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Abstract

Genome-wide association studies (GWAS) have identified thousands of genetic variants associated

with complex human traits, but only a fraction of variants identified in discovery studies achieve

significance in replication studies. Replication in GWAS studies has been well-studied in the context

of winner’s curse, which is the inflation of effect size estimates for significant variants in a study.

Multiple methods have been proposed to correct for the effects of winner’s curse. However, winner’s

curse is often not sufficient to explain lack of replication. Another reason why studies fail to

replicate is that there are fundamental differences between the discovery and replication studies. A

confounding factor can create the appearance of a significant finding while actually being an artifact

that will not replicate in future studies. We propose a statistical framework that utilizes GWAS

replication studies to model winner’s curse and study-specific heterogeneity due to confounders and

correct for these effects. We show through simulations and application to 100 human GWAS data

sets that modeling both winner’s curse and study-specific heterogeneity explains observed patterns

of replication in GWAS studies better than modeling winner’s curse alone.
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Introduction

Replication is a gold standard in scientific discovery. Consensus emerges when a result has been

replicated repeatedly by multiple researchers. Recently, a vigorous discussion has emerged of how

often replication of an initial study fails across all fields of science, including genomics [1, 2, 3, 4, 5].

Genome-wide association studies (GWAS) are an ideal model to study replication because there

are a large number of GWAS data sets with replication studies publicly available. GWAS replication

studies are typically conducted in an independent cohort and on a smaller set of variants than the

discovery study. In the National Human Genome Research Institute Catalog of Published GWAS,

thousands of genetic variants have been associated with complex human traits but not all associated

variants achieve significance in follow up replication studies [6, 4, 5, 7].

There are several reasons why associations do not replicate. The first is simply statistical. It

is possible that the association is not observed in the replication study by chance. However, if

the p-value from the original finding is highly significant and the replication studies have similar

experimental designs, this scenario is unlikely. A second reason why studies can fail to replicate is

winner’s curse, which is the inflation of effect size estimates for significant variants in a study. This

phenomenon occurs because the reported findings are a small fraction of many possible findings. In

the case of GWAS, the significant associations are discovered after examining millions of variants

and pass a stringent genome-wide significance threshold. This can result in inflated effect size

estimates of significant variants in a study, especially when studies are underpowered. Winner’s

curse has been studied extensively in GWAS, and multiple methods have been proposed to correct

for its effects [9, 10, 11, 12, 4]. However, winner’s curse is often not sufficient to explain lack of

replication. A third reason why studies fail to replicate is that there are fundamental differences

between the original and the replication study. An effect present in one study but not present

in other studies can create the appearance of a significant finding that is not replicated in future

studies [13]. This can either occur because of an underlying biological difference or a technical

difference between the two studies. We refer to the cause of these differences as confounders.

Current methods for modeling confounders fall into two broad categories. The first class of

methods attempt to model the effect of confounders before the association statistic is calculated

in order to remove their effects from the association statistic. While these methods are widely
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used, they have several fundamental limitations. Methods that account for known covariates may

not correct for all potential confounders. Confounding correction methods that use unsupervised

learning to learn principal components or other global patterns in the data can incorrectly model

the true signal as a confounder, which would remove true biological signal from the data [15, 14].

Similarly, when using unsupervised methods, it is unclear when there is residual confounding that

remains in the data. The second class of methods attempt to directly adjust p-values by a constant

factor to remove inflation. An example of such a method is genomic control [16]. In genomic

control, there is an assumption that relatively few variants affect the trait and the vast majority

do not. The implication of this assumption is that if the association statistics are ranked, then the

variant corresponding to the median statistic will not affect the trait, and the value of this statistic

will represent only the effect of the confounders. Genomic control scales all of the p-values using

this statistic. Recently it has been observed that due to polygenicity and linkage disequilibrium

(LD) structure in the genome, the majority of variants (including the one corresponding to the

median statistic) either affect the trait or are correlated with a variants that affect the trait. This

breaks the genomic control assumption. While LD-score regression has been shown to distinguish

polygenicity and confounding [17], it has been shown that this approach can also result in inflated

SNP-based heritability estimates under strong stratification [18].

In this paper, we present a novel approach for characterizing study-specific heterogeneity due to

confounders using replication studies. The key insight in our approach is that we can use replications

to identify the presence of confounders and then use this information to correct the studies. Since

replication studies are performed on the same phenotype, utilizing replication studies to estimate

the effect of confounders does not reply on assumptions to distinguish between polygenicity and

confounding. Furthermore, we can apply our approach in combination with traditional techniques

like linear mixed models and principal component analysis. Our approach can be used to model

any residual confounding effects after application of these methods.

In our framework, we use a random effects model to jointly model the effect of both winner’s

curse and study-specific confounders on GWAS summary statistics. We show through simulations

that we can accurately estimate the contribution of confounders on a study by using the existing

findings of the study and a replication. We apply this framework to 100 GWAS studies from the

Human GWAS Catalog and observe a surprising amount of confounding in GWAS studies. We
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validate our approach by comparing the predicted replication rate under our model with both the

true replication rate and the predicted replication rate under a naive model that only accounts for

winner’s curse. We show that modeling both winner’s curse and study-specific heterogeneity due

to confounders explains observed patterns of replication in GWAS studies better than modeling

winner’s curse alone.

Results

Method overview

The main goal of this framework is to account for winner’s curse and confounding between discovery

and replicate GWAS studies of the same phenotype. We compare the predicted replication rate of

two random effects models — one that corrects for only winner’s curse and one that corrects for

both winner’s curse and confounding. Through this comparison, we show that jointly modeling

both winner’s curse and study-specific confounders explains observed patterns of replication better

than the naive approach that only models winner’s curse. We introduce these models without

accounting for difference in sample size for clarity, but we relax this constraint in the Methods

section.

In GWAS, winner’s curse is the phenomenon where the association statistics for variants meeting

a genome-wide threshold tend to be overestimated. The effect of winner’s curse can be observed

in Figure 1, where the summary statistics for the significant variants in the discovery study are

substantially lower in the replication study. Due to this phenomenon, not all of the significant

variants in the initial discovery study replicate. Winner’s curse is widely observed in GWAS due

to lack of statistical power in initial discovery studies. When power is low, the variants that are

most significant in a study are likely to have inflated effect sizes due to random noise.

To model random noise contributing to winner’s curse, we model the statistics for each variant

k from the initial and discovery studies as normally distributed random variables (s
(1)
k and s

(2)
k ,

respectively). We assume that there is a shared genetic effect λ that is responsible for the observed

association signal. Thus, the distribution of the statistic for variant k in study i is s
(i)
k ∼ N (λ, 1).

We define the prior probability of the true genetic effect to be λ ∼ N (0, σ2g), where the variance

in the true genetic effect is learned from the data. Then, we model the joint distribution of the
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Figure 1: Winner’s curse. Not all GWAS variants replicate in followup studies. The significant
variants in a discovery GWAS study on height (PMID 25282103) are shown. The variants that
replicated successfully are shown in black, and the ones that did not replicate are shown in grey. The
summary statistics for the variants that did not replicate are lower than expected in the replication
study. This phenomenon can be partially explained by winner’s curse.

summary statistics from the two studies (Equation 1).

s(1)k
s
(2)
k

 ∼ N

0

0

 ,

σ2g + 1 σ2g

σ2g σ2g + 1


 (1)

We correct for winner’s curse by computing the conditional distribution of the replication sum-

mary statistic given the initial summary statistic (Equation 2). Using this conditional distribution,

we can account for winner’s curse and compute the expected value of the summary statistic in the

replication study, along with confidence intervals. This framework accurately models the data in

cases where winner’s curse is the only source of inflation. Figure 2A shows a GWAS on height,

where most of the variants fall within the 95% confidence intervals of the model accounting for

winner’s curse [19]. This shows that in studies without substantial confounding effects, winner’s

curse can adequately explain the replication rate.

(s
(2)
k |s

(1)
k = x) ∼ N

(
σ2g

σ2g + 1
x, 1 + σ2g −

σ2g
σ2g + 1

)
(2)
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WC
WC + Confounding

Not Replicated
Replicated

A B

Figure 2: Correcting for winner’s curse and confounding The x-axis for each plot is the value
of the discovery summary statistic, and the y-axis is the value of the replication summary statistic.
The solid lines correspond to the expected values of the replication summary statistics given the
initial summary statistics. The dotted lines represent confidence intervals in the estimates. The blue
lines correspond to the model that only accounts for winner’s curse, and the red lines correspond
to the model that accounts for winner’s curse and confounding. A) In this GWAS on height
(PMID 25282103), there is very little confounding, and a model that accounts for winner’s curse
explains the majority of the data. B. In this GWAS on height in African American women (PMID
22021425), there is substantial confounding. The model accounting for only winner’s curse (blue)
does not explain the observed data well, whereas the model with winner’s curse and confounding
(red) does explain the data well.

However, there is often additional heterogeneity due to confounding, and a framework that only

accounts for winner’s curse is inadequate. Figure 2B shows an example of a GWAS on height in

African American women [20]. In this study there was substantial confounding, and only 5/84

(6%) of variants replicated. Using a model that only accounts for winner’s curse, most variants are

outside of the 95% confidence intervals, indicating that there is additional heterogeneity that is not

modeled. To account for study-specific confounding, we decompose the effect size of the summary

statistics into a genetic effect (λ) and study-specific confounding effects (δ(i)). The distribution of

the statistic for variant k in study i is s
(i)
k ∼ N

(
λ+ δ(i), 1

)
. In addition to the prior on the genetic

effect, we introduce priors on the study-specific confounders (δ(i) ∼ N (0, σ2ci)).We incorporate both

of these priors into the joint distribution of the summary statistics (Equation 3).
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s(1)k
s
(2)
k

 ∼ N

0

0

 ,

σ2g + σ2c1 + 1 σ2g

σ2g σ2g + σ2c2 + 1


 (3)

We correct for both winner’s curse and confounding by computing the conditional distribution

of the replication summary statistic given the initial summary statistic (Equation 4). By taking into

account the additional variance in the statistics from confounders, we are able to more accurately

model the summary statistic data from the two studies (Figure 2B). The model that only accounts

for winner’s curse predicted that 84 variants would replicate, whereas our model that also accounts

for confounding predicted that only 4 variants would replicate, which is substantially closer to the

true value of 5 variants. This difference in predictions is due to the study-specific confounding

effects estimated in the second model, which both decreases the expected value of the statistics

in the replication study and increases the variance of the statistics in the replication study. After

correcting for winner’s curse and confounding, most variants are within the 95% confidence intervals

for the model.

(4)(s
(2)
k |s

(1)
k = x) ∼ N

(
σ2g

σ2g + σ2c1 + 1
x, σ2g + σ2c2 + 1−

σ4g
σ2g + σ2c1 + 1

)

For each data set, we compute estimates of the summary statistics that we would expect using a

framework that only accounts for winner’s curse and a framework that accounts for winner’s curse

and confounding. We also compute the expected replication rate under the two models. We apply

this framework to simulated data and 100 human GWAS in the GWAS catalog. We compare the

predicted replication rates under the two models with the true replication rate.

Confounding explains low replication in simulated data

We generated simulated data to demonstrate that our approach accurately models the effects of

winners’ curse and confounding to explain low replication in GWAS studies (See Methods). We

set the variance for the genetic and confounding effects to a range of values from 0.0 to 3.0. Using

multiple combinations of fixed parameters, we simulated summary statistics for 1000 variants by

drawing the shared genetic effect, study-specific confounders, and study-specific error from normal

distributions. We then computed the summary statistics for each variant as the sum of the genetic

effect, the study-specific confounder, and the study-specific error. We define the true replication rate
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to be the percentage of variants that are significant in the discovery study that are also significant

in the replication study using a Bonferonni correction for multiple testing.

We directly compared our method with a simplified model that only takes into account winner’s

curse. When only accounting for winner’s curse, the predicted replication rate was often much

higher than the true replication rate (Figure 3). The winner’s curse model only accurately predicted

the replication rate when the confounding for both studies is set to zero (i.e, σ2c1 = 0 and σ2c2 = 0).

This indicates that when confounding exists between two GWAS studies, the two studies may have

different effect sizes. Thus, a model that only accounts for winner’s curse may overestimate the

expected replication in the presence of confounding.

Figure 3: Prediction of replication rate in simulated data. We predicted the replication
rate under a model accounting for winner’s curse (WC) and a model accounting for winner’s curse
and confounding (WC+Confounding). The model accounting for winner’s curse and confounding
explains replication rates substantially better than the model that only accounts for winner’s curse.

We then applied our method that takes into account both winner’s curse and study-specific

confounding. For simulations where the confounding is greater than zero, the predicted replication

rate under this model was closer to the true replication rate than the simplified model that only

accounts for winner’s curse (Figure 3). To ensure that our maximum likelihood estimates of the

variance parameters were accurate, we compared the estimates with the true values. For all simu-

lations, the maximum likelihood estimates of the variance parameters are close to the true values

(Figure 4).
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Figure 4: Prediction of variance components in simulated data. We fixed the values of the
variance components to a range of values between 0.0 and 3.0 and simulated data according to our
framework. We estimated the parameters from the simulated data using our maximum likelihood
estimates.

Accounting for confounding better explains replication rate in 100 human GWAS

datasets

We then apply our framework to 100 human GWAS studies previously curated to require summary

statistic data availability, a focus on human genetics, and other consistency criteria [4]. All studies

have a discovery and replication design, where only the significant SNPs in the discovery study are

tested in the replication study. We use the summary statistics from these discovery and replication

studies to test our framework’s ability to capture the effects of winners’ curse and confounding.

After learning the variance parameters for the genetic and confounding effects, we calculate the

predicted replication rate under the model accounting for winner’s curse and the model accounting

for winner’s curse and confounding (See Methods). We compare these predicted replication rates

to the true replication rates to assess which model explains the observed replication better.

We define the true replication rate to be the percentage of variants that are significant in the

discovery study that are also significant in the replication study. We use a Bonferonni adjusted

p-value threshold of α = 0.05
M for each study, where M is the number of SNPs tested in the study. Of

the 1652 reported GWAS variants, only 519 (31%) replicate. Using the simplified model that does

not account for confounding, we would expect 1552 (94%) of the variants to replicate. However,
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Figure 5: Prediction of replication rate by study in 100 human GWAS. The x-axis is
the true number of variants that replicate. The y-axis is the predicted number of variants that
replicate. Each dot represents one GWAS study, and the color indicates which model was used
to predict the number of variants that replicate. Accounting for winner’s curse and confounding
yields more accurate estimates of the replication than the model that only accounts for winner’s
curse.

when we estimate the effect of confounding in our framework, we expect 548 (33%) of the variants

to replicate, which is very close to the observed value thus giving evidence that we do observe

a substantial bias beyond what we would expect from winner’s curse alone. Our study-specific

replication rates also show that accounting for confounding improves prediction of replication rate,

indicating that accounting for confounding is important for understanding patterns of replication

across studies (Figure 5).

We compare our predicted replication rates with those previously reported by Pe’er et al., which

corrects for the expected bias in observed effect due to winner’s curse in the same 100 GWAS studies

[4]. At a Bonferonni adjusted significance level of 0.05, Palmer et al. predicts that 610 loci will

replicate, which is more than both the true replication rate (519) and the predicted replication rate

using our method when accounting for confounders (548). This suggests that by utilizing replication

studies, we can account for more heterogeneity due to confounding and explain replication better

than adjusting for winner’s curse alone.
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Figure 6: Estimated level of confounding in discovery study strongly associated with
true replication rate. The x-axis is the MLE of σ2c1 , and the y-axis is the true replication
rate. Each dot represents a single GWAS study. The Spearman correlation between the estimated
variance of confounding and true replication rate is -0.84. The colors correspond to the number of
significant SNPs in the discovery GWAS.

Estimates of study-specific confounding elucidates lack of replication

Our framework models additional variation in the summary statistics that is due to study-specific

confounders. To further assess the effect of our estimated levels of confounding on replication rate,

we analyzed the distribution of estimated confounding in all studies. The estimated value of σ2c1

was negatively correlated (Spearman ρ = −0.84) with the true replication rate in these studies

(Figure 6). In many studies, the level of confounding estimated was substantial. In many studies

we quantified the variance due to confounding to be an order of magnitude larger than the variance

due to noise (WC). We stratified the studies by the total number of significant variants in the

discovery study since our estimates of σ2c1 may be less robust for studies with only one significant

variant. In studies with at least 50 significant variants, the correlation between confounding and

true replication rate is strongest (Spearman ρ = −0.95). For subsequent analyses, we focused only

on studies that have at least 50 significant SNPs in the discovery GWAS (8 studies).

In order to understand why some studies replicate poorly, we analyzed the ancestry of the dis-

covery and replication studies. When GWAS are performed in populations with different ancestries,

differences in the true effect sizes between populations can contribute to lack of replication. Thus,

we expect that studies using homogenous populations would replicate better than studies using

heterogenous populations. However, we observed a range of confounding and replication for both
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Figure 7: Ancestry differences and sample size explain replication inconsistently. The
x-axis is the MLE of σ2c1 , and the y-axis is the true replication rate. Each dot represents a single
GWAS study. The Spearman correlation between the estimated variance of confounding and true
replication rate is -0.84. The colors correspond to whether the studies were conducted in a homo-
geneous or heterogeneous population. The size corresponds to the number of individuals in the
discovery study. While the estimated confounding in the discovery study explains the replication
rate well, ancestry and size do not explain the replication consistently.

types of studies (Figure 6). For instance, the studies using heterogeneous populations had replica-

tion rates ranging from 2% to 75% [22, 23, 24, 25, 19, 26]. Of the two studies from homogeneous

populations, one study had a replication rate of 27% [27], while the other had a replication rate of

only 2% [20]. While ancestry explains replication inconsistently, our estimates of confounding can

distinguish between studies where ancestry is correctly accounted for and studies where it is not

(Figure 6).

Another potential cause of poor replication is sample size. When sample sizes are small, winner’s

curse may contribute to lack of replication in GWAS studies. The study with the smallest sample

size (176 individuals) also had the lowest replication rate (1%) and highest amount of confounding

(σ2c1 = 17.5) [22]. While the correlation between sample size and true replication is quite high

(Spearman ρ = .46), there are some studies where smaller sample sizes have higher replication

rates and vice versa. Our model can be used to identify when small sample sizes negatively affect

replication rate.
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Discussion

We developed a novel statistical framework to correct for winner’s curse and study-specific con-

founding in GWAS data. This framework utilizes GWAS replications to identify the presence of

confounders without replying on assumptions to distinguish between polygenicity and confounding.

We showed through simulations that our model accurately estimates the variance of the genetic

and confounding effects and that our model can be used to explain replication rates. When applying

our method to 100 human GWAS studies, we showed that a model that accounts for winner’s curse

and confounding explains replication rates more accurately than a model that only accounts for

winner’s curse. While the estimated confounding in the discovery study explains the replication rate

well, ancestry and size do not explain the replication consistently. We also showed that confounding

is highly prevalent in GWAS studies. This indicates that modeling residual confounding is necessary

for understanding lack of replication in GWAS studies.

One of the difficulties in our analyses is that some GWAS studies have very few significant vari-

ants, making the maximum likelihood estimates of the variance parameters unstable. Theoretically,

it is possible to compute the variance parameters using additional variants that were not signifi-

cant in the initial discovery study. However, summary statistics for these variants are often not

computed to decrease the multiple testing burden for replication studies. Nevertheless, as GWAS

studies have increasingly larger sample sizes, we expect that the number of GWAS variants will

increase and make our estimated parameters increasingly robust.

Methods

GWAS overview

In GWAS studies, an association study is performed between each genetic variant and the phe-

notype. The effect size of each variant (k) is determined by estimating the maximum likelihood

parameters of Equation 5, where yj is the phenotype or individual j, µ is the phenotypic mean, xkj

is the normalized genotype of individual j, βk is the effect size of the variant k, ej is the error, and

N is the number of individuals.
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yj = µ+ βkxij + ej (5)

In vector notation, Equation 5 becomes the following.

y = µ1 + βkXk + e (6)

The resulting maximum likelihood estimates are µ̂ = 1
N 1T y and β̂k =

XT
k y
N . The residuals

ê = y − µ̂1 − β̂kXk can be used to estimate the standard error σ̂e =
√

êT ê
N−2 . The standard error

of the estimator is ˆσβk = σ̂e√
N

. Since the sample sizes for GWAS studies are large, the association

statistic sk = β̂k
σ̂e

√
N follows an approximately normal distribution (Equation 8).

sk ∼ N
(
βk
σe

√
N, 1

)
(7)

Under the null hypothesis, Sk will follow the standard normal distribution, which can be used

to compute the significance of association. In the standard GWAS framework, we assume that

the standardized effect size is caused by a true genetic effect λ = βk
σσe

. Thus, Equation 8 can be

rewritten as the following.

sk|λ ∼ N
(
λ
√
N, 1

)
(8)

Correcting GWAS summary statistics for winner’s curse

Given Equation 8, we can write the distributions of summary statistics for a initial discovery study

and a replication study as s
(1)
k |λ ∼ N

(
λ
√
N1, 1

)
and s

(2)
k |λ ∼ N

(
λ
√
N2, 1

)
, respectively.

We assume that λ is the same across multiple studies on the same trait. We define the prior

distribution of λ as λ ∼ N (0, σ2g), where σ2g is the variance in the true effect size. Thus, the posterior

distributions of s
(1)
k and s

(2)
k are also normally distributed.

s
(1)
k ∼ N (0, N1σ

2
g + 1) (9)

s
(2)
k ∼ N (0, N2σ

2
g + 1) (10)
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We correct for winner’s curse by computing the conditional distribution of the replication statis-

tic (s
(2)
k ) given the discovery statistic (s

(1)
k ). We derive the conditional distribution from the joint

distribution as follows.

The covariance between s
(1)
k and s

(2)
k is computed as follows.

cov(s
(1)
k , s

(2)
k ) = E

[
(λ
√
N1 − E(λ

√
N1))(λ

√
N2 − E(λ

√
N2))

]
= E

[
λ2
√
N1N2

]
=
√
N1N2σ

2
g

Therefore, the joint distribution of s
(1)
k and s

(2)
k is Equation 11.

s(1)k
s
(2)
k

 ∼ N

0

0

 ,

N1σ
2
g + 1

√
N1N2σ

2
g

√
N1N2σ

2
g N2σ

2
g + 1


 , (11)

Conditioning on s
(1)
k , we obtain Equation 12.

(s
(2)
k |s

(1)
k = x) ∼ N

(√
N1N2σ

2
g

N1σ2g + 1
x, 1N2σ

2
g −+

N2σ
2
g

N1σ2g + 1

)
(12)

For each value of s
(1)
k , the mean of the conditional distribution gives the expected summary

statistic in a replication study, correcting for winner’s curse. This distribution can also be used to

create a confidence interval on the replication sample statistics.

Correcting GWAS summary statistics for winner’s curse and confounding

Suppose in addition to study-specific environmental effects, there are also study-specific con-

founders. We model these confounders in the discovery study and replication study as δ(1) ∼

N (0, σ2c1) and δ(2) ∼ N (0, σ2c2) respectively. We decompose the effect size into the sum of a genetic

component (λ) and a confounding component δ(i).

s
(1)
k |λ ∼ N

(
(λ+ δ(1))

√
N1, 1

)
(13)
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s
(2)
k |λ ∼ N

(
(λ+ δ(2))

√
N2, 1

)
(14)

Similar to the case without confounding, the posterior distributions of s
(1)
k and s

(2)
k are normally

distributed (Equations 15 and 16 ).

s
(1)
k ∼ N (0, N1σ

2
g +N1σ

2
c1 + 1) (15)

s
(2)
k ∼ N (0, N2σ

2
g +N2σ

2
c2 + 1) (16)

Therefore, the joint distribution is Equation 17

s(1)k
s
(2)
k

 ∼ N

0

0

 ,

N1σ
2
g +N1σ

2
c1 + 1

√
N1N2σ

2
g

√
N1N2σ

2
g N2σ

2
g +N2σ

2
c2 + 1


 , (17)

Similar to the winner’s curse only model, we can find the expected summary statistic in a

replication study correcting for winner’s curse by computing the conditional distribution of the

replication statistic (s
(2)
k ) given the discovery statistic (s

(1)
k ) (Equation 18).

(18)(s
(2)
k |s

(1)
k = x) ∼ N

( √
N1N2σ

2
g

N1σ2g +N1σ2c1 + 1
x,N2σ

2
g +N2σ

2
c2 + 1−

N1N2σ
4
g

N1σ2g +N1σ2c1 + 1

)

Predicting the replication rate

The conditional distribution (s
(2)
k |s

(1)
k ) can also be used to predict the replication rate of an initial

discovery study. For a genetic variant k with association statistic s
(1)
k = x in an initial discovery

study, the probability of replication is Pr
(
abs(s

(2)
k ) > z|s(1)k = x

)
, where z is the z-score thresholds

corresponding to a specific significance threshold t for the replication study.

The predicted replication rate can be calculated as the average probability of replication across

all significant variants in the discovery study. Let A be the set of variants found to be significant

in the discovery study. The predicted replication rate (r) is defined as

r =
1

|A|
∑
sk∈A

P
(
abs(s

(2)
k ) > z|s(1)k = x

)
(19)
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Estimating the variance components from data

The genetic variance (σ2g) and confounding variance (σ2c1 , σ2c2) are not known a priori. We estimate

these parameters from the data using the following procedures. Since in many cases, the replication

study only tests variants that are significant in the initial study, we calculate the variance com-

ponents using only data from variants that are significant in the initial study and tested in both

studies. Let the total number of variants studied be M and the total number of significant variants

in the initial study be M ′.

We first calculate the maximum likelihood estimate (MLE) for the total variance of the statistics

in the discovery study s(1), which we denote as σ̂2
s(1)

(Equation 20). We include the unobserved

variants that are not significant in the first study in the likelihood by integrating over all of their

possible values.

argmax
σ2

s(1)

(
M ′∑
i=0

(log
[
P (s

(1)
i |0, σ

2
s(1)

])
+

(
M−M ′∑
i=0

log
[
P (−z ≤ s(1)i ≤ z)|0, σ

2
s(1)

])
(20)

We then use this estimate of the total variance to compute the expected value of the replication

statistics s(2) for different values of σ2g . We select the value of σ2g that minimizes the residual sum

of squares between the predicted value of s(2) and the true value (Equation 21).

argmin
σ2
g

√√√√M ′∑
i

(
σ2g
σ2
s(1)

s
(1)
i − s

(2)
i

)2

(21)

We can then decompose total variance in s(1) and estimated σ2c1 using the previously estimated

total variance ( σ̂2
s(1)

) and genetic variance (σ̂2g). We solve for σ̂c1 as follows.

σ̂2
s(1)

= 1 +N1σ
2
g +N1σ

2
c1

σ̂2c1 =
σ̂2
s(1)
−N1σ̂

2
g − 1

N1

Finally, we use the joint distribution of s
(1)
k and s

(2)
k (Equation 17) to compute the MLE estimate

of σ2c2 , using the previously estimated σ̂2g and σ̂c1 .
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Data generating model

We generated simulated data to demonstrate that our approach can capture the effects of winners’

curse and confounding to explain low replication in GWAS studies. To show that our model is more

effective at explaining low replication than a method that only takes into account winners’ curse,

we directly compare our method with a simplified model that only takes into account winners’

curse.

We set variance of the shared genetic variance to be σ2g = 1. We then set the variance of study-

specific confounders to be σ2c1 = 1 and σ2c2 = 3. For each variant, we sampled from the following

distributions.

λ ∼ N(0, σ2g)

δ(1) ∼ N(0, σ2c1)

δ(2) ∼ N(0, σ2c2)

ε(1) ∼ N(0, 1)

ε(2) ∼ N(0, 1)

We assumed that sample sizes for the discovery and replication studies were 5000 and 1000,

respectively. We computed the summary statistics for each study as s
(i)
k =

√
Ni(λ + δ(i)) + ε(i).

Using our framework, we estimate the variance components and compare these estimates with the

true values.
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