 
absence of a set of walls the same shape as the animal’s home cage, but whether or not it is the actual 
home cage (which strongly affects behavioral patterns) does not change the responses(Sanguinetti-
Scheck and Brecht, 2019) (Fig. 4c). Similar results have been reported in humans using functional 
neuroimaging(He and Brown, 2019). A second difference between the SR and the DR is that the DR (and 
its eigenvectors) include information about local costs along a path, so we predict that environmental 
features that make locomotion difficult, like rough terrain or hills, should modulate grid responses (see 
Discussion). 
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Fig 4. The DR as a model of grid fields.  a-b) (adapted from Derdikman et al., 2009) Grid fields are 
sensitive to the geometry of the environment, but are stable with respect to behavior. Derdikman et 
al.(Derdikman et al., 2009) tested grid fields in a hairpin maze formed by actual barriers, and compared 
them to those recorded in a “virtual” hairpin maze, in which rats were trained to show hairpin-like 
behavior in an open field without constraining side walls. Grid fields in the virtual hairpin differ from 
those in the hairpin maze but are similar to the open field. b) This similarity is quantified by the 
correlation between grid fields in a baseline from an initial open field test (OF1) and those from the 
three tasks (HP: hairpin maze; VH: virtual hairpin; OF2: the second control open field). c) (Adapted from 
Sanguinetti-Scheck and Brecht(Sanguinetti-Scheck and Brecht, 2019)) Grid fields are sensitive to the 
presence of the home cage only insofar as it introduces new barriers in space, but not through the 
changes it produces in behavior. In particular, introducing a plain box (the same shape as the home 
cage) affects grid fields compared to the open field (left); but substuting the home cage for the box 
(right) does not further affect the grid code, although it changes behavior. d) Eigenvectors of the DR 
are independent from behavioral policies and periodic, similar to grid fields. Three example 
eigenvectors from a 50-by-50 maze are plotted.  

 

Border cells 
As we have already shown, one aspect of the environment that does require updating the DR if it changes 
is the transition structure of the environment, such as barriers. In simulating the Tolman detour task (Fig 
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3c) we solved this problem using a matrix inversion identity, which rather than expensively recomputing 
the entire DR with respect to the new transition graph, expresses the new DR as the sum of the original 
DR plus a low-rank correction matrix reflecting, for each pair of states, the map change due to the barrier. 
This suggests a novel, componential way to build up spatial distance maps, such as the DR, by summing 
basis functions that correspond to generic components, like walls. In this case, grid cells could represent 
a low-rank (e.g. eigenvector) representation for a baseline map, and other cells could represent the 
contribution of additional environmental features. Here, we highlight the relevance and importance of 
this computational approach in the context of entorhinal border cells (Fig 5a). This is another principal 
family of neurons in the medial entorhinal cortex that fire exclusively when the animal is close to a salient 
border of the environment(Solstad et al., 2008), such as the wall; and are generic in the sense that they 
retain this tuning at least across changes in the environment’s geometry. Assuming that the DR has been 
represented using a combination of features from a low-rank basis set, such as its eigenvectors, the 
columns of the matrix term for updating the DR show remarkable similarity to the border cells (Fig 5b). 
This brings the border cells and grid cells under a common understanding (both as basis functions for 
representing the map), and helps to express this map in terms of more componential features, like walls. 

 

Fig 5. The model explains boundary cells. a) 
Adapted from Solstad et al.(Solstad et al., 2008), 
which shows rate maps for a representative 
border cell in different boxes. b) Columns of the 
matrix required to update the DR matrix to 
account for the wall resemble border cells. Four 
example columns from a 20-by-20 maze are 
plotted. 

 

Cognitive control 
We have stressed the usefulness of linear RL for enabling flexible behavior, but because of the inclusion 
of the default policy, the model also offers a natural framework for understanding biases and inflexibilities 
in behavior, and phenomena of cognitive control for overcoming them – as necessary consequences of 
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the very same computational mechanisms that permit flexibility. The default policy represents soft, 
baseline assumptions about action preferences, which (on this view) are introduced because they help 
efficiently to solve the problem of forecasting the set of optimal future choices during planning. So far, 
we have simulated it as unbiased (uniform over successors), which works well; but in situations with 
stable, clear regularities in behavior, it can be an even better approximation to build these in via a 
nonuniform default. If the default policy is not uniform, it softly biases the model towards actions that are 
common under the default policy. This aspect of the model naturally captures biases in human behavior, 
such as Stroop effects and Pavlovian biases (next section), and suggests a novel rationale for them in terms 
of the default policy’s role in facilitating efficient planning. 

Cognitive control has been defined as the ability to direct behavior toward achieving internally maintained 
goals and away from responses that are in some sense more automatic but not helpful in achieving those 
goals(Botvinick and Cohen, 2014; Cohen et al., 1990). Two classic puzzles in this area are, first, why are 
some behaviors favored in this way; and second, why do people treat it as costly to overcome them(Kool 
et al., 2010; Shenhav et al., 2017; Westbrook et al., 2013)? For instance, is there some rivalrous resource 
or energetic cost that makes some behaviors feel more difficult or effortful than others(Kurzban et al., 
2013; Shenhav et al., 2017)? Such “control costs” arise naturally in the current framework, since actions 
are penalized if they are more unlikely under the default policy. Such deviations from default are literally 
charged in the objective function, in units of reward: though for computational reasons of facilitating 
planning, rather than energetic ones like consuming a resource. 

These control costs trade off in planning against the rewards for different actions, and lead (through the 
stochastic resulting policy) to biased patterns of errors. Fig 6a,b plots the control cost as a function of the 
decision policy, showing that the cost is substantially larger for choosing the action that is less likely under 
the default policy. For instance, action A in this simulation could be the color-naming response in the 
classic Stroop task, in which participants must read the name of a color that it is printed in a differently 
colored ink. People are faster and make fewer errors in word reading compared to color naming, 
presumably because the former is a more common task. For the same reason, we would expect color 
naming to be less likely under the default policy, and incur a larger control cost to execute reliably (Fig 
6b). For any particular reward function (utility for correct and incorrect responses), this results in a larger 
chance of making errors for this action: a classic Stroop effect. Furthermore, since the optimal policy in 
the linear RL model balances the expected reward with the control cost, the model correctly predicts that 
these Stroop biases can be offset by increasing the rewards for correct performance(Botvinick and Braver, 
2015) (Fig 6c). In other words, the prospect of reward can enhance performance even when the task is 
very difficult, as has been shown experimentally(Botvinick and Braver, 2015; Krebs et al., 2010).  
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Fig 6. Linear RL captures prepotent actions and costs of cognitive control. a-b) The control cost is plotted 
as a function of the decision policy. For a uniform distribution (a) as the default policy, the control cost 
is a symmetric function of the decision policy. When the default policy is skewed toward a more likely 
response (b), the control cost is higher for reliably performing the action that is more unlikely under 
the default. c) People show classical Stroop effect in a color-naming Stroop task in which the name of 
colors are printed in the same or different color (Krebs, Boehler, & Woldorff, 2010). These errors, 
however, are reduced in potential reward trials, in which correct response is associated with monetary 
reward. d) The linear RL model shows the same behavior, because the default probability is larger for 
the automatic response (i.e. word reading). Promising reward reduces this effect because the agent 
balances expected reward against the control cost to determine the optimized policy.  

 

Pavlovian-instrumental transfer 
A second example of response biases in the linear RL model arises in Pavlovian effects. In particular, PIT is 
a phenomenon by which previously learned Pavlovian stimulus-outcome relationships influence later 
instrumental decisions (action choices). Puzzlingly, this happens even though the Pavlovian cues are 
objectively irrelevant to the actions’ outcomes(Corbit and Balleine, 2016; Dickinson and Balleine, 1994). 
PIT – in this case, associations between drug-associated cues and drugs triggering drug-seeking actions – 
has been argued to play a key role in the development of addiction and cue-induced relapse(Everitt and 
Robbins, 2016). 
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In a typical PIT task (Fig 7a), animals first learn that a neutral stimulus, such as a light, predicts some 
rewarding outcome in a Pavlovian phase. Later, in an instrumental phase, they learn to press a lever to 
get the same outcome. In the final testing phase, the presentation of the conditioned stimulus biases 
responding toward the action for the associated reward, even though the stimulus has never been 
presented during instrumental phase and the stimulus is objectively irrelevant as the action produces the 
outcome either way (Fig 7b). Existing RL models typically fail to explain this result, instead predicting that 
the presence of the stimulus should not influence behavior in the test phase, because actions predict the 
same outcome contingencies regardless of the stimulus. 

Linear RL explains PIT as another example of biases arising from a learned default policy, because during 
the Pavlovian phase the agent learns that the reward outcome occurs more often in the presence of the 
conditioned stimulus, which is reflected in the default contingencies. Therefore, during the test phase, 
the presentation of a conditioned stimulus elicits a default policy biased toward the corresponding 
outcome occurring, which favors choosing the corresponding action (Fig 7c). Furthermore, this effect is 
carried by the sensory (state) aspects of the outcome, not its rewarding properties per se. In particular, 
since in the absence of reward, the decision policy is equal to the default policy, the theory predicts that 
PIT effects persist even in the absence of reward, which is consistent with experimental work showing 
that PIT biases survive even under reward devaluation (e.g. for food outcomes tested under satiety) (Fig 
7d-e). This finding that PIT effects reflect some sort of sensory cuing, and not reward or motivational 
properties of the stimulus per se, is central to the hypothesis that they underlie some phenomena in drug 
abuse such as cue-elicited relapse following extinction(Everitt and Robbins, 2016).  
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Fig 7. Linear RL explains Pavlovian-instrumental transfer. a) the task testing outcome-specific PIT 
consists of three phases: a Pavlovian training phase, an instrumental training phase and the PIT test. 
Outcomes 1 and 2 are both rewarding. During PIT test, both stimuli are presented in succession, and 
“same” responses denote the one whose associated outcome matches that associated with the 
presented stimulus, e.g. Response 1 chosen following presentation of Stimulus 1. The other response 
is “different.” b-c) Data from Corbit et al.(Corbit et al., 2007) when rats are hungry (b) and simulated 
behavior of the model (c). The model learns the default policy during the Pavlovian phase, which biases 
performance during the PIT test. d-e) Outcome-specific PIT persists even when rats are sated on both 
outcomes(Corbit et al., 2007) (d). The model shows the same behavior (e) because default state 
probabilities learned during Pavlovian training influence responses even in absence of reward. Mean 
and standard error are plotted in b and c. 

Discussion 
A central question in decision neuroscience is how the brain can store cognitive maps or internal models 
of task contingencies and use them to make flexible choices, and more particularly how this can be done 
efficiently in a way that facilitates re-use of previous computations and leverages long-run, temporally 
abstract predictions without compromising flexibility. To help answer this question, we identify a core 
issue underlying many difficulties in planning, replanning, and reuse, which is the interdependence of 
optimal actions across states in a sequential decision task. To solve this problem, we import from control 
theory(Todorov, 2007, 2008) to neuroscience a novel computational model of decision making in the 
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brain, called linear RL, which enables efficient (though approximate) global policy optimization by relying 
on soft relaxation away from default, stochastic policy expectations. This leverages the DR, a stored, long-
run predictive map of state and cost expectancies under the default policy. The DR is closely related to 
the SR, and inherits many of the appealing features that have generated current excitement for it as a 
neuroscientific model(Gershman, 2018; Momennejad et al., 2017; Russek et al., 2017; Stachenfeld et al., 
2017). However, linear RL corrects serious problems that hobble the practical applicability of the SR. The 
DR, unlike the SR, exerts only a weak bias toward the default policy, and so delivers on the promise of a 
stable cognitive map(Tolman, 1948) that can reuse substantial computation to transfer learning across 
contexts without sacrificing flexibility. This allows the model to explain animals’ ability to solve reward 
and policy revaluation problems that otherwise would require exhaustive, biologically unrealistic model-
based search. For the same reason, the model also helps to deliver on the idea that grid cells in entorhinal 
cortex could provide a broadly useful neural substrate for such a temporally abstract map. And the 
model’s remaining inflexibilities – in general, soft, stochastic biases rather than hard failures – connect 
naturally with phenomena of cognitive control and Pavlovian biases and provide a strong theoretical 
framework for understanding the role of many such biases in both healthy and disordered choice. 

The basic planning operation in linear RL is matrix-vector multiplication, which is easily implemented in a 
single neural network layer. The theory offers new insights into the systems-level organization of this 
computation. In particular, the model realizes the promise of a representation that factors a map 
representing the structure of environment, separate from an enumeration of the current value of the 
goals in the environment. This facilitates transfer by allowing update of either of these representations 
while reusing the other. Previous models, like the SR, nominally exhibit this separation, but the hard policy 
dependence of the SR’s state expectancies means that goal information, in practice, inseparably infects 
the map and interferes with flexible transfer(Lehnert et al., 2017; Russek et al., 2017).  

In fact, in order to facilitate efficient planning, the linear RL model actually factors the map into three 
rather than two pieces, distinguishing between terminal states (representing goals), and nonterminal 
states (those that may be traversed on the way to goals); and dividing the map into one matrix encoding 
long-run interconnectivity between nonterminal states (the DR, 𝐌) and a second matrix representing one-
step connections from nonterminal states to goals (𝐏). This is a necessary restriction, in that only for this 
type of finite decision problem are the optimal values linearly computable. However, this classification is 
not inflexible, because we also introduce novel techniques (based on matrix inversion lemmas) that allow 
dynamically changing which states are classed as goals. This allows the model (for example) to plan the 
best route to any arbitrary location in a maze (Fig 2d). Representing goals as terminal states also means 
that the model does not directly solve problems that require figuring out how best to visit multiple goals 
in sequence. However, this restriction has little effect in practice because these can either be treated as a 
series of episodes, re-starting at each goal, or by including multiple goals within the nonterminal states, 
since the model does optimize aggregate rewards over trajectories through nonterminal states as well.  

This last point raises several interesting directions for future work. First, although there is evidence that 
humans choose their goal and plan towards that goal(Cushman and Morris, 2015), there is some 
empirically underconstrained theoretical flexibility in specifying how a task’s state space should be 
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partitioned into terminal and nonterminal states. For the simulations here, we have tentatively adopted 
the principle that all discrete, punctate outcomes (like food or shock) are represented as terminal goal 
states with corresponding value in 𝐫, and the rest of the (nonterminal) states contain only costs, constant 
everywhere, meant to capture the cost of locomotion. But, in general, state-dependent costs (or indeed 
rewards) can be included for nonterminal states as well. These in effect modulate the “distance” between 
states represented within the DR (see Methods). Nevertheless, this leads to the testable prediction that 
to whatever extent state-specific rewards or costs are accounted for within nonterminal states, they 
should affect hypothetical neural representations of the DR, such as grid cells. For instance, unlike for the 
SR, the DR predicts that by increasing locomotion cost, hills or rough terrain should increase “distance” as 
measured in the grid map. This aspect of the DR may be relevant for explaining recent evidence that grid 
cells have some subtle sensitivities to reward(Boccara et al., 2019; Butler et al., 2019) which cannot be 
explained, as the SR-eigenvector account would predict, as secondary to changes in behavioral policy (e.g., 
not due to occupancy around rewarding locations(Butler et al., 2019), nor variations in trajectories or 
speed(Boccara et al., 2019)).   

Linear RL requires one other formal restriction on tasks, compared to standard Markov decision processes 
as often assumed by other RL theories in theoretical neuroscience. This is that the task is deterministically 
controllable. This is a good fit for many important sequential tasks, such as spatial navigation (I can reliably 
get from location A to location B by taking a step forward) and instrumental lever-pressing, but does not 
directly or exactly map to tasks that include irreducibly stochastic state transitions, such as two-step noisy 
Markov decision tasks that we and others have used to study model-based planning(Daw et al., 2011). 
Such tasks can also be addressed via a further step of approximation(Todorov, 2009), but it remains for 
future work to explore how far this can be pushed. 

We have stressed how the DR can be used for planning, and also how it embodies substantial, reusable 
computation (specifically, predictions of long-run future state occupancy and cost-to-go), relative to 
simpler, easy-to-learn map representations like the one-step state adjacency model 𝑃(𝑠*56|𝑠*). We have 
not, so far, discussed how the DR can itself be learned or computed. There are several possibilities: two 
inherited from previous work on the SR(Russek et al., 2017) and one newly introduced here. First, like the 
SR, the DR can be learned gradually by actual or replay-based sampling of the environment, using a 
temporal difference rule(Dayan, 1993; Russek et al., 2017). Second, again like the SR, the DR can be 
constructed from the one-step transition matrix and costs (which can themselves be learned directly by 
Hebbian learning) by a matrix inversion, or equivalently a sum over a series of powers of a matrix. The 
latter form motivates attractor methods for computing the inverse iteratively by a simple recurrent 
network(Jang et al., 1988; Russek et al., 2017; Sutton and Pinette, 1985). 

A third possibility for learning the DR follows from the novel method we introduce for using matrix 
inversion identities to efficiently update the DR in place to add additional goals, barriers, or shortcuts (see 
Methods). This works by expressing the inverse matrix in terms of the inverses of simpler component 
matrices (one of which is the pre-update DR), rather than for instance by updating the transition matrix 
and then, expensively, re-inverting the whole thing. For instance, we used this to solve tasks, such as 
Tolman’s detour task, in which the transition structure of the environment changes. It could also be used, 
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state by state or barrier by barrier, as a learning rule for building up the DR from scratch. Suggestively, 
this insight that the Woodbury matrix inversion identity can be used to decompose a DR map (an inverse 
matrix) into the sum of component maps, each associated with different sub-graphs of the transition 
space, offers a very promising direction for a direct neural implementation for representing and 
constructing maps componentially: via summing basis functions. This idea dovetails with – and may help 
to formalize and extend – the emerging idea that maps in the brain are built up by composing basis 
functions, such as those putatively represented in the grid cells(Baram et al., 2018; Behrens et al., 2018; 
Dordek et al., 2016; Stachenfeld et al., 2017; Whittington et al., 2019). Here, we showed that the term 
required to update the DR when encountering a wall remarkably resembles entorhinal border 
cells(Solstad et al., 2008). Therefore, our theory unifies the functional roles of entorhinal grid and border 
cells in planning and navigation, both as basis functions for building up the map. It remains for future work 
to explore the extent that this technique can be used to account for other aspects of neural coding in the 
entorhinal cortex. With respect to the grid cells, we also note that just as for the graph Laplacian and 
SR(Gustafson and Daw, 2011; Stachenfeld et al., 2017), the eigenvectors of the DR capture the periodicity 
and multiscale aspect of the grid cell code, but only a subset of them exhibit hexagonal symmetry. 
Additional constraints, such as nonnegativity(Dordek et al., 2016) are likely required for a more detailed 
model. 

Our model is based on the notion of the default policy, which is a map of expected state-to-state transition 
probability regardless of the current goals. Unlike previous RL models, such as the SR, linear RL does not 
entirely rely on the default policy and instead optimizes the decision policy around the default policy. This 
means that the final optimized policy is between the exact, deterministic optimized policy, and the 
default. The degree of this bias is controlled by a free parameter that scales the control costs relative to 
rewards and corresponds to the temperature in the softmax approximation to the optimization. In the 
limit of zero, or respectively infinite, control cost scaling, the approximation to the optimum becomes 
exact, or the default policy dominates completely. How should this parameter be set, and why not always 
take it near zero to improve the fidelity of the approximation? Linear RL works by multiplying small 
numbers (future occupancies) times large numbers (exponentiated, scaled rewards) to approximate the 
maximum expected value; just as with numerical precision in computers, there are issues of bandwidth 
(e.g. maximum spike rate and quantization) and gain control for making this work effectively across 
different decision situations in the brain. This suggests fruitful connections (for future work) with gain 
control and normalization(Louie et al., 2011), and rational models for choice using noisy 
representations(Gershman and Wilson, 2010; Woodford, 2012). The same tradeoff can also be 
understood from a Bayesian planning as inference perspective(Botvinick and Toussaint, 2012), in which 
the default policy plays the role of prior over policy space and rewards play the role of the likelihood 
function. In this case, the decision policy is the posterior that optimally combines them(Todorov, 2008). 
Then, how much the decision policy should be influenced by the default depends on how informative a 
prior it is (e.g. how reliable or uncertain it has been previously). This also suggests another distinct 
perspective on the default policy’s role, in the model, in producing prepotent biases that can be overcome 
by cognitive control(Botvinick and Cohen, 2014; Shenhav et al., 2017). On this view, it serves to regularize 
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behavior toward policies that have worked reliably in the past; and deviations from this baseline are 
costly. 

Indeed, our framework leaves open not just how strongly the default policy is emphasized, but also how 
it is learned or chosen. In general, while the model provides a good approximation to the true optimal 
values independent of which default policy is used (so long as its cost is scaled appropriately relative to 
the rewards), we can also ask the converse question – which default policy should be chosen to allow for 
the best approximation and thereby obtain the most (actual) reward? The answer is of course, that the 
cost term (measuring the divergence between true and approximate 𝐯∗) is minimized whenever the future 
𝜋∗ is equal to the default 𝜋M. Any algorithm for learning policies might be appropriate, then, for finding a 
𝜋M  that is likely to be near-optimal in the future, including in particular previous habit learning models, 
including model-free actor-critic learning(Barto, 1995) or even non-reward-driven memorization of 
previous policies(Miller et al., 2019). A related idea has also been recently proposed in the context of a 
more explicitly hierarchical model of policy learning: that a default policy (and control-like charges for 
deviation form it) can be useful in the context of multitask learning to extract useful, reusable policies(Kool 
and Botvinick, 2018; Teh et al., 2017). Separately, an analogous principle of identification of task structure 
that generalizes across tasks in a hierarchical generative model has also been proposed as a model of grid 
and place cell responses(Behrens et al., 2018; Whittington et al., 2019). Future work remains to 
understand the relationship between the considerations in both of these models – which involve 
identifying shared structure – and ours, which are motivated instead more by efficiently reusing 
computation.  

The role of the default policy, finally, points at how the linear RL framework provides a richer, more 
nuanced view of habits and pathologies of decision making than previous computational theories. 
Although a learned default policy biases behavior, and may modulate accuracy or speed of performance, 
it trades off against rewards in the optimization. This give and take stands in contrast to much previous 
work, especially in computational psychiatry, which has often assumed a binary model of evaluation: 
either flexible values are computed (model-based, goal-directed) or they are not (model-free, habits). The 
latter, acting rather than thinking, has been taken as a model of both healthy and unhealthy habits, and 
especially of compulsive symptoms such as in drug abuse(Everitt and Robbins, 2016) and obsessive 
compulsive disorder(Gillan et al., 2016). Although such outright stimulus-response behaviors may exist, 
the present framework allows for a much broader range of biases and tendencies, and may help to 
understand a greater range of symptomatology, such as excessive avoidance in anxiety(Zorowitz et al., 
2019), craving and cue-induced relapse in drug abuse, and the ability to effortfully suppress compulsive 
behaviors across many disorders. Finally, and relatedly, the possibility of a dynamic and situation-
dependent default policy also offers a way to capture some aspects of emotion that have been resistant 
to RL modeling. In particular, one important aspect of emotion is its ability to elicit a pattern of congruent 
response tendencies, such as a greater tendency toward aggression when angry. Complementing recent 
work suggesting these might arise due to a hard bias on planning (via pruning context-inappropriate 
actions)(Huys and Renz, 2017), the default policy offers a clear and normative lever for influencing 
behavior on the basis of emotional (and other) context.  
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Methods 
Model description 
In this work, we focus on Markov decision processes with two conditions. First, we assume that there is 
one or a set of terminal states, 𝑠S; Second, we only consider deterministic environments, such as mazes, 
in which there is a one-to-one map between actions and successor states.  

The linear RL model is then based on a modification to the value function for this setting(Todorov, 2007, 
2009), in which the agent controls the probabilistic distribution over successor states (i.e., actions) and 
pays an additional control cost quantified as the dissimilarity (in the form of KL divergence) between the 
controlled dynamics (i.e. decision policy), 𝜋(. |𝑠*) and a default dynamics, 𝜋M(. |𝑠*). In particular, the 
objective of this MDP is to optimize a “gain” function, 𝑔(𝑠*), defined as 

 𝑔(𝑠*) = 𝑟(𝑠*) − 𝜆KL(𝜋||𝜋M) (4) 

where 𝜆 > 0 is a constant and KL(𝜋||𝜋M) is the KL divergence between the two probability distributions; 
it is only zero if the two distributions are the same, i.e. 𝜋 = 𝜋M and otherwise is positive. We also require 
that 𝜋 = 0 if 𝜋M = 0. Note that in the limit of zero, or respectively infinite, 𝜆, the gain converges to pure 
reward (i.e. a standard MDP), or pure cost. Here, 𝜆 scales the relative strength of control costs in units of 
reward (and is equivalent to rescaling the units of reward while holding the cost fixed). 

It is easy then to show that the optimal value function for this new problem, 𝐯∗, is analytically 
solvable(Todorov, 2007, 2009) (see formal derivation below). We first define the one-step state transition 
matrix 𝐓, whose (𝑖, 𝑗) element is equal to the probability of transitioning from state 𝑖 to state 𝑗 under the 
default policy (i.e. probability of the action under the default policy that makes 𝑖 → 𝑗 transition). This 
contains subblocks, 𝐓^^, the transition probability between nonterminal states, and 𝐓^S = 𝐏, the 
transition probabilities from terminal to nonterminal states. Then:  

 exp(𝐯∗/𝜆) = 𝐌𝐏exp(𝐫/𝜆), (5) 

where 𝐯∗ is the vector of optimal values at nonterminal states, 𝐫 is the vector of rewards at terminal 
states, and 𝐌 is a matrix defined below. Note that equation (3) is the case of this equation for 𝜆 = 1. 

The DR matrix 𝐌 is defined as: 

𝐌 = (diag(exp(− 𝐫 𝜆⁄ )) − 𝐓^^)d6, 

where 𝐫  is the vector of rewards at nonterminal states (which we take as a uniform cost of −1 in most 
of our simulations). 

For flexibility in updating which states are viewed as goal states, it is helpful to define a second, more 
general version of the DR matrix, 𝐃, defined over all states (not just nonterminal states) as: 

𝐃 = (diag(exp(− 𝐫f 𝜆⁄ )) − 𝐓)d6, 

where 𝐫f is the reward vector across all states. Note that since matrix 𝐌 can be easily computed from 𝐃 
(in particular, 𝐌 is a subblock of D corresponding to the nonterminal states only), we refer to both of them 
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as the DR unless specified otherwise. Also note that for defining 𝐃, we assumed, without loss of generality 
(since this assumption does not affect 𝐌), that reward at terminal states are not 0. 

This solution for 𝐯∗ further implies that the policy takes the form of a weighted softmax, where the 
weights are given by the default policy 

 
𝜋(𝑎|𝑠*) =

𝜋M(𝑎|𝑠*) exp(𝑣∗(𝑠1)/𝜆)
∑ 𝜋M(𝑎′|𝑠*) exp(𝑣∗(𝑠1H)/𝜆)1H

 (6) 

where 𝑠1  is the successor state associated with action 𝑎. Thus, for a uniform default policy, the optimal 
policy is simply given by the softmax over optimal values with the temperature parameter 𝜆. Note also 
that in the limit of 𝜆 = 0, the problem becomes the classical MDP (because 𝑔(𝑠*) = 𝑟(𝑠*) in equation (4)) 
and the decision policy in equation (6) also reflects the optimum policy (i.e. greedy) exactly. In the limit of 
infinite 𝜆, the influence of the rewards vanishes and the decision policy converges to the default policy. 

Planning toward a new goal and transfer revaluation 
Consider an environment with 𝐓𝟎 and 𝐃𝟎 as the transition matrix under the default policy and the 
associated DR, respectively. Now suppose that the agent’s goal is to plan toward state 𝑗 (or equivalently 
computing the distance between any state and 𝑗), i.e., we wish to add 𝑗 to the set of terminal states. Here, 
we aim to develop an efficient method to plan towards 𝑗 by using the cached 𝐃𝟎, without re-inverting the 
matrix.  

If we define 𝐋𝟎 = diag(exp(−𝐫f/𝜆)) − 𝐓k and 𝐋 = diag(exp(−𝐫f/𝜆)) − 𝐓, then 𝐋 and 𝐋𝟎 are only 
different in their 𝑗th row (because 𝐓 and 𝐓𝟎 are only different in their 𝑗th row). We define 𝐝, a row-vector 
corresponding to the difference in 𝑗th row of the two matrices: 

𝐝 = 𝐋(𝑗, : ) − 𝐋k(𝑗, : ), 

 and therefore, we can write: 

𝐋 = 𝐋𝟎 + 𝐝𝐞, 

where 𝐞 is a binary column-vector that is one only on 𝑗th element. Using the Woodbury matrix identity, 
𝐋d6 is given by 

𝐋d6 = 𝐋𝟎d6 −
1

1 + 𝐝𝐋𝟎d𝟏𝐞
𝐋𝟎d6𝐞𝐝𝐋𝟎d6, 

in which we exploited the fact that 𝐝 and 𝐞 are row- and column- vectors, respectively, and therefore 
𝐝𝐋𝟎d6𝐞 is a scalar. Since 𝐃𝟎 = 𝐋𝟎d6 and 𝐃 = 𝐋d6, we obtain 

 𝐃 = 𝐃𝟎 −
1

1 + 𝐝𝐦𝟎
𝐦𝟎𝐝𝐃𝟎, (7) 

where 𝐦𝟎 is the 𝑗th column of 𝐃𝟎. 

The above equation represents an efficient, low-rank update to the DR itself. However, for the purpose 
of this single planning problem (e.g. if, we do not intend further modifications to the matrix later), we may 
also further simplify the computation by focusing only on the product 𝐳 = 𝐌𝐏, which is what is needed 
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for planning using equation (5) in the new environment. We find 𝐳 in terms of an intermediate vector 𝐳r =
𝐃𝐏s, where 𝐏s is a subblock of 𝐓 from all states to terminal states, in which all elements of rows 
corresponding to terminal states are set to 0. Therefore, 𝐳r is given by 

 𝐳r 	= 𝐳𝟎 −
1

1 + 𝐝𝐦𝟎
𝐦𝟎𝐝𝐳𝟎, (8) 

where  

 𝐳𝟎 = 𝐃𝟎𝐏s. (9) 

Finally, 𝐳	is given by the submatrix of 𝐳r corresponding to nonterminal rows. 

It is important to note that since 𝐝 and 𝐏s are very sparse, computations in equations (8-9) are local. In 
fact, 𝐝 is only nonzero on elements associated with immediate state of 𝑗 (and 𝑗th element). If we assume 
that there is only one terminal state (i.e. 𝑗), then 𝐏s is a vector that is nonzero on elements associated with 
immediate state of 𝑗. 

The same technique can be used to update the DR or re-plan in transfer revaluation problems, such as 
localized changes in 𝐓^^ or 𝐏. For example, if transition from state 𝑗 to 𝑖 has been blocked, new values 
for 𝐃 and 𝐳 can be computed efficiently using equations (7) and (8), respectively. Similarly, 𝐃 and 𝐳 can 
be computed efficiently using those equations if the reward value for the nonterminal state changes. 
Finally, it is also possible to learn the DR matrix, transition by transition, by iteratively computing 𝐃 for 
each update using 𝐃k in equation (7). 

Border cells 
We employed a similar approach to account for border cells. Suppose that a wall has been inserted into 
the environment, which changes the transition matrix 𝐓k to 𝐓. Suppose 𝐋𝟎 = diag(exp(−𝐫f/𝜆)) − 𝐓k 
and 𝐋 = diag(exp(−𝐫f/𝜆)) − 𝐓. We define matrix 𝚫 using rows of 𝐋𝟎 and 𝐋 corresponding to 𝐽: 

𝚫 = 𝐋v − 𝐋kv, 

where 𝐽 denotes those states that their transition has been changed, 𝐋v and 𝐋kv, are, respectively, 
submatrices associated with rows of 𝐋 and 𝐋𝟎 corresponding to 𝐽. Using the Woodbury matrix identity 
(similar to equation (7)), the DR associated with the new environment is given by  

𝐃 = 𝐃𝟎 − 𝐁, 

where  

𝐁 = 𝐃𝟎vL𝐈 + 𝚫𝐃𝟎vN
d6
𝚫𝐃𝟎, 

in which matrix 𝐃𝟎v is the submatrix associated with columns of 𝐃𝟎 corresponding to 𝐽, and 𝐈 is the identity 
matrix. Note that although this model requires inverting of a matrix, this computation is substantially 
easier than inverting matrix 𝐋, because this matrix is low-dimensional. For simulating the border cells in 
Fig 5, we replaced matrix 𝐃𝟎 by its eigenvectors. Thus, if 𝐮 is an eigenvector of 𝐃𝟎, the corresponding 
column in 𝐁, 𝐛(𝐮) is given by 
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𝐛(𝐮) = 𝐃𝟎vL𝐈 + 𝚫𝐃𝟎vN
d6
𝚫𝐮. 

Simulation details  
We assumed a uniform default policy in all analyses presented in Figure 1-5. In Fig 1, the cost for all states 
were randomly generated in the range of 0 to 10 and analysis was repeated 100 times. In Fig 2b-c, a 50x50 
maze environment was considered. In Fig 2d-e, a 10x10 maze was considered with 20 blocked states. The 
DR was computed in this environment with no terminal state, in which the cost for all states was 1. We 
used equation (8) to compute the shortest path using linear RL. The optimal path between every two 
states was computed by classic value iteration algorithm. In Fig 3b-c, the reward of all states was –1, 
except the terminal states, which was +5. In the revaluation phase, the reward of the left terminal state 
was set to –5. In Fig 3d, the reward of states 1,2 and 3 is 0. In Fig 3e, reward at all states is –1, except for 
the terminal state, which is +5. In Fig 4d, a 50x50 maze was considered, the cost for all states was assumed 
to be 0.1. In this figure, 15th, 20th, 32th eigenvectors of the DR have been plotted. In Fig 5b, a 20x20 maze 
was considered and the cost for all states was assumed to be 0.1. In this figure, 1th, 6th, 11th, 12th 
eigenvectors of the DR have been considered. 

The default policy in Figs 6-7 was not uniform. In Fig 6c, the default probability for the control-demanding 
action assumed to be 0.2 and reward was assumed to be +2. For simulating PIT in Fig 7, we followed 
experimental design of Corbit et al.(Corbit et al., 2007) and assumed that the environment contains 4 
states, in which state 1 was the choice state, states 2, 3, and 4 were associated with outcomes 1,2 and 3, 
respectively. In Fig 7c, the reward of outcome 1-3 was +5. In Fig 7e, the reward of all states was assumed 
to be 0. It was also assumed that during the Pavlovian training, the default probability for Stimulus 1® 
Outcome 1 and for Stimulus 2® Outcome 2 changes from 0.33 (i.e. uniform) to 0.5.  

The only parameter of linear RL is 𝜆, which was always assumed to be 1, except for simulating the results 
presented in Fig 3e, where we set 𝜆 = 10 to avoid overflow of the exponential due to large reward values.  

Formal derivation 
For completeness, we present derivation of equations (5-6) based on Todorov(Todorov, 2007, 2009). By 
substituting the gain defined in equation (4) into the Bellman equation (1), we obtain: 

𝑣(𝑠*) = 𝑟(𝑠*) + maxE {−𝜆𝐸1~EL𝑎~𝑠*N �log
𝜋(𝑎|𝑠*)

𝜋M(𝑎|𝑠*) exp (𝑣(𝑠1) 𝜆)⁄ ��, 

where 𝑠1  denotes the corresponding state (among the set of successor states of 𝑠*) to action 𝑎. 

Note that the expectation in the Bellman equation is under the dynamics, which we have replaced it with 
the policy because they are equivalent here. The expression being optimized in this equation is akin to a 
KL divergence, except that the denominator in the argument of the log function is not normalized. 
Therefore, we define the normalization term 𝑐: 

𝑐 =3 𝜋M(𝑎|𝑠*)𝑒�(?�)/�
1

, 
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Note that 𝑐 is independent of the distribution being optimized 𝜋. By multiplying and dividing the 
denominator of the log by 𝑐, we obtain: 

𝑣(𝑠*) = 𝑟(𝑠*) + 𝜆 log 𝑐 +maxE 	{−𝜆KL(𝜋(𝑎|𝑠*)||𝜋M(𝑎|𝑠*)𝑒�(?�)/�/𝑐)}, 

where the maximum value of negative KL divergence is zero, which occurs only if the two distributions 
are equal, giving rise to equation (6): 

𝜋(𝑎|𝑠*) = 𝜋M(𝑎|𝑠*)𝑒�(?�)/�/𝑐. 

Furthermore, since the KL divergence is zero, optimal values satisfy: 

𝑣∗(𝑠*) = 𝑟(𝑠*) + 𝜆 log 𝑐. 

Across all states, this gives rise to a system of linear equations in the exponential space. Since at terminal 
states, 𝑣(𝑠S) = 𝑟(𝑠S), this system can be solved analytically, which can be written in the matrix equation 
5. 
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